
 Topological aspects of fermions on a 
honeycomb lattice

Simon Hands

with Dipankar Chakrabarti & Antonio Rago JHEP06(2009)060

Novel Lattice Fermions and their Suitability 

for High-Performance Computing and Perturbation Theory, MITP Mainz 6/3/23



Two very influential papers related to

 graphene emerged from our community around 2007-08 

Preamble

D.T. Son, Phys. Rev. B75 (2007) 235423

suggested that the presence of electrostatic interactions between charged excitations in 
graphene may destabilise the semimetallic ground state of the tight-binding model 

leading to a gapped ground state characterised by  

The semimetal-insulator transition, expected at small flavor number  and large interaction 
strength  may correspond to a Quantum Critical Point

⟨ψ̄ ψ⟩ ≠ 0
N

g2

M. Creutz, JHEP04(2008) 017

argued that tight-binding graphene is an instance of “minimal doubling” required by the 
Nielsen-Ninomiya theorem, and proposed related models based on (hyper)-cubic lattices 
potentially offering simulation advantages.

This kicked off a flurry of activity in proposing and analysing novel fermion actions.

The following work was our attempt to initiate analysis of  
non-perturbative features of minimally-doubled fermions



Relativity in Graphene

tight-binding Hamiltonian

In momentum space

with

describes hopping of electrons in π-orbitals
from A to B sublattices and vice versa

The electronic properties of graphene were first 
studied theoretically almost 75 years ago

P.R. Wallace, Phys. Rev. 71 (1947) 622

Rules of the Dance
On each carbon atom there can reside 0, 1 or 2 

electrons which can hop between sites

H = − t∑⃗
r∈B

3

∑
i=1

b†( ⃗r )U( ⃗r, ⃗si)a( ⃗r + si) + a†( ⃗r + ⃗si)U†(r, ⃗si)b( ⃗r )

H0 = H[U = 1] = ∑
k

(Φ( ⃗k)a†( ⃗k)b( ⃗k) + Φ*( ⃗k)b†( ⃗k)a( ⃗k))
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Figure 1. Honeycomb lattice.

index theorem has also been used to analyse the effects of point defects in graphene [13]. In

these papers the authors either worked in the continuum limit of the lattice model or worked

in momentum space. In this work, by contrast, we will examine the applicability of the

continuum results to fermions defined on the finite lattices relevant for QCD simulations;

our concerns will be the approach to and recovery of the continuum limit predictions,

and the technical issues associated with defining a chirality operator referrred to in the

previous paragraph.

The remainder of the paper is organised as follows. In section 2 we specify the honey-

comb lattice, define the lattice Dirac operator, and show that in the long-wavelength limit

an action describing two continuum Dirac flavors is recovered. Section 3 reviews the index

theorem, and outlines how U(1) configurations with Q != 0 may be constructed on the hon-

eycomb, and section 4 presents the Dirac spectrum calculated both for free fermions on the

honeycomb, and for continuum fermions on backgrounds with Q != 0. In section 5 we then

present numerical results for the spectrum calculated on lattices up to size 100× 100 with

Q != 0. The definition used for the chirality of a mode differs from the naive expectation

based on free fermions. Nonetheless, we will show that both the spectrum and the index

calculated on the basis of this chirality match analytic expectations provided Q is not too

large; interestingly, the maximum value of Q for which continuum results are reproduced

turns out to scale with the perimeter of the lattice. Our concluding remarks in section 6

will contrast what we have found with what is known for staggered lattice fermions. Some

technical details concerning the definition of the Fourier transform on a finite honeycomb

lattice are postponed to an appendix.

2 Lattice action

It is convenient to begin our presentation using a Hamiltonian devised for physical (ie.

