
SIMULATeQCD
A Simple multi-GPU lattice
code for QCD calculations
Christian Schmidt

 Novel Lattice Fermions and their Suitability for HPC and Perturbation Theory

MITP, March 6-10, 2023, Mainz, Germany

Sajid Ali, Luis Altenkort, Dennis Bollweg, David A. Clarke, Henrik Dick, Jishnu
Goswami, Olaf Kaczmarek, Rasmus Larsen, Lukas Mazur, Swagato Mukherjee,

Marius Neumann, Hauke Sandmeyer, CS, Philipp Scior, Hai-Tao Shu

(HotQCD Collaboration)

PoS LATTICE2021 (2022) 196, arXiv:2111.10354

Github: https://github.com/LatticeQCD/SIMULATeQCD

https://arxiv.org/pdf/2111.10354.pdf
https://github.com/LatticeQCD/SIMULATeQCD

Introduction: HPC in Europ

Lattice QCD is very compute intensive

EuroHPC JU develops, runs and
maintains HPC infrastructure in the EU
with a budget of 7 billion for 2021-2027

New HPC systems have just been
installed, a ExaFlop System in in
development.

Compute time is distributed by EuroHPC
JU through Calls for Academia and
Industry

Proposals require demonstration of
efficiency and scaling of the used codes

2

255 PFlop/s (Peak)
#4 on top 500

429 PFlop/s (Peak)
#3 on top 500

<latexit sha1_base64="AIPYBDRHwuCemGRI3n7LqBbueoE=">AAACAXicbVDLSgMxFM34rPU16kYQJFgEV2XGhboQLLhx2YJ9QGcomUymDc0kQ5JRylA34p+4caGIK8GVv+DOb9CPMH0stPVAyOGce7n3niBhVGnH+bRmZufmFxZzS/nlldW1dXtjs6ZEKjGpYsGEbARIEUY5qWqqGWkkkqA4YKQedM8Hfv2KSEUFv9S9hPgxanMaUYy0kVr2thcIFqpebL7Mk7Td0UhKcd1v2QWn6AwBp4k7JoWz96+73dfKd7llf3ihwGlMuMYMKdV0nUT7GZKaYkb6eS9VJEG4i9qkaShHMVF+NrygD/eNEsJISPO4hkP1d0eGYjVY0lTGSHfUpDcQ//OaqY5O/IzyJNWE49GgKGVQCziIA4ZUEqxZzxCEJTW7QtxBEmFtQsubENzJk6dJ7bDoHhXdilMonYIRcmAH7IED4IJjUAIXoAyqAIMbcA8ewZN1az1Yz9bLqHTGGvdsgT+w3n4A8R+cSg==</latexit>! GPUs are ubiquitous in HPC

Introduction: Some Public Lattice Codes 3

• Bridge++, on arXiv 
Bridge++ is a code set for numerical simulations of lattice gauge theories including QCD (Quantum Chromodynamics), written in C++. It currently focuses on Wilson (clover)
fermions and implements a number of Dirac solvers, HMC algorithms, and measurement functions. Support for other fermion formulations is in development.

• Chroma, on GitHub 
Chroma is a software package for lattice field theory and in particular lattice QCD. It supports data-parallel programming constructs relying on the SciDAC QDP++ library written
in C++. The QDP++ library presents a single high-level code image to the user, but can generate highly optimized code for many architectures including single-node
workstations, multi-core and many-core nodes, clusters of nodes via the QMP library, classic vector computers, and GPUs.

• CL2QCD on arXiv on gitlab.itp.uni-frankfurt.de on Zenodo 
CL2QCD is a Lattice QCD application based on OpenCL, applicable to CPUs and GPUs. It provides the possibility of producing gauge configurations using different algorithms
as well as measuring observables on given configurations.

• Grid, on arXiv, on GitHub 
Grid is an open-source lattice QCD framework written in C++ 11 with support for a multitude of architectures, including all Intel x86 SIMD extensions, Arm NEON and 512-bit
SVE, and AMD/NVIDIA GPGPU. The framework is designed for performance portability targeting a large variety of current and future supercomputer architectures. The portability
issue is resolved by implementation of low-level functions that hide the details of the underlying hardware architecture from the user, e.g., complex arithmetics. Grid achieves
100% SIMD efficiency on all architectures by combining template meta-programming and intrinsics where available. The framework supports MPI for communication. OpenMP
is used for on-chip parallelization on CPUs.

• GPT - Grid Python Toolkit, on GitHub  
The Grid Python Toolkit (GPT) is an open-source Python measurement toolkit providing a physics library for lattice QCD and related theories, a module including a digital
quantum computing simulator, and an experimental machine learning module. The toolkit is built on the data parallelism (MPI, OpenMP, SIMD, and SIMT) of the Grid lattice QCD
framework. GPT is designed for performance portability targeting current and future supercomputer architectures.

• MILC, on GitHub

• openQCD, openQCD-FASTSUM 
The openQCD software package contains simulation programs for lattice QCD based on the HMC (Hybrid Monte Carlo) or the SMD (Stochastic Molecular Dynamics) algorithm
offering state-of the-art simulation techniques such as nested hierarchical integrators for the molecular-dynamics equations, twisted-mass Hasenbusch frequency splitting,
even-odd preconditioning, twisted-mass determinant reweighting, and deflation acceleration. Several different solvers (CGNE, MSCG, SAP+GCR, deflated SAP+GCR) for the
Dirac equation are available. The programs are parallelized and highly optimized for machines with current Intel and AMD processors, but should run correctly on any system
compliant to the IEEE 754, ISO C89, MPI 1.2 and (since openQCD 2.4) OpenMP 4.5 standards.

