Topological aspects of fermions on a honeycomb lattice

Simon Hands

with Dipankar Chakrabarti \& Antonio Rago

Preamble

Two very influential papers related to graphene emerged from our community around 2007-08
D.T. Son, Phys. Rev. B75 (2007) 235423
suggested that the presence of electrostatic interactions between charged excitations in graphene may destabilise the semimetallic ground state of the tight-binding model leading to a gapped ground state characterised by $\langle\bar{\psi} \psi\rangle \neq 0$
The semimetal-insulator transition, expected at small flavor number N and large interaction strength g^{2} may correspond to a Quantum Critical Point

M. Creutz, JHEP04(2008) 017

argued that tight-binding graphene is an instance of "minimal doubling" required by the Nielsen-Ninomiya theorem, and proposed related models based on (hyper)-cubic lattices potentially offering simulation advantages.
This kicked off a flurry of activity in proposing and analysing novel fermion actions.

The following work was our attempt to initiate analysis of non-perturbative features of minimally-doubled fermions

Relativity in Graphene

The electronic properties of graphene were first studied theoretically almost 75 years ago

Rules of the Dance

On each carbon atom there can reside 0 , I or 2 electrons which can hop between sites

$$
H=-t \sum_{\vec{r} \in B} \sum_{i=1}^{3} b^{\dagger}(\vec{r}) U\left(\vec{r}, \vec{s}_{i}\right) a\left(\vec{r}+s_{i}\right)+a^{\dagger}\left(\vec{r}+\vec{s}_{i}\right) U^{\dagger}\left(r, \vec{s}_{i}\right) b(\vec{r})
$$

tight-binding Hamiltonian
describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

In momentum space

$$
\begin{aligned}
H_{0}=H[U=1]= & \sum_{k}\left(\Phi(\vec{k}) a^{\dagger}(\vec{k}) b(\vec{k})+\Phi^{*}(\vec{k}) b^{\dagger}(\vec{k}) a(\vec{k})\right) \\
& \text { with } \Phi(\vec{k})=-t\left[e^{i k_{x} \ell}+2 \cos \left(\frac{\sqrt{ } 3 k_{y} \ell}{2}\right) e^{-i \frac{k_{x} \ell}{2}}\right]
\end{aligned}
$$

Define states $\quad\left|\vec{k}_{ \pm}\right\rangle=(\sqrt{2})^{-1}\left[a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})\right]|0\rangle$
$\Rightarrow\left\langle\vec{k}_{ \pm}\right| H\left|\vec{k}_{ \pm}\right\rangle= \pm\left(\Phi(\vec{k})+\Phi^{*}(\vec{k})\right) \equiv \pm E(\vec{k})$
Energy spectrum is symmetric about $E=0$

Half-filling (neutral "undoped" graphene) has zero energy at Dirac points at corners of first Brillouin Zone:

Two independent
Dirac points

$$
\Phi(\vec{k})=0 \Rightarrow \vec{k}=\vec{K}_{ \pm}=\left(0, \pm \frac{4 \pi}{3 \sqrt{ } 3 \ell}\right)
$$

Taylor expand
@ Dirac point

$$
\Phi\left(\vec{K}_{ \pm}+\vec{p}\right)= \pm v_{F}\left[p_{y} \mp i p_{x}\right]+O\left(p^{2}\right)
$$

the pitch of the cone is the Fermi velocity

$$
v_{F}=\frac{3}{2} t l
$$

Define modified operators $\quad a_{ \pm}(\vec{p})=a\left(\vec{K}_{ \pm}+\vec{p}\right) \quad$ etc.
Now combine them into a " 4 -spinor" $\Psi=\left(b_{+}, a_{+}, a_{-}, b_{-}\right)^{t r}$

$$
\begin{gathered}
\Rightarrow H \simeq v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p})\left(\begin{array}{cc}
p_{y}-i p_{x}+i p_{x} & \\
& -p_{y}+i p_{x}-i p_{x}
\end{array}\right) \Psi(\vec{p}) \\
=v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha} \cdot \vec{p} \Psi(\vec{p}) \\
\text { Dirac Hamiltonian } \\
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
\end{gathered}
$$

ie. low-energy excitations are massless fermions with Fermi velocity

$$
v_{F}=\frac{3}{2} t l \approx \frac{1}{300} c
$$

For monolayer graphene the number of flavors $N=2$
(2 C atoms/cell $\times 2$ Dirac points/zone $\times 2$ spins $=2$ flavors $\times 4$ spinor)

