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Intro
Motivation

e Light u, d quarks needed to simulate correct physics — expensive

e Cost-saving: staggered fermions (1/4 d.o.f.)
Sk = Lo X (%) L) (U () (x + 1) = U (x = ) (x — 1))+ mg X X(x)%(x)
Nu = £1; {Yu,w} =28,y — [l4n = —1 around any plaquette

e Drawback: N = 4 (degenerate when a = 0) “tastes” — /det(Dg)

“rooting is evil” Mike Creutz
- non-locality?
- 't Hooft vertex, U(1)4 breaking?
- staggered fermions don’t feel the topology

e No quartet of low-lying eigenvalues <> no index theorem

David Adams to the rescue: Nr = 2 staggered overlap fermions
0912.2850, 1008.2833J
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Construction
Construction
eldea#1: Nf=4 — 2
Include taste-dependent mass term: =£p for left-/right-handed tastes
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Dg; Dadams = Dst+p(1@7s5)
Then add mass (ie. shift spectrum) to make N; = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mg — 0
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Construction

Construction: mass term

e Common lore: two choices for v5

e |ocal: (—)X+y+z+t = ”'Ys”

e non-local: (M1 UMz UsnaUsnaUs + perm.) =" Ts"
o Infact: "ys" — yPirac g ylaste

" r5” N ,Y5Dirac®1taste
So that "vs" x "I's" — 1DrC g ylast " magss term (4 links)
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Index
Construction

o Idea # 2: use as kernel in overlap D,y = 1+ ——2acams

V D/I\dams Dadams

ie. unitary projection (polar decomp.): no more additive mass renorm.
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Index
Construction

e |dea # 2: use as kernel in overlap Dy, = 1+ %
V' Dagams Dadams

ie. unitary projection (polar decomp.): no more additive mass renorm.

m A

Re[N]/r

e Added bonus: index theorem, Ginsparg-Wilson symmetry

e Cost? in-between staggered and Neuberger...
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Index

Index from eigenvalue flow

e Index from flow of eigenvalues of H(m) = v5(P + m) =y + mys
e Topology comes from gluon field, ie. taste-singlet
—> Need taste-singlet Vs, at least for mass term — "[5"

H(m) ="%5" (Dst + m'T5") |

Dst = 3 XuMu(X)(Ua(x) = Uj (x — )
Y5 = (_)X+y+2+f, I's =[I4Mu X X 4-link transporters

Neuberger
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Index

More eigenvalue flows

e Cold configuration: agreement with analytic result

Neuberger

e 3 = 6.0: eigenvalue gap closes, but |m| can be arbit. large in Adams
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Overlap Construction Locality Cost Inversion

Overlap staggered fermions

e Just like Neuberger: ’ Doy = 1+ yssign(H(—my)) ‘ =14 —Dagams

D 'Adams Dadams

with ys = (= )* T2+ (need 2 = 1)

e Potential advantages:
- cheaper (4 times fewer d.o.f. per site)

- more robust (|my| can be arbitrarily large)

And reduces Ny = 4 to Ny = 2 tastes.
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Overlap Construction Locality Cost Inversion

Locality of operator?

Max,|M,, | versus |x — y| (Manhattan distance) cf. hep-1at/9808010
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Adams comparable to Neuberger although kernel less local (4-link)
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Overlap Construction Locality Cost Inversion

Locality of operator?

Max,|M,, | versus |x — y| (Manhattan distance) cf. hep-1at/9808010

Both, cold Both, p = 6.0
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Overlap Construction Locality Cost Inversion

Cost of applying operator

e Multiplication by D: about 2 times faster for Adams (no Dirac indices)

e Sign(H) [using CG, no deflation]:
- about 8 times faster for Adams on easy cases
- about 2-3 times faster on hard cases

Bag of tricks:

improved operator, link smearing (kinetic and/or mass),
deflation, preconditioning, ...
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Overlap Construction Locality Cost Inversion

Cost of inversion: compare with Neuberger

Apples with apples:
- same gauge field (124, = 6.0)
- same basic algorithm (CG inner, CG outer)

Adams versus Neuberger
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Net CPU gain: factor 2-3 over Neuberger...
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Overlap Construction Locality Cost Inversion

Cost of inversion: compare with Neuberg

Adams versus Neuberger
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Free field: now factor 8+ — try to keep the free spectrum
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Improvements

How to increase the “hole” in the spectrum?

Strategy |: improve free spectrum
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Problem: the hole fills up at same [3 regardless of “improvement”
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Improvements

How to increase the “hole” in the spectrum?

Strategy |: improve free spectrum

Problem: the hole fills up at same P regardless of “improvement”
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Improvements

How to increase the “hole” in the spectrum?

Strategy Il: suppress eigenvalues in the gap via the measure

Dhy. D . .
e Extra factor: d?( acams Dcas) —~, With am ~ O(1)
det(DAdamsDAdamS+(am) )

Neuberger: Fukaya et al.
e Pros: - can modulate suppression by raising to arbitrary power
- cheap, efficient and robust
- advantage over Neuberger larger
e Con: freezes topology
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Improvements

How to increase the “hole” in the spectrum?

Strategy Il: suppress eigenvalues in the gap via the measure

Dhy. D . .
e Extra factor: d?( acams Dcas) —~, With am ~ O(1)
det(DAdamsDAdamS+(am) )

Neuberger: Fukaya et al.
e Pros: - can modulate suppression by raising to arbitrary power
- cheap, efficient and robust
- advantage over Neuberger larger
e Con: freezes topology

det(D;dams DAdamS+(aﬁ’)2)

e Variant: =
det( D} yoms Dadams+(am)?)

, with am < 1

DWEF: N. Christ et al.
e Pros: control topological tunneling via am
e Con: action incl. sign(Hagams) is hon-analytic
— must introduce chiral symmetry violation...
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Improvements

Even better? Nr=4 — Nf=1

e |[dea: modify mass term to have only ONE branch of free spectrum on the left

Then shift origin to center of the “hole” and apply overlap as before
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Concl.
Conclusions

e Works as advertised: Ny =2 — no more evil rooting!

e Sound approach to chiral & continuum limits

Compare with Wilson & Wilson-based (Neuberger, Domain-wall)

e How efficient? - cheaper than Neuberger
- but not dramatically so yet
- optimization

e Many questions:
- how to reconstruct Ny = 2 Dirac spinors?
- one massless pion, or three (for a # 0)?
- dynamical Ny = 2 via (D}, _;Dy,—1)?
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