Topological aspects of fermions on a honeycomb lattice

Simon Hands

with Dipankar Chakrabarti & Antonio Rago JHEP06(2009)060

Novel Lattice Fermions and their Suitability for High-Performance Computing and Perturbation Theory, MITP Mainz 6/3/23

Preamble

Two very influential papers related to graphene emerged from our community around 2007-08

D.T. Son, Phys. Rev. B75 (2007) 235423

suggested that the presence of electrostatic interactions between charged excitations in graphene may destabilise the semimetallic ground state of the tight-binding model leading to a gapped ground state characterised by $\langle \bar{\psi}\psi \rangle \neq 0$ The semimetal-insulator transition, expected at small flavor number *N* and large interaction strength g^2 may correspond to a Quantum Critical Point

M. Creutz, JHEP04(2008) 017

argued that tight-binding graphene is an instance of "minimal doubling" required by the Nielsen-Ninomiya theorem, and proposed related models based on (hyper)-cubic lattices potentially offering simulation advantages.

This kicked off a flurry of activity in proposing and analysing novel fermion actions.

The following work was our attempt to initiate analysis of non-perturbative features of minimally-doubled fermions

Relativity in Graphene

P.R. Wallace, Phys. Rev. 71 (1947) 622

The electronic properties of graphene were first studied theoretically almost 75 years ago

Rules of the Dance On each carbon atom there can reside 0, 1 or 2 electrons which can hop between sites

$$= -t \sum_{\vec{r} \in B} \sum_{i=1}^{3} b^{\dagger}(\vec{r}) U(\vec{r}, \vec{s}_{i}) a(\vec{r} + s_{i}) + a^{\dagger}(\vec{r} + \vec{s}_{i}) U^{\dagger}(r, \vec{s}_{i}) b(\vec{r})$$

tight-binding Hamiltonian

describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

In momentum space

$$H_0 = H[U=1] = \sum_k \left(\Phi(\vec{k})a^{\dagger}(\vec{k})b(\vec{k}) + \Phi^*(\vec{k})b^{\dagger}(\vec{k})a(\vec{k}) \right)$$

with $\Phi(\vec{k}) = -t \left[e^{ik_x\ell} + 2\cos\left(\frac{\sqrt{3k_y\ell}}{2}\right)e^{-i\frac{k_x\ell}{2}} \right]$

Define states $|\vec{k}_{\pm}\rangle = (\sqrt{2})^{-1} [a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})]|0\rangle$ $\Rightarrow \langle \vec{k}_{\pm} | H | \vec{k}_{\pm} \rangle = \pm (\Phi(\vec{k}) + \Phi^{*}(\vec{k})) \equiv \pm E(\vec{k}) \epsilon^{\dagger} \Phi^{\dagger}(\vec{k})$

Energy spectrum is symmetric about E = 0

Half-filling (neutral "undoped" graphene) has zero energy at **Dirac points** at corners of first Brillouin Zone:

Two independent Dirac points $\Phi(\vec{k}) = 0 \Rightarrow \vec{k} = \vec{K}_{\pm} = \left(0, \pm \frac{4\pi}{3\sqrt{3\ell}}\right)$

Taylor expand @ Dirac point

$$\Phi(\vec{K}_{\pm} + \vec{p}) = \pm v_F[p_y \mp ip_x] + O(p^2)$$

the pitch of the cone is the Fermi velocity

$$v_F = \frac{3}{2}tl$$

Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{\pm} + \vec{p})$ etc.

Now combine them into a "4-spinor" $\Psi = (b_+, a_+, a_-, b_-)^{tr}$

$$\implies H \simeq v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \begin{pmatrix} p_y + ip_x \\ p_y - ip_x \\ -p_y - ip_x \end{pmatrix} \Psi(\vec{p}) \begin{pmatrix} p_y - ip_x \\ -p_y - ip_x \end{pmatrix}$$

 $= v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha}. \vec{p} \Psi(\vec{p}) \quad \text{Dirac Hamiltonian} \\ \{\alpha_i, \alpha_i\} = 2\delta_{ij}$

ie. low-energy excitations are massless fermions with **Fermi velocity**

 $v_F = \frac{3}{2}tl \approx \frac{1}{300}c$

For monolayer graphene the number of flavors N=2(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor) We will recast the tight-binding Hamiltonian as the Lagrangian density of a 2d Euclidean quantum field theory $\hat{z}_{2d} = \bar{\chi}iD\chi = \bar{\chi}_BiD\chi_A + \bar{\chi}_AiD\chi_B$ \hat{z}_2 \hat{z}_3 $\hat{\chi}(x) = \begin{pmatrix} \chi_A(x) \\ \chi_B(x) \end{pmatrix}$