We will recast the tight-binding Hamiltonian as the Lagrangian density of

$$
\mathscr{L}_{2 d}=\bar{\chi} i D \chi=\bar{\chi}_{B} i D \chi_{A}+\bar{\chi}_{A} i D \chi_{B}
$$

a 2d Euclidean quantum field theory

with $(D \chi)(x)=D_{1}(x) \chi(x+\hat{0})+D_{1}(x-\hat{0}) \chi(x-\hat{0})$

$$
+D_{2}(x) \chi(x+\hat{2})+D_{2}(x-\hat{2}) \chi(x-\hat{2})+D_{3}(x) \chi(x)
$$

$$
\begin{array}{ll}
D_{1}(x)=\left(\begin{array}{cc}
0 & 0 \\
U\left(x, \vec{s}_{1}\right) & 0
\end{array}\right) \quad D_{1}(x-\hat{0})=\left(\begin{array}{cc}
0 & U^{*}\left(x-\hat{0}, \vec{s}_{1}\right) \\
0 & 0
\end{array}\right) & D_{2}(x)=\left(\begin{array}{cc}
0 & 0 \\
U\left(x, \vec{s}_{2}\right) & 0
\end{array}\right) \quad D_{2}(x-\hat{2})=\left(\begin{array}{cc}
0 & U^{*}\left(x-\hat{2}, \vec{s}_{2}\right) \\
0 & 0
\end{array}\right) \\
D_{3}(x)=\left(\begin{array}{cc}
0 & U^{*}\left(x, \vec{s}_{3}\right) \\
U\left(x, \vec{s}_{3}\right) & 0
\end{array}\right) & D^{\dagger}=D \quad D \text { is hermitian }
\end{array}
$$

We have introduced a background gauge connection $U\left(x, \vec{s}_{i}\right), i=1,2,3$ on the 3 links emerging from the B site towards an A site

As before, define continuum two-spinor fields $\psi_{\alpha}, \alpha=1,2$ in the neighbourhood of the Dirac points

$$
\begin{array}{ll}
\psi_{1}=\left(\chi_{B+}, \chi_{A+}\right)^{T} ; & \bar{\psi}_{1}=\left(\bar{\chi}_{B+}, \bar{\chi}_{A+}\right) \\
\psi_{2}=\left(\chi_{A-}, \chi_{B-}\right)^{T} ; & \bar{\psi}_{2}=\left(\bar{\chi}_{A-}, \bar{\chi}_{B-}\right)
\end{array}
$$

The same steps lead to a long-wavelength theory describing two independent massless flavors

$$
S_{0} \simeq \frac{3 \ell}{2} \sum_{\vec{p}} \bar{\psi}\left(\begin{array}{cc}
i \vec{p} \cdot \vec{\sigma} & \\
& -i \vec{p} \cdot \vec{\sigma}
\end{array}\right) \psi
$$

Recall staggered fermions in 2d also yield 2x2-component spinors in long-wavelength limit

For Euclidean fermions in 2 d define chirality in terms of a matrix $\gamma_{5} \sim i \sigma_{1} \sigma_{2}$

$$
\begin{gathered}
\gamma_{5}=i\left(\begin{array}{ll}
\sigma_{1} & \\
& -\sigma_{1}
\end{array}\right)\left(\begin{array}{ll}
\sigma_{2} & \\
& -\sigma_{2}
\end{array}\right)=\left(\begin{array}{ll}
-\sigma_{3} & \\
& -\sigma_{3}
\end{array}\right) \\
\Rightarrow \bar{\psi} \gamma_{5} \psi=-\bar{\chi}_{B+} \chi_{B+}+\bar{\chi}_{A+} \chi_{A_{+}}-\bar{\chi}_{A-} \chi_{A-}+\bar{\chi}_{B-} \chi_{B-}
\end{gathered}
$$

in terms of the original lattice fields

In order to define a translationally-invariant finite system suitable for numerical studies, there are two inequivalent compactifications