2 + 1-dimensional) graphene [14]. It is assumed that on each site r of a honeycomb lattice

there is a mobile electron which may hop to a neighbouring site under the constraints of
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ℓ

⃗s1 = (1,0)ℓ; ⃗s2,3 = (−
1
2

± √3
2 ) ℓ

Φ( ⃗k) = − t [eikxℓ + 2 cos ( √3kyℓ

2 )e−i kxℓ
2 ]



Define states

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

#k

(

Φ(#k)a†(#k)b(#k) + Φ∗(#k)b†(#k)a(#k)
)

Φ(#k) = −t

[

eikxl + 2 cos
(

√
3kyl

2

)

e−ikxl
2

]

|#k±〉 = (
√

2)−1[a†(#k) ± b†(#k)]|0〉

9
⇒ 〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

10

Half-filling (neutral “undoped” graphene) has zero energy at 
Dirac points at corners of first Brillouin Zone:

the pitch of the cone 
 is the Fermi velocity 
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Fig. 2. (Colour online) The energy band structure of graphene. Valence and conduction bands
meet at six K points.

and

ε(k) = t

√

1 + 4 cos2
kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
. (12)

Accordingly, because the graphene structure contains two atoms per unit cell (two
sublattices), the spectrum of quasiparticles excitations has two branches (bands)
with the dispersion43 E± = ±ε(k) shown in Fig. 2. In Eq. (10) we introduced the
spinors

Υσ(k) =

(

aσ(k)
bσ(k)

)

(13)

with the operator Υσ(k) being the Fourier transform of the spinor Υσ(n) =

(

an,σ

bn,σ

)

:

Υσ(n) =
√

S

∫

BZ

d2k

(2π)2
eiknΥσ(k). (14)

Here S =
√

3a2/2 is the area of a unit cell and the integration in Eqs. (10) and
(14) goes over the extended rhombic Brillouin zone (BZ). We also add to H0 the
Zeeman term and the chemical potential

HZ = −
∑

σ

µσ

∫

BZ

d2k

(2π)2
Υ†

σ(k)Υσ(k) (15)
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Energy spectrum is symmetric about E = 0

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12

Taylor expand 
@ Dirac point

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12

Two independent 
Dirac points Φ( ⃗k) = 0 ⇒ ⃗k = ⃗K ± = (0, ± 4π

3√3ℓ )



ie.  low-energy excitations are 
massless fermions with Fermi velocity 

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr

10

Now combine them into a “4-spinor”

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3

2
tl ≈

1

300
c

10

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr

10

Define modified operators

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H " vF

∑

!p

Ψ†(!p)









py + ipx

py − ipx

−py − ipx

−py + ipx









Ψ(!p)

= vF

∑

!p

Ψ†(!p)!α.!p Ψ(!p)

12

Dirac Hamiltonian

For monolayer graphene the number of flavors N = 2
(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H " vF

∑

!p

Ψ†(!p)









py + ipx

py − ipx

−py − ipx

−py + ipx









Ψ(!p)

= vF

∑

!p

Ψ†(!p)!α.!p Ψ(!p)

{αi, αj} = 2δij

12

⇒

etc.



JHEP06(2009)060

s2

A

B s

s3

1
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through as before; writing ψ1 = (χB+,χA+)T , ψ̄1 = (χ̄B+, χ̄A+), ψ2 = (−χA−,−χB−)T

and ψ̄2 = (χ̄A−, χ̄B−), with χA±(#p) = χA( #K± + #p) as before, we obtain

S0 "
3l

2

∑

!p

2
∑

α=1

ψ̄α#p.#σψα, (2.11)

that is, a relativistically covariant action describing two flavors of two-component spinor

moving in d = 2 Euclidean dimensions, each flavor localised at one single Dirac point.

Chirality is then naively defined by the bilinear

ψ̄ασ3ψα = χ̄B+χB+ − χ̄A+χA+ − χ̄A−χA− + χ̄B−χB− = χ̄BχB − χ̄AχA, (2.12)

where the second equality assumes that all parts of momentum space can be treated uni-

formly, leading in effect to a staggered order parameter. As we shall see in section 5 below,

the definition needs to be modified in the presence of gauge fields.

