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Preamble

Two very influential papers related to
graphene emerged from our community around 2007-08

D.T. Son, Phys. Rev. B75 (2007) 235423

suggested that the presence of electrostatic interactions between charged excitations in
graphene may destabilise the semimetallic ground state of the tight-binding model

leading to a gapped ground state characterised by () # 0
The semimetal-insulator transition, expected at small flavor number /N and large interaction
strength g2 may correspond to a Quantum Critical Point

M. Creutz, JHEP04(2008) 017

argued that tight-binding graphene is an instance of “minimal doubling” required by the
Nielsen-Ninomiya theorem, and proposed related models based on (hyper)-cubic lattices
potentially offering simulation advantages.

This kicked off a flurry of activity in proposing and analysing novel fermion actions.

The following work was our attempt to initiate analysis of
non-perturbative features of minimally-doubled fermions



Relativity in Graphene PR.Wallace, Phys. Rev. 71 (1947) 622

The electronic properties of graphene were first
studied theoretically almost 75 years ago
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Energy spectrum is symmetric about £ =10

Half-filling (neutral “undoped” graphene) has zero energy at
Dirac points at corners of first Brillouin Zone:

Two independent
Dirac points

dH) =0 = z=f¢=<0,i 4 >

Taylor expand o |
@ Dirac point O(Kx + p) = Fvrlp, F ip.] + O(p?)

the pitch of the cone
Is the Fermi velocity

Vp — §tl



Define modified operators a4 (p) = a(Ky + p) etc.
Now combine them into a “4-spinor” I/ :( b+7 Ao, Q_, b_)”’

( Dy T 1Dy \
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= vp y Vipapvp) Dirac Hamiltonian

{Oéz', Oéj} = 25@]
le. low-energy excitations are 3 1
massless fermions with Fermi velocity Vp = §tl ~ 200

For monolayer graphene the number of flavors N= 2

(2 C atoms/cell x 2 Dirac points/zone X 2 spins = 2 flavors X 4 spinor)



We will recast the tight-binding Hamiltonian B o o
as the Lagrangian density of Lry = YDy = ygiDys + y4iDyp

a 2d Euclidean quantum field theory
Xa(X)
x(x) = ( )
X(X)

Unit cell labelled by spatial x
A contains two inequivalent sites A,B

2
A

with  (Dy)(x) = D,(x)x(x + 0) + D,(x — 0)y(x — 0)
+D,(X)y(x + 2) + Dy(x — 2)y(x — 2) + Dy(x)y(x)

B 0O O Ao (0 Ux(x-0,5) B 0o 0 s (0 Ut(x—2,5))
DIl = (U(x, 51) 0> Pilr=0) = <o 0 1) D) = <U(x, 5,) 0> Pl =2) = (o 0 2)
0 U*(x, s-)
D;(x) = (U(x’ %) 0 3) D =D D is hermitian

We have introduced a background gauge connection U(x, §i), i=123
on the 3 links emerging from the B site towards an A site



As before, define continuum two-spinor fields Y = ()(B+,)(A+)T; W1 = (XpysXat)
Yy a= 1,2

in the neighbourhood of the Dirac points v = (ueoxp)’s W= (Fasip-)
The same steps lead to a long-wavelength theory 3¢ _[ip.o
describing two independent massless flavors 50 = L _i3.5 4

Recall staggered fermions in 2d also yield 2x2-component spinors in long-wavelength limit

For Euclidean fermions in 2d define chirality in terms of a matrix y5 ~ 10,0,
. [0 ) _ [ 703
5=1 —0) —0y) — 03

= YWYsW = — XpiXpy Y XasXa, —Xa—Xa—+ Xp_Xp—

In terms of the original lattice fields



In order to define a translationally-invariant finite system
suitable for numerical studies, there are two inequivalent compactifications

“primitive” “perpendicular”

o+ Lo0) = flx + Ly 1) = f(x)

contains LyL, distinct hexagons contains Ly Ly distinct hexagons



Index Theorem

For any background abelian gauge configuration 1 [
we can define a quantised integer-valued O=— d*xF 17(x)
topological charge QO 2r .

