Overlap staggered fermions

Philippe de Forcrand ETH Zürich and CERN

with Aleksi Kurkela & Marco Panero

inspired by David Adams

Ph. de Forcrand

QCDNA, Sept. 2010 Overlap staggered fermions

Motivation

- Light u, d quarks needed to simulate correct physics \rightarrow expensive
- Cost-saving: staggered fermions (1/4 d.o.f.)

$$\mathcal{S}_{F} = \sum_{x} ar{\chi}(x) \sum_{\mu} \eta_{\mu}(x) (U_{\mu}(x) \chi(x + \hat{\mu}) - U^{\dagger}_{\mu}(x - \hat{\mu}) \chi(x - \hat{\mu})) + m_q \sum_{x} ar{\chi}(x) \chi(x)$$

 $\eta_{\mu} = \pm 1; \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu} \rightarrow \prod_{4} \eta = -1$ around any plaquette

• Drawback: $N_f = 4$ (degenerate when a = 0) "tastes" $\rightarrow \sqrt{\det(D_{st})}$

"rooting is evil" Mike Creutz

- non-locality?
- 't Hooft vertex, $U(1)_A$ breaking?
- staggered fermions don't feel the topology
- No quartet of low-lying eigenvalues ↔ no index theorem

David Adams to the rescue: $N_f = 2$ staggered overlap fermions 0912.2850. 1008.2833

Construction

• Idea # 1: $N_f = 4 \rightarrow 2$

Include taste-dependent mass term: $\pm \rho$ for left-/right-handed tastes

Then add mass (ie. shift spectrum) to make $N_f = 2$ massless flavors! Drawback: additive mass renormalization, ie. fine-tuning for $m_q \rightarrow 0$

Ph. de Forcrand

Construction: mass term

Ph. de Forcrand

QCDNA, Sept. 2010

Construction

• Idea # 2: use as kernel in overlap $D_{ov} = 1 + \frac{D_{Adams}}{\sqrt{D_{Adams}^{\dagger} D_{Adams}}}$

ie. unitary projection (polar decomp.): no more additive mass renorm.

Construction

• Idea # 2: use as kernel in overlap $D_{ov} = 1 + \frac{D_{Adams}}{\sqrt{D_{Adams}^{\dagger}} D_{Adams}}$

ie. unitary projection (polar decomp.): no more additive mass renorm.

- Added bonus: index theorem, Ginsparg-Wilson symmetry
- Cost? in-between staggered and Neuberger...

Index from eigenvalue flow

- Index from flow of eigenvalues of $H(m) = \gamma_5(D + m) = \gamma_5D + m\gamma_5$
- Topology comes from gluon field, ie. taste-singlet

 \implies Need taste-singlet γ_5 , at least for mass term \rightarrow " Γ_5 "

 $H(m) = "\gamma_5"(D_{st} + m"\Gamma_5")$

$$\begin{split} D_{st} &= \frac{1}{2} \sum_{\mu} \eta_{\mu}(x) (U_{\mu}(x) - U_{\mu}^{\dagger}(x - \hat{\mu})) \\ \gamma_5 &= (-)^{x+y+z+t}, \quad \Gamma_5 = \prod_4 \eta_{\mu} \times \sum \text{4-link transporters} \end{split}$$

More eigenvalue flows

• Cold configuration: agreement with analytic result

• $\beta = 6.0$: eigenvalue gap closes, but |m| can be *arbit. large* in Adams

Overlap staggered fermions

• Just like Neuberger: $D_{ov} = 1 + \gamma_5 \text{sign}(H(-m_0)) = 1 + \gamma_5 \text{sign}(H(-m_0))$

$$\frac{D_{Adams}}{\sqrt{D_{Adams}^{\dagger}D_{Adams}}}$$

with
$$\gamma_5 = (-)^{x+y+z+t}$$
 (need $\gamma_5^2 = 1$)

- Potential advantages:
 - cheaper (4 times fewer d.o.f. per site)
 - more robust ($|m_0|$ can be arbitrarily large)

And reduces
$$N_f = 4$$
 to $N_f = 2$ tastes.

Adams comparable to Neuberger although kernel less local (4-link)

Adams comparable to Neuberger although kernel less local (4-link)

Cost of applying operator

- Multiplication by D: about 2 times faster for Adams (no Dirac indices)
- Sign(*H*) [using CG, no deflation]:
 - about 8 times faster for Adams on *easy cases*
 - about 2-3 times faster on hard cases

Bag of tricks:

improved operator, link smearing (kinetic and/or mass), deflation, preconditioning, ...

Cost of inversion: compare with Neuberger

Apples with apples:

- same gauge field ($12^4, \beta = 6.0$)
- same basic algorithm (CG inner, CG outer)

Adams versus Neuberger

Net CPU gain: factor 2-3 over Neuberger...

Cost of inversion: compare with Neuberger

Adams versus Neuberger

Free field: now factor 8+ \rightarrow try to keep the free spectrum

Problem: the hole fills up at same β regardless of "improvement"

Problem: the hole fills up at same β regardless of "improvement"

Strategy II: suppress eigenvalues in the gap via the measure

• Extra factor:
$$\frac{\det(D_{Adams}^{\dagger}D_{Adams})}{\det(D_{Adams}^{\dagger}D_{Adams}+(a\hat{m})^2)}$$
, with $a\hat{m} \sim O(1)$
Neuberger: Fukaya et al.

- Pros: can modulate suppression by raising to arbitrary power
 - cheap, efficient and robust
 - advantage over Neuberger larger
- Con: freezes topology

Strategy II: suppress eigenvalues in the gap via the measure

• Extra factor:
$$\frac{\det(D_{Adams}^{\dagger}D_{Adams})}{\det(D_{Adams}^{\dagger}D_{Adams}+(a\hat{m})^2)}$$
, with $a\hat{m} \sim O(1)$
Neuberger: Fukaya et al.

- Pros: can modulate suppression by raising to arbitrary power
 - cheap, efficient and robust
 - advantage over Neuberger larger
- Con: freezes topology

• Variant:
$$\frac{\det(D^{\dagger}_{Adams}D_{Adams}+(a\tilde{m})^2)}{\det(D^{\dagger}_{Adams}D_{Adams}+(a\hat{m})^2)}$$
, with $a\tilde{m} \ll 1$

DWF: N. Christ et al.

- Pros: control topological tunneling via am
- Con: action incl. $sign(H_{Adams})$ is non-analytic

 \rightarrow must introduce chiral symmetry violation...

Even better? $N_f = 4 \rightarrow N_f = 1$

• Idea: modify mass term to have only ONE branch of free spectrum on the left

Then shift origin to center of the "hole" and apply overlap as before

Conclusions

- Works as advertised: $N_f = 2 \rightarrow$ no more evil rooting!
- Sound approach to chiral & continuum limits

Compare with Wilson & Wilson-based (Neuberger, Domain-wall)

- How efficient? cheaper than Neuberger
 - but not dramatically so yet
 - optimization

Many questions:

- how to reconstruct $N_f = 2$ Dirac spinors?
- one massless pion, or three (for $a \neq 0$)?

- dynamical
$$N_f = 2$$
 via $(D_{N_f=1}^{\dagger} D_{N_f=1})$?