To define a finite, translationally-invariant lattice we need to close the manifold by

specifying boundary conditions. In this paper we have studied two distinct possibilities.

The technically simpler choice is to close the manifold along the two non-orthogonal axes 0̂

and 1̂, for instance defining an L0×L1 system by requiring f(x+L00̂) = f(x+L11̂) = f(x).

We call this the “primitive” lattice shown in red in figure 4. Note it contains L0L1 distinct

hexagons. We can alternatively choose to implement the boundary conditions along the

orthogonal axes X̂ and Ŷ , in this case calling it the “perpendicular” lattice shown in black

in figure 3. Some care is needed in indexing the lattice this way: it is convenient to assign

the two A sites r and r − s3 + s2 and the B site r − s3 the same X̂ index, but to assign

them Ŷ indices of respectively eg. 0, 1
2 , and 1. In this way a lattice which extends LX

units along X̂ and LY units along Ŷ contains LXLY distinct hexagons.

3 Index theorem

Let us consider fermions in the presence of a topological charge Q created by a background

gauge field configuration. In the continuum, the Atiyah-Singer index theorem relates the

– 6 –

0̂1̂

2̂

ℒ2d = χ̄iDχ = χ̄BiDχA + χ̄AiDχB

χ(x) = (χA(x)
χB(x))

(Dχ)(x) = D1(x)χ(x + 0̂) + D1(x − 0̂)χ(x − 0̂)

D1(x) = ( 0 0
U(x, ⃗s1) 0) D1(x − 0̂) = (0 U*(x − 0̂, ⃗s1)

0 0 ) D2(x) = ( 0 0
U(x, ⃗s2) 0) D2(x − 2̂) = (0 U*(x − 2̂, ⃗s2)

0 0 )

D3(x) = (
0 U*(x, ⃗s3)

U(x, ⃗s3) 0 ) D† = D

We will recast the tight-binding Hamiltonian 

as the Lagrangian density of 

a 2d Euclidean quantum field theory

Unit cell labelled by spatial 

contains two inequivalent sites ,

x
A B

+D2(x)χ(x + 2̂) + D2(x − 2̂)χ(x − 2̂) + D3(x)χ(x)

with

 is hermitianD

We have introduced a background gauge connection  

on the 3 links emerging from the  site towards an  site

U(x, ⃗si), i = 1,2,3

B A



ψ1 = (χB+, χA+)T; ψ̄1 = ( χ̄B+, χ̄A+)

ψ2 = (χA−, χB−)T; ψ̄2 = ( χ̄A−, χ̄B−)

S0 ≃
3ℓ
2 ∑⃗

p

ψ̄ (i ⃗p . ⃗σ
−i ⃗p . ⃗σ) ψ

γ5 = i (σ1
−σ1) (σ2

−σ2) = (−σ3
−σ3)

⇒ ψ̄γ5ψ = − χ̄B+χB+ + χ̄A+χA+
− χ̄A−χA− + χ̄B−χB−

As before, define continuum two-spinor fields 

    

in the neighbourhood of the Dirac points 

ψα, α = 1,2

The same steps lead to a long-wavelength theory 

describing two independent massless flavors

For Euclidean fermions in 2d define chirality in terms of a matrix γ5 ∼ iσ1σ2

in terms of the original lattice fields

Recall staggered fermions in 2d also yield 2x2-component spinors in long-wavelength limit 
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topological charge to the number of chiral zero modes of the fermion. If ψi are the eigen-

states of the antihermitian Dirac operator with eigenvalue iEi, then

Q =
∑

i,Ei=0

ψ†
i γ5ψi = n+ − n−, (3.1)

where n+(−) is the number of zero eigenvalue modes of positive (negative) chirality, ie.

satisfying γ5ψi = ±ψi. A heuristic derivation of this relation for lattice fermions is given

in [8]. Since chiral symmetry is minimally broken, we anticipate the above relation holds

good on a honeycomb lattice with a suitable generalisation of the chirality operator γ5.