Wlth F12 — 0xAy — ayAx
Now consider eigensolutions of the magnetic flux density

Dirac equation  pryyj lw:) = E; |y;)

The Atiyah-Singer index theorem asserts 0 = Z < 1y .> .
that eigenmodes of this equation satisfy . Vil 751, + 7 =
l

where n. count positive/negative chirality modes with £ = 0

The mode chirality (y| y5s | ) = 0 for any mode with E # 0 if {D,ys} =0

Lattice fermion formulations in common use don’t satisfy this relation in general.
Examining the recovery of the index theorem is an important test of non-perturbative

properties

eg. J. Smit & J.C. Vink, Nucl. Phys. B286 (1987) 485



A simple test (following Smit & Vink) uses homogeneous background flux F, = @

Convenient gauge choice:  A,(x,y) = —wy; Ayx,y) =0

Square lattice:
Demand gauge equivalence of A, related by y-boundary condition:

Ax(y = O) = Ax(y = Lya) + Q2 0 Q_ with Qy(x, )7) — eia)Lyax

yox= Sy
. C e 210 210
Imposing periodicity inx as well  Q (0,y) = Q(L.a,y) => = ==
. L Y L.L.a? le/4

results in quantisation of w: Y
Honeycomb lattice:
the area of a hexagonal plaquette is Ta with a = \/BK
Primitive compactification:
U(x,5,) = exp <—i$a)x0a2>; Ux,5,) = U(x, 53) = 1 o g = 4n 0

\/3 \/3L0L1a2

U(XO — LO — l,xl, 33) —_ 6Xp <_ITO)LOX1G2)

The perpendicular case is left as an exercise... &)
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Analytic continuum result D _ D [Alo _
(single flavor) i) Z ulAlo, lyn) = E, [w,)

u=1
= X Ll (v ( 2 L, .
|wni<x,y>>o<l_2 eI Il T (\/|w| <yi |Q|(]+1|Q|)>> | o)
= 0,1,....]0] - 1 - (°): s = (1) _ 2T
]_ 9l gecsey Q — ¢+_ 1/ ¢—— 0/’ w—gQ
Spectrum: Er%i =2n+1) | 0, | T n = 0 yields zero modes with (y5) = sgnw
Re-index: E?=2m|w|; m=0,12,... 8, = Q1 m=0
" T e 210l m>0

m labels the Landau level

Spectral degeneracy g, is consistent with the anomalous quantum Hall Effect
- the smoking gun for relativity in graphene G.W. Semenoff PRL 53 (1984) 2449



i1=1,...,60
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Numerical Solution

» Recall for 2 flavors degeneracy is 2g,,

INne precision

h

IN Mac

0 with

* Perpendicular lattice yields identical spectrum

I

e Zero mode “carpet” has E;
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The low-lying modes are highly-localised around the Dirac points in Fourier space

The zero modes only have support
on the A+ and B— field components
see Alim & Modller SFU Technical Report 2008-14
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for details of the Fourier transform on a honeycomb



Mode Chirality 30 x 30 lattice, 0 =4,i = 1,...,40
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o (¥s) = — (¥pelxpe) + Xaslxas) — xa_lxa) + (xs_ | xp_) is evaluated in Fourier space

e Each Fourier mode)(A,B(z) counted as =+ depending on which Dirac point is nearer
* Black points evaluated on smooth gauge background

e Coloured points following U(7, 5;) = Q*(F)U(F, 5,)Q(F + 5;) with Q(F) = eI
e Random gauge transformation @(7) leaves spectrum unchanged

* Random gauge transformation degrades chirality signal: chirality is not gauge-invariant



There is a natural upper limit to the topological charge
which can be faithfully reproduced by the index theorem, which grows with system size

Qindex —

45

10

Z<i|7’5|

Primitive Perpendicular
15 — — L=10
— L=12
- —— L=14
— L=16
10 = L=18
B ——  L=20
L=22
5 —— L=24
L=26
B ——  L=28
l | | L 0 T R R R A R L=30
5 10 25 0 5 10 15 20 25
Qfluxzﬁ
27

40 -
35 -

30 -

Qindex 25
max
20 -

15+

10+

50

!
100

!
150

!
200

!
250

300

In fact the maximum QPdex

depends linearly

| on the perimeter P of the system

eg. for a perpendicular compactification

V3

smooth transition function Qy

requires a)Lya2 < 2r

V3

= Qndex « — L,



Lessons Learned

Staggered fermions are smarter than you think!

The gauge-invariant interpretation of staggered lattice fields
in terms of explicit spin/flavor components was solved long ago:

either in real space (Kluberg-Stern et al, NPB220(1983)447)

here the continuum field w(x) is defined within a 2¢ hypercube

or momentum space (van den Doel & Smit, NPB228(1983)122)

here the continuum field (k) is evenly distributed across all Dirac points

The two recipes coincide in the long-wavelength limit (Daniel & Kieu, PLB1Z5(1 986)73)
In either case the chirality operator y(ys ® 1)y has the point-split form y(x)%y(x £ 1 £ 2)

whereas here we have assigned each flavor to a distinct Dirac point
The chirality operator y(ys @ 1)y is a sum of bilinears which is local in momentum space

In hindsight, there’s been a missed opportunity to perform a similar analysis
for minimally doubled fermions a /la Creutz-Borici on a square lattice.