Unit cell labelled by spatial x contains two inequivalent sites A, B

with
$$(D\chi)(x) = D_1(x)\chi(x+\hat{0}) + D_1(x-\hat{0})\chi(x-\hat{0})$$

 $+D_2(x)\chi(x+\hat{2}) + D_2(x-\hat{2})\chi(x-\hat{2}) + D_3(x)\chi(x)$
 $D_1(x) = \begin{pmatrix} 0 & 0 \\ U(x,\vec{s}_1) & 0 \end{pmatrix} \quad D_1(x-\hat{0}) = \begin{pmatrix} 0 & U^*(x-\hat{0},\vec{s}_1) \\ 0 & 0 \end{pmatrix} \quad D_2(x) = \begin{pmatrix} 0 & 0 \\ U(x,\vec{s}_2) & 0 \end{pmatrix} \quad D_2(x-\hat{2}) = \begin{pmatrix} 0 & U^*(x-\hat{2},\vec{s}_2) \\ 0 & 0 \end{pmatrix}$
 $D_3(x) = \begin{pmatrix} 0 & U^*(x,\vec{s}_3) \\ U(x,\vec{s}_3) & 0 \end{pmatrix} \qquad D^{\dagger} = D \quad D \text{ is hermitian}$

A

We have introduced a background gauge connection $U(x, \vec{s}_i)$, i = 1,2,3on the 3 links emerging from the **B** site towards an **A** site As before, define continuum two-spinor fields ψ_{α} , $\alpha = 1,2$ in the neighbourhood of the Dirac points

 $\psi_1 = (\chi_{B+}, \chi_{A+})^T; \quad \bar{\psi}_1 = (\bar{\chi}_{B+}, \bar{\chi}_{A+})$ $\psi_2 = (\chi_{A-}, \chi_{B-})^T; \quad \bar{\psi}_2 = (\bar{\chi}_{A-}, \bar{\chi}_{B-})$

The same steps lead to a long-wavelength theory describing two independent massless flavors

$$S_0 \simeq \frac{3\ell}{2} \sum_{\vec{p}} \bar{\psi} \begin{pmatrix} i\vec{p} \cdot \vec{\sigma} \\ -i\vec{p} \cdot \vec{\sigma} \end{pmatrix} \psi$$

Recall staggered fermions in 2d also yield 2x2-component spinors in long-wavelength limit

For Euclidean fermions in 2d define **chirality** in terms of a matrix $\gamma_5 \sim i\sigma_1\sigma_2$

$$\gamma_5 = i \begin{pmatrix} \sigma_1 \\ -\sigma_1 \end{pmatrix} \begin{pmatrix} \sigma_2 \\ -\sigma_2 \end{pmatrix} = \begin{pmatrix} -\sigma_3 \\ -\sigma_3 \end{pmatrix}$$

$$\Rightarrow \bar{\psi}\gamma_5\psi = -\bar{\chi}_{B+}\chi_{B+} + \bar{\chi}_{A+}\chi_{A_+} - \bar{\chi}_{A-}\chi_{A-} + \bar{\chi}_{B-}\chi_{B-}$$

in terms of the original lattice fields

In order to define a translationally-invariant finite system suitable for numerical studies, there are two inequivalent compactifications

"primitive"

 $f(x + L_0\hat{0}) = f(x + L_1\hat{1}) = f(x)$

contains L_0L_1 distinct hexagons

Index Theorem

For any background abelian gauge configuration we can define a quantised integer-valued topological charge Q

$$Q = \frac{1}{2\pi} \int d^2 x F_{12}(x)$$

with $F_{12} = \partial_x A_y - \partial_y A_x$

magnetic flux density

Now consider eigensolutions of the Dirac equation $D[U] |\psi_i\rangle = E_i |\psi_i\rangle$

The Atiyah-Singer index theorem asserts that eigenmodes of this equation satisfy

$$Q = \sum_{i} \langle \psi_i | \gamma_5 | \psi_i \rangle = n_+ - n_-$$

where n_{\pm} count positive/negative chirality modes with E = 0

The mode chirality $\langle \psi | \gamma_5 | \psi \rangle \equiv 0$ for any mode with $E \neq 0$ if $\{D, \gamma_5\} = 0$

Lattice fermion formulations in common use don't satisfy this relation in general. Examining the recovery of the index theorem is an important test of non-perturbative properties

eg. J. Smit & J.C. Vink, Nucl. Phys. B286 (1987) 485

A simple test (following Smit & Vink) uses homogeneous background flux $F_{12} = \omega$

Convenient gauge choice: $A_x(x, y) = -\omega y; A_y(x, y) = 0$

Square lattice:

Demand gauge equivalence of A_x related by y-boundary condition:

$$A_{x}(y = 0) = A_{x}(y = L_{y}a) + i\Omega_{y}\partial_{x}\Omega_{y}^{-1} \quad \text{with} \quad \Omega_{y}(x, y) = e^{i\omega L_{y}ax}$$

Imposing periodicity in x as well
$$\Omega_{y}(0, y) = \Omega(L_{x}a, y) \quad \Rightarrow \quad \omega = \frac{2\pi Q}{L_{x}L_{y}a^{2}} = \frac{2\pi Q}{\mathscr{A}}$$

results in quantisation of ω :

Honeycomb lattice:

the area of a hexagonal plaquette is $\frac{\sqrt{3}}{2}a^2$, with $a = \sqrt{3\ell}$

Primitive compactification:

$$U(x, \vec{s}_1) = \exp\left(-i\frac{\sqrt{3}}{2}\omega x_0 a^2\right); \quad U(x, \vec{s}_2) = U(x, \vec{s}_3) = 1 \qquad \Rightarrow \qquad \omega = \frac{4\pi}{\sqrt{3L_0 L_1 a^2}}Q$$
$$U(x_0 = L_0 - 1, x_1, \vec{s}_3) = \exp\left(-i\frac{\sqrt{3}}{2}\omega L_0 x_1 a^2\right)$$

The perpendicular case is left as an exercise...