In two Euclidean dimensions topological charge density is proportional to the magnetic

field strength tensor F12. The two-dimensional analogues of instantons are localised vortices

carrying a quantised magnetic flux; the topological charge Q is defined by

Q =
1

2π

∫

d2xF12. (3.2)

On a finite system it is also possible to define homogeneous backgrounds with Q "= 0.

Consider the abelian field strength tensor F12 = ∂xAy − ∂yAx on a 2d system with bound-

aries closed in orthogonal directions. Following [8], we then choose Ax(x, y) = −ωy and

Ay(x, y) = 0, so that F12 = ω. On a Lx ×Ly square lattice of spacing a the gauge field A1

at the boundary y = Lya is related to that at y = 0 by a gauge transformation [8]

Ax(y = 0) = Ax(y = Lya) + iΩy∂xΩ−1
y (3.3)

where

Ωy(x, y) = eiωLyax. (3.4)
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In order to define a translationally-invariant finite system 

suitable for numerical studies, there are two inequivalent compactifications

“perpendicular”“primitive” JHEP06(2009)060
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topological charge to the number of chiral zero modes of the fermion. If ψi are the eigen-

states of the antihermitian Dirac operator with eigenvalue iEi, then

Q =
∑

i,Ei=0

ψ†
i γ5ψi = n+ − n−, (3.1)

where n+(−) is the number of zero eigenvalue modes of positive (negative) chirality, ie.

satisfying γ5ψi = ±ψi. A heuristic derivation of this relation for lattice fermions is given

in [8]. Since chiral symmetry is minimally broken, we anticipate the above relation holds

good on a honeycomb lattice with a suitable generalisation of the chirality operator γ5.

In two Euclidean dimensions topological charge density is proportional to the magnetic

field strength tensor F12. The two-dimensional analogues of instantons are localised vortices

carrying a quantised magnetic flux; the topological charge Q is defined by

Q =
1

2π

∫

d2xF12. (3.2)

On a finite system it is also possible to define homogeneous backgrounds with Q "= 0.

Consider the abelian field strength tensor F12 = ∂xAy − ∂yAx on a 2d system with bound-

aries closed in orthogonal directions. Following [8], we then choose Ax(x, y) = −ωy and

Ay(x, y) = 0, so that F12 = ω. On a Lx ×Ly square lattice of spacing a the gauge field A1

at the boundary y = Lya is related to that at y = 0 by a gauge transformation [8]

Ax(y = 0) = Ax(y = Lya) + iΩy∂xΩ−1
y (3.3)

where

Ωy(x, y) = eiωLyax. (3.4)

– 7 –

f(x + L00̂) = f(x + L11̂) = f(x)

contains  distinct hexagons L0L1 contains  distinct hexagons LXLY



Q = ∑
i

⟨ψi |γ5 |ψi⟩ = n+ − n−

D[U] |ψi⟩ = Ei |ψi⟩

Q =
1

2π ∫ d2xF12(x)

F12 = ∂xAy − ∂yAx

Index Theorem
For any background abelian gauge configuration 

we can define a quantised integer-valued 

topological charge  Q

with

The Atiyah-Singer index theorem asserts 

that eigenmodes of this equation satisfy 

Now consider eigensolutions of the 

Dirac equation 

magnetic flux density

The mode chirality  for any mode with  if ⟨ψ |γ5 |ψ⟩ ≡ 0 E ≠ 0 {D, γ5} = 0

Lattice fermion formulations in common use don’t satisfy this relation in general. 
Examining the recovery of the index theorem is an important test of non-perturbative 
properties 

eg. J. Smit & J.C. Vink, Nucl. Phys. B286 (1987) 485

where  count positive/negative chirality modes with n± E = 0



Ax(x, y) = − ωy; Ay(x, y) = 0

Ax(y = 0) = Ax(y = Lya) + iΩy∂xΩ−1
y Ωy(x, y) = eiωLyax

⇒ ω =
4π

√3L0L1a2
QU(x, ⃗s1) = exp (−i

√3
2 ωx0a2); U(x, ⃗s2) = U(x, ⃗s3) = 1

U(x0 = L0 − 1,x1, ⃗s3) = exp (−i
√3
2 ωL0x1a2)