"primitive"

$$
f\left(x+L_{0} \hat{0}\right)=f\left(x+L_{1} \hat{1}\right)=f(x)
$$

contains $L_{0} L_{1}$ distinct hexagons

"perpendicular"
contains $L_{X} L_{Y}$ distinct hexagons

Index Theorem

For any background abelian gauge configuration we can define a quantised integer-valued topological charge Q

$$
Q=\frac{1}{2 \pi} \int d^{2} x F_{12}(x)
$$

$$
\text { with } F_{12}=\partial_{x} A_{y}-\partial_{y} A_{x}
$$

Now consider eigensolutions of the
magnetic flux density

$$
\text { Dirac equation } D[U]\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle
$$

The Atiyah-Singer index theorem asserts that eigenmodes of this equation satisfy

$$
Q=\sum_{i}\left\langle\psi_{i}\right| \gamma_{5}\left|\psi_{i}\right\rangle=n_{+}-n_{-}
$$

where $n_{ \pm}$count positive/negative chirality modes with $E=0$

The mode chirality $\langle\psi| \gamma_{5}|\psi\rangle \equiv 0$ for any mode with $E \neq 0$ if $\left\{D, \gamma_{5}\right\}=0$
Lattice fermion formulations in common use don't satisfy this relation in general. Examining the recovery of the index theorem is an important test of non-perturbative properties

A simple test (following Smit \& Vink) uses homogeneous background flux $F_{12}=\omega$

Convenient gauge choice: $\quad A_{x}(x, y)=-\omega y ; \quad A_{y}(x, y)=0$

Square lattice:

Demand gauge equivalence of A_{x} related by y-boundary condition:

$$
A_{x}(y=0)=A_{x}\left(y=L_{y} a\right)+i \Omega_{y} \partial_{x} \Omega_{y}^{-1} \quad \text { with } \quad \Omega_{y}(x, y)=e^{i \omega L_{y} a x}
$$

Imposing periodicity in x as well $\quad \Omega_{y}(0, y)=\Omega\left(L_{x} a, y\right) \Rightarrow \omega=\frac{2 \pi Q}{L_{x} L_{y} a^{2}}=\frac{2 \pi Q}{\mathscr{A}}$
results in quantisation of ω :
Honeycomb lattice:
the area of a hexagonal plaquette is $\frac{\sqrt{ } 3}{2} a^{2}$, with $a=\sqrt{ } 3 \ell$
Primitive compactification:

$$
\begin{aligned}
& U\left(x, \vec{s}_{1}\right)=\exp \left(-i \frac{\sqrt{ } 3}{2} \omega x_{0} a^{2}\right) ; U\left(x, \vec{s}_{2}\right)=U\left(x, \vec{s}_{3}\right)=1 \quad \Rightarrow \quad \omega=\frac{4 \pi}{\sqrt{3} L_{0} L_{1} a^{2}} Q \\
& U\left(x_{0}=L_{0}-1, x_{1}, \vec{s}_{3}\right)=\exp \left(-i \frac{\sqrt{ } 3}{2} \omega L_{0} x_{1} a^{2}\right)
\end{aligned}
$$

The perpendicular case is left as an exercise...

Analytic continuum result

(single flavor)

$$
D\left|\psi_{n}\right\rangle=\sum_{\mu=1}^{2} D_{\mu}[A] \sigma_{\mu}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle
$$

$$
\left|\psi_{n \pm}(x, y)\right\rangle \propto \sum_{l=-\infty}^{\infty} e^{2 \pi \frac{x}{L_{x}}(j+l|Q|)} e^{-\frac{1}{2}|\omega|\left(y \pm \frac{L_{y}}{|Q|}(j+l|Q|)\right)^{2}} H_{n}\left(\sqrt{|\omega|}\left(y \pm \frac{L_{y}}{|Q|}(j+l|Q|)\right)\right)\left|\phi_{ \pm}\right\rangle
$$

$$
j=0,1, \ldots,|Q|-1
$$

$$
\phi_{+}=\binom{0}{1} ; \quad \phi_{-}=\binom{1}{0} ;
$$

$$
\omega=\frac{2 \pi}{\mathscr{A}} Q
$$

Spectrum: $\quad E_{n \pm}^{2}=(2 n+1)|\omega| \mp \omega \quad n=0$ yields zero modes with $\left\langle\gamma_{5}\right\rangle=\operatorname{sgn} \omega$

$$
\begin{aligned}
& \text { Re-index: } \quad E_{m}^{2}=2 m|\omega| ; \quad m=0,1,2, \ldots \\
& m \text { labels the Landau level }
\end{aligned} \quad g_{m}= \begin{cases}|Q| & m=0 \\
2|Q| & m>0\end{cases}
$$