Analytic continuum result (single flavor) $D |\psi_n\rangle = \sum_{\mu=1}^{2} D_{\mu}[A]\sigma_{\mu}|\psi_n\rangle = E_n |\psi_n\rangle$

$$|\psi_{n\pm}(x,y)\rangle \propto \sum_{l=-\infty}^{\infty} e^{2\pi i \frac{x}{L_x}(j+l|Q|)} e^{-\frac{1}{2}|\omega|(y\pm\frac{L_y}{|Q|}(j+l|Q|))^2} H_n\left(\sqrt{|\omega|}\left(y\pm\frac{L_y}{|Q|}(j+l|Q|)\right)\right) |\phi_{\pm}\rangle$$

$$j = 0, 1, \dots, |Q| - 1$$
 $\phi_+ = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad \phi_- = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \qquad \omega = \frac{2\pi}{\mathscr{A}}Q$

Spectrum: $E_{n\pm}^2 = (2n+1) |\omega| \mp \omega$ n = 0 yields zero modes with $\langle \gamma_5 \rangle = \text{sgn}\omega$

Re-index:
$$E_m^2 = 2m |\omega|$$
; $m = 0, 1, 2, ...$ $g_m = \begin{cases} |Q| & m = 0\\ 2|Q| & m > 0 \end{cases}$
m labels the Landau level

Spectral degeneracy g_m is consistent with the anomalous quantum Hall Effect - the smoking gun for relativity in graphene G.W. Semenoff PRL **53** (1984) 2449 **Numerical Solution**

E_i^2 on 30×30 primitive lattice, $i = 1, \dots, 60$

- Recall for 2 flavors degeneracy is $2g_m$
- Zero mode "carpet" has $E_i \simeq 0$ within machine precision
- Perpendicular lattice yields identical spectrum

The low-lying modes are highly-localised around the Dirac points in Fourier space

 $E \neq 0$, A sub lattice

see Alim & Möller SFU Technical Report 2008-14 for details of the Fourier transform on a honeycomb

Mode Chirality

30×30 lattice, Q = 4, i = 1,...,40

- $\langle \gamma_5 \rangle = \langle \chi_{B+} | \chi_{B+} \rangle + \langle \chi_{A+} | \chi_{A+} \rangle \langle \chi_{A-} | \chi_{A-} \rangle + \langle \chi_{B-} | \chi_{B-} \rangle$ is evaluated in Fourier space
- Each Fourier mode $\chi_{A,B}(\vec{k})$ counted as \pm depending on which Dirac point is nearer
- Black points evaluated on smooth gauge background
- Coloured points following $U(\vec{r}, \vec{s}_i) \mapsto \Omega^*(\vec{r}) U(\vec{r}, \vec{s}_i) \Omega(\vec{r} + \vec{s}_i)$ with $\Omega(\vec{r}) = e^{i\rho\hat{\vartheta}(\vec{r})}$
- Random gauge transformation $\hat{\vartheta}(\vec{r})$ leaves spectrum unchanged
- Random gauge transformation degrades chirality signal: chirality is *not* gauge-invariant

There is a natural upper limit to the topological charge

which can be faithfully reproduced by the index theorem, which grows with system size

Lessons Learned

Staggered fermions are smarter than you think!

The gauge-invariant interpretation of staggered lattice fields in terms of explicit spin/flavor components was solved long ago:

either in real space (Kluberg-Stern et al, NPB220(1983)447) here the continuum field $\psi(x)$ is defined within a 2^d hypercube

or momentum space (van den Doel & Smit, NPB228(1983)122) here the continuum field $\psi(k)$ is evenly distributed across all Dirac points

The two recipes coincide in the long-wavelength limit (Daniel & Kieu, PLB175(1986)73) In either case the chirality operator $\bar{\psi}(\gamma_5 \otimes 1)\psi$ has the point-split form $\bar{\chi}(x)\mathcal{U}\chi(x \pm \hat{1} \pm \hat{2})$

whereas here we have assigned each flavor to a distinct Dirac point The chirality operator $\bar{\psi}(\gamma_5 \otimes 1)\psi$ is a sum of bilinears which is local in momentum space

In hindsight, there's been a missed opportunity to perform a similar analysis for minimally doubled fermions à *la* Creutz-Borici on a square lattice.