A simple test (following Smit & Vink) uses homogeneous background flux F12 = ω

Convenient gauge choice:

Demand gauge equivalence of  related by -boundary condition:Ax y

with

Imposing periodicity in  as well

results in quantisation of :

x
ω

Ωy(0,y) = Ω(Lxa, y) ⇒ ω =
2πQ

LxLya2
=

2πQ
𝒜

the area of a hexagonal plaquette is , with 
√3
2 a2 a = √3ℓ

Primitive compactification:

The perpendicular case is left as an exercise… 🙂

Square lattice:

Honeycomb lattice:



D |ψn⟩ =
2

∑
μ=1

Dμ[A]σμ |ψn⟩ = En |ψn⟩

|ψn±(x, y)⟩ ∝
∞

∑
l=−∞

e2πi x
Lx

( j+l|Q|)e− 1
2 |ω|(y± Ly

|Q | ( j+l|Q|))2
Hn ( |ω | (y ±

Ly

|Q |
( j + l |Q | ))) |ϕ±⟩

j = 0,1,…, |Q | − 1 ϕ+ = (0
1); ϕ− = (1

0); ω =
2π
𝒜

Q

E2
n± = (2n + 1) |ω | ∓ ω

E2
m = 2m |ω | ; m = 0,1,2,… gm = { |Q | m = 0

2 |Q | m > 0

Analytic continuum result 
(single flavor)

Spectrum:  yields zero modes with n = 0 ⟨γ5⟩ = sgnω

Re-index:
 labels the Landau levelm

Spectral degeneracy  is consistent with the anomalous quantum Hall Effect 

- the smoking gun for relativity in graphene 

gm
G.W. Semenoff PRL 53 (1984) 2449
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Figure 5. Eigenvalue spectrum as a function of Q on a 30×30 lattice (the vertical scale is measured
in units where a−2 =

√

3

2
).

with degeneracy

gm =

{

|Q| m = 0;

2|Q| m > 0.
(4.10)

The |Q| zero modes are all proportional to φ+ (φ−) for Q positive (negative), in accordance

with the index theorem (3.1). For m > 0 an equal number of positive and negative chirality

solutions can be found. The increase of gm with ω is a relativistic analogue of the Landau

levels observed in metals in a strong magnetic field. For the two continuum flavors described

by the honeycomb Dirac operator (2.8), the index theorem thus predicts 2|Q| zero modes,

a result first obtained in [10].

5 Numerical results

In order to analyze the spectrum of the Dirac operator in various gauge field backgrounds,

the matrix −D2[U ] was diagonalised via a subspace iteration technique, using Chebyshev

polynomial iteration to accelerate the convergence of the eigenvalues E2. Since small

eigenvalues converge at a faster rate than the high lying eigenvalues, locking the already

converged eigenvalues and eigenvectors also accelerates the convergence of the other eigen-

values. The locked eigenspaces are only used to orthogonalise the remaining subspaces.

This algorithm is also suitable to find the few lowest lying eigenvectors. Further details

may be found in [15, 16].