Spectral degeneracy g_{m} is consistent with the anomalous quantum Hall Effect

- the smoking gun for relativity in graphene
G.W. Semenoff PRL 53 (1984) 2449

Numerical Solution

E_{i}^{2} on 30×30 primitive lattice, $i=1, \ldots, 60$

- Recall for 2 flavors degeneracy is $2 g_{m}$
- Zero mode "carpet" has $E_{i} \simeq 0$ within machine precision
- Perpendicular lattice yields identical spectrum

The low-lying modes are highly-localised around the Dirac points in Fourier space

The zero modes only have support on the $A+$ and $B-$ field components
$E \neq 0, A$ sub lattice

Mode Chirality

30×30 lattice, $Q=4, i=1, \ldots, 40$

- $\left\langle\gamma_{5}\right\rangle=-\left\langle\chi_{B+} \mid \chi_{B+}\right\rangle+\left\langle\chi_{A+} \mid \chi_{A+}\right\rangle-\left\langle\chi_{A-} \mid \chi_{A-}\right\rangle+\left\langle\chi_{B-} \mid \chi_{B-}\right\rangle$ is evaluated in Fourier space
- Each Fourier mode $\chi_{A, B}(\vec{k})$ counted as \pm depending on which Dirac point is nearer
- Black points evaluated on smooth gauge background
- Coloured points following $U\left(\vec{r}, \vec{s}_{i}\right) \mapsto \Omega^{*}(\vec{r}) U\left(\vec{r}, \vec{s}_{i}\right) \Omega\left(\vec{r}+\vec{s}_{i}\right)$ with $\Omega(\vec{r})=e^{i p \hat{\gamma}(\vec{r})}$
- Random gauge transformation $\hat{\vartheta}(\vec{r})$ leaves spectrum unchanged
- Random gauge transformation degrades chirality signal: chirality is not gauge-invariant

There is a natural upper limit to the topological charge which can be faithfully reproduced by the index theorem, which grows with system size

In fact the maximum $Q_{\max }^{\text {index }}$ depends linearly on the perimeter P of the system
eg. for a perpendicular compactification

$$
P=3 L_{X}+\frac{\sqrt{ } 3}{4} L_{Y}
$$

smooth transition function Ω_{y} requires $\omega L_{y} a^{2} \ll 2 \pi$

$$
\Rightarrow \quad Q_{\max }^{\text {index }} \ll \frac{\sqrt{ } 3}{2} L_{x}
$$

Lessons Learned

Staggered fermions are smarter than you think!

The gauge-invariant interpretation of staggered lattice fields in terms of explicit spin/flavor components was solved long ago:
either in real space (Kluberg-Stern et al, NPB220(1983)447) here the continuum field $\psi(x)$ is defined within a 2^{d} hypercube
or momentum space (van den Doel \& Smit, NPB228(1983)122)
here the continuum field $\psi(k)$ is evenly distributed across all Dirac points
The two recipes coincide in the long-wavelength limit (Daniel \& Kieu, PLB175(1986)73) In either case the chirality operator $\bar{\psi}\left(\gamma_{5} \otimes 1\right) \psi$ has the point-split form $\bar{\chi}(x) U \chi(x \pm \hat{1} \pm \hat{2})$
whereas here we have assigned each flavor to a distinct Dirac point The chirality operator $\bar{\psi}\left(\gamma_{5} \otimes 1\right) \psi$ is a sum of bilinears which is local in momentum space

In hindsight, there's been a missed opportunity to perform a similar analysis for minimally doubled fermions à la Creutz-Borici on a square lattice.