In figure 5 we plot the 60 smallest eigenvalues E2 calculated on a 30 × 30 lattice with

primitive boundary conditions, for values of topological charge Q varying between 1 and

26. The spectrum for the perpendicular boundary conditions is identical. On this lattice

ωa2 = 0.00698Q. Close inspection of the figure reveals very good agreement with both the

eigenvalue prediction (4.9) and the degeneracy pattern (4.10), recalling that for two flavors

we expect a degeneracy 2gm. In particular, the triangular “carpet” with E2 = 0 corresponds
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Numerical Solution  on  primitive lattice, E2
i 30 × 30 i = 1,…,60

• Recall for 2 flavors degeneracy is 

• Zero mode “carpet” has  within machine precision

• Perpendicular lattice yields identical spectrum 

2gm
Ei ≃ 0
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Figure 6. Eigenvector profiles |χ|2 plotted in momentum space. Results taken on a 30× 30 lattice
with primitive boundary conditions.

to the zero modes with degeneracy growing linearly with Q as predicted by the index

theorem (3.1). It is important to note that for these smooth background configurations

the zero-mode eigenvalue is equal to zero within machine precision, just as is the case for

staggered fermions [8]. In what follows we will strengthen this correspondence by specifying

a chirality operator appropriate for honeycomb fermions.

In order to proceed, recall the discussion of section 2, and in particular that the low

energy modes are located in the neighbourhood of the Dirac points, ie. away from the

origin of momentum space. It is therefore helpful to perform analysis in momentum space

by Fourier transforming the eigenvectors χi(x). It turns out that calculating the discrete

Fourier transform on a honeycomb lattice is rather tricky [17], essentially because the range

of k-values required for a unique invertible Fourier transform to exist is larger than is the

case for a square lattice. As shown in the appendix, we have the choice of defining a single-

valued transform ranging over either 6LXLY (perpendicular) or 9L0L1 (primitive) modes,

or a multi-valued transform ranging over 2LXLY (perpendicular) or L0L1 (primitive).

This is exemplified in figure 6, where the single-valued transform shown in figure 6d to

a very good approximation consists of nine copies of the multi-valued transform defined

over a smaller range shown in figure 6c. In fact, while we have carried out all subsequent

– 11 –
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theorem (3.1). It is important to note that for these smooth background configurations

the zero-mode eigenvalue is equal to zero within machine precision, just as is the case for

staggered fermions [8]. In what follows we will strengthen this correspondence by specifying

a chirality operator appropriate for honeycomb fermions.

In order to proceed, recall the discussion of section 2, and in particular that the low

energy modes are located in the neighbourhood of the Dirac points, ie. away from the

origin of momentum space. It is therefore helpful to perform analysis in momentum space

by Fourier transforming the eigenvectors χi(x). It turns out that calculating the discrete

Fourier transform on a honeycomb lattice is rather tricky [17], essentially because the range

of k-values required for a unique invertible Fourier transform to exist is larger than is the

case for a square lattice. As shown in the appendix, we have the choice of defining a single-

valued transform ranging over either 6LXLY (perpendicular) or 9L0L1 (primitive) modes,

or a multi-valued transform ranging over 2LXLY (perpendicular) or L0L1 (primitive).

This is exemplified in figure 6, where the single-valued transform shown in figure 6d to

a very good approximation consists of nine copies of the multi-valued transform defined

over a smaller range shown in figure 6c. In fact, while we have carried out all subsequent
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The low-lying modes are highly-localised around the Dirac points in Fourier space

,  sub latticeE = 0 A ,  sub latticeE = 0 B

see Alim & Möller SFU Technical Report 2008-14

for details of the Fourier transform on a honeycomb

,  sub latticeE ≠ 0 A

The zero modes only have support 

on the  and  field componentsA+ B−



Mode Chirality  lattice, , 30 × 30 Q = 4 i = 1,…,40

 topological zero modes2 |Q |

•  is evaluated in Fourier space


• Each Fourier mode  counted as   depending on which Dirac point is nearer


• Black points evaluated on smooth gauge background


• Coloured points following  with 


• Random gauge transformation  leaves spectrum unchanged


• Random gauge transformation degrades chirality signal: chirality is not gauge-invariant

⟨γ5⟩ = − ⟨χB+ | χB+⟩ + ⟨χA+ | χA+⟩ − ⟨χA− | χA−⟩ + ⟨χB− | χB−⟩

χA,B( ⃗k) ±

U( ⃗r, ⃗si) ↦ Ω*( ⃗r )U( ⃗r, ⃗si)Ω( ⃗r + ⃗si) Ω( ⃗r ) = eiρ ̂ϑ( ⃗r )

̂ϑ( ⃗r )
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Figure 7. Chirality vs. mode number for various random gauge noise ρ.

introduced in the (2+1)-dimensional treatment of [14] also assigns opposite chiral charges

to fields localised around the different Dirac points. In figure 7 we plot the expectation

values of the chirality operator (5.3) evaluated on the lowest 40 eigenmodes of a 30×30

system with Q = 4. We have repeated the calculation, each time implementing a random

gauge transformation of the form eiθ(r)ρ at each site, where θ is uniformly distributed

around the circle and ρ is a parameter. This transformation of course leaves the spectrum

unchanged. For the smooth untransformed background the chirality 〈Σ3〉 = +1 to a good

approximation for the 2|Q| topological zero modes. For non-zero modes the chirality has

a smaller magnitude and a fluctuating sign; moreover its sum over all degenerate non-

zero modes is exactly zero. Both of these are of course minimum requirements for a

realistic chirality operator. However, figure 7 also confirms that the operator (5.3) is not

gauge invariant, which is not surprising since it is formulated in momentum space. As the

amplitude of the short-wavelength noise injected into the gauge background grows with ρ,

the magnitude of 〈Σ3〉 falls steadily, until eventually the zero and non-zero modes become

indistinguishable. Using the definition (5.3) on backgrounds with ρ = 0 we present results

for the topological charge Qindex, as evaluated via the index theorem (3.1) on the zero

modes, versus the charge Qflux, obtained by integrating the background flux (3.2), for a

range of lattice sizes using both boundary conditions in figure 8. For Q not too large the

curves fall on a straight line of unit slope independent of lattice volume, confirming the

validity of the definition (5.3) and verifying the index theorem. However beyond some

value of Q, which depends on L, the curves reach a maximum and then fall with increasing

flux density. Different behaviour is observed for the two kinds of boundary condition but

reassuringly, as mentioned above, the results are insensitive to which definition of the

Fourier transform is used.
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Q = 4

⟨γ5⟩

 over 


degenerate modes with 

4|Q|

∑
k=1

⟨k |γ5 |k⟩ = 0

E ≠ 0
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In fact, the maximal topological charge achievable on a given lattice depends linearly on

the length of its perimeter, rather than the area as naively one would expect. For instance

in the case of an LX × LY perpendicular compactification, provided that that a different

scale factor for the X and Y directions is chosen, then the maximum achievable Qindex is

linearly proportional to both LX and LY independently. In particular in figure 9 we plot

Qindex
max as a function of “perimeter” P = 3LX +

√
3

4 LY for all possible combinations of LX

and LY in the range 20-30 independently, plus for other larger lattices with LX = LY . A

possible interpretation of this phenomenon is that for a 2d U(1) gauge theory with constant

magnetic flux and fixed Q, it is always possible to perform a gauge transformation that

moves all information about the topological charge in the system to the border of the

lattice, where it will be encoded by transition functions Ωx, Ωy such as (3.4). In this case

the topological charge can be identified with the number of windings of a scalar field around

the border, consistent with the quantisation condition (3.5). It follows that the maximal

resolution obtainable is given by the number of points on the perimeter, i.e. the ratio of

the length of the perimeter to the step size, since we are not able to probe a field winding a

greater number of times than the number of points defining the discrete Fourier transform.

6 Concluding remarks

In this paper we have demonstrated that the spectrum of a simple fermion model formu-

lated on a 2d honeycomb lattice does indeed reproduce one of the most important non-
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in the case of an LX × LY perpendicular compactification, provided that that a different

scale factor for the X and Y directions is chosen, then the maximum achievable Qindex is

linearly proportional to both LX and LY independently. In particular in figure 9 we plot
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moves all information about the topological charge in the system to the border of the

lattice, where it will be encoded by transition functions Ωx, Ωy such as (3.4). In this case

the topological charge can be identified with the number of windings of a scalar field around

the border, consistent with the quantisation condition (3.5). It follows that the maximal

resolution obtainable is given by the number of points on the perimeter, i.e. the ratio of

the length of the perimeter to the step size, since we are not able to probe a field winding a

greater number of times than the number of points defining the discrete Fourier transform.

6 Concluding remarks

In this paper we have demonstrated that the spectrum of a simple fermion model formu-

lated on a 2d honeycomb lattice does indeed reproduce one of the most important non-
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Qindex = ∑
i

⟨i |γ5 | i⟩

Q flux =
𝒜ω
2π
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perturbative features of relativistic chiral fermions interacting with a gauge field, namely

the index theorem (1.1) relating the number of zero-eigenvalue chiral modes to the back-

ground topological charge. We have done this first by calculating the gauge-invariant

spectrum in a particularly smooth gauge background and showing that it coincides with

analytic expectations yielding zero modes with the correct degeneracy, and next by identify-

ing a suitable chirality operator Σ3 enabling the index to be calculated. The operator (5.3)

distinguishes between fermion fields located on differing A and B sublattices in real space,

and between fields localised at differing ± Dirac points in momentum space. As such

it is necessarily not gauge-invariant, and hence has limited practical value except in the

artificially-constructed smooth backgrounds used here. Since the spectrum and by exten-

sion detD are gauge-invariant, however, this need not deal a fatal blow to any simulation

programme based on honeycomb fermions.

Since we have constructed the operator (5.3) to work on a smooth gauge background,

it is legitimate to ask how universal it is, ie. how would it respond in a non-uniform

distribution of topological charge, such as that found in the vicinity of a vortex line? In

the deep continuum limit all gauge backgrounds can be reduced at least locally to a smooth

background by a suitable gauge transformation, where we know (5.3) is appropriate, so it

is difficult to see how any alternative definition could be preferred. Nonetheless, it seems

likely that 〈Σ3〉 as defined by (5.3) will be extremely susceptible to lattice artifacts.

We have also studied the maximum Qindex
max observable in a lattice simulation, and shown

that this scales with the lattice perimeter, arguing that the limit is related to the maximum

resolution of the discrete Fourier transform along a lattice direction. To our knowledge this

is a new observation; it would be interesting to repeat this analysis for staggered lattice
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There is a natural upper limit to the topological charge 

which can be faithfully reproduced by the index theorem, which grows with system size 
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the border, consistent with the quantisation condition (3.5). It follows that the maximal
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Primitive Perpendicular

In fact the maximum  depends linearly 

on the perimeter  of the system

Qindex
max

P

eg. for a perpendicular compactification


P = 3LX+
√3
4 LY

smooth transition function  requires   Ωy ωLya2 ≪ 2π

⇒ Qindex
max ≪

√3
2 Lx

Qindex
max

P



Lessons Learned

In hindsight, there’s been a missed opportunity to perform a similar analysis 

for minimally doubled fermions à la Creutz-Borici on a square lattice.

Staggered fermions are smarter than you think! 

The gauge-invariant interpretation of staggered lattice fields 

in terms of explicit spin/flavor components was solved long ago:


either in real space (Kluberg-Stern et al, NPB220(1983)447)

here the continuum field  is defined within a  hypercube


or momentum space (van den Doel & Smit, NPB228(1983)122)

here the continuum field  is evenly distributed across all Dirac points 


The two recipes coincide in the long-wavelength limit (Daniel & Kieu, PLB175(1986)73)

In either case the chirality operator  has the point-split form 

ψ(x) 2d

ψ(k)

ψ̄(γ5 ⊗ 1)ψ χ̄(x)𝒰χ(x ± 1̂ ± 2̂)

whereas here we have assigned each flavor to a distinct Dirac point

The chirality operator  is a sum of bilinears which is local in momentum spaceψ̄(γ5 ⊗ 1)ψ