• QUDA, on GitHub
QUDA is a library for performing calculations in lattice QCD on graphics processing units (GPUs), leveraging NVIDIA's CUDA platform.

• SIMULATeQCD, on arXiv, on GitHub  
a SImple MUlti-GPU LATtice code for QCD calculations. SIMULATeQCD is a multi-GPU Lattice QCD framework that makes it simple and easy for physicists to implement lattice
QCD formulas while still providing the best possible performance.

https://bridge.kek.jp/Lattice-code/source.html
https://arxiv.org/abs/2111.04457
https://jeffersonlab.github.io/chroma/
https://github.com/JeffersonLab/chroma
https://arxiv.org/abs/1411.5219
https://gitlab.itp.uni-frankfurt.de/lattice-qcd/ag-philipsen/cl2qcd
https://zenodo.org/record/5121917#.YemDcy8w2Ak
https://arxiv.org/abs/1512.03487
https://github.com/paboyle/Grid
https://github.com/lehner/gpt
https://web.physics.utah.edu/~detar/milc/
https://github.com/milc-qcd/milc_qcd
https://luscher.web.cern.ch/luscher/openQCD/
https://fastsum.gitlab.io/
https://github.com/lattice/quda
https://arxiv.org/pdf/2111.10354.pdf
https://github.com/LatticeQCD/SIMULATeQCD

GPU computing 101 4

Need to know the hardware

Lattice QCD codes are bandwidth limited
(Dslash has low arithmetic intensity)

➡Avoid transfers via PCIe

➡Have optimal access to GPU memory

(access adjusted to SIMD units
structure of arrays instead of array of
structures)

➡compress your data

→

https://hpc-wiki.info/hpc/GPU_Tutorial

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

ALUControle
L1 Cache ALU ALU ALU ALU ALU · · · ALU

L2 Cache // Per Block Shared

DRAM // Global

ALU
L1 Cache

Controle
ALU

L1 Cache

Controle

ALU
L1 Cache

Controle
ALU

L1 Cache

Controle

L2 Cache L2 Cache

L3 Cache

DRAM

CPU GPU

PCIe

https://www.youtube.com/watch?v=pW9bpu84i2Y
https://hpc-wiki.info/hpc/GPU_Tutorial

GPU computing 101 5
Heterogenous computing

Parallel Computing

Amdahl’s Law

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 4 16 64 256 1024 4096

S(p)

p

ideal
parallel portion 95%

90%
75%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 4 16 64 256 1024 4096

E(p)

p

ideal
parallel portion 95%

90%
75%

usual size of a Blue Gene partition

Dienstag, 17. Juli 12

Problem: Amdahl’s law

Speed-up is finite in the limit of large
compute cores

The limit is set by the fraction of the
parallelizable part

Speed-up levels off surprisingly early

SIMULATeQCD 6

1. High-performance

2. Efficiency on multiple GPUs and nodes

3. Ease to use

4. Flexibility with respect to hardware

SIMULATeQCD is a multi-GPU, multi-node lattice code written using C++17, utilizing the
OOP paradigm and modern C++ features. It currently supports HISQ and Pure Gauge calculations.
Wilson is planed. We aim on

Performance
All calculations are done on the GPU, no transfers via PCIe except I/O to file

Memory access is optimal (structure of array)

SU(3) and U(3) matrices are reconstructed from 12, respective 14 floats

Memory management class

SIMULATeQCD 7

Multi-GPU and multi-note

Need to communicate halos via explicit memcpy calls

Use Direct P2P communication between GPUs on the same note, use CUDA aware
MPI for communication between notes (Automatic detection)

Communication is parallel to calculation on the bulk

SIMULATeQCD 8

Ease to use

Modular code

RHMC GradientFlow Observables

DSlash Inverter HISQ
Modules:

Gaugefield
Physics and
Math Objects:

Spinorfield LatticeContainer

GSU3 gVect3 GCOMPLEX

RunFunctors

Back End:

Iteration on CPU

MemoryManagement

API kernel calls

API Malloc

CommunicationBase

API Memcpy

MPI_Isend

MPI_Ireceive

SIMULATeQCD 9

Ease to use

Modular code

Define arbitrary operators to iterate over arbitrary sets of sites

Abstract away much of the hardware specific API

template <class floatT , bool onDevice , size_t HaloDepth , CompressionType comp >
struct plaquetteKernel
{

gaugeAccessor <floatT , comp > gAcc;

plaquetteKernel(Gaugefield <floatT , onDevice , HaloDepth , comp > &gauge) : gAcc(gauge.getAccessor ()) {}

__device__ __host__ floatT operator ()(gSite site){

floatT result = 0;
for (int nu = 1; nu < 4; nu++) {

for (int mu = 0; mu < nu; mu++) {
GSU3 <floatT > tmp = gAcc.template getLinkPath <All , HaloDepth >(site , nu , mu, Back(nu));
result += tr_d(gAcc.template getLinkPath <All , HaloDepth >(site , Back(mu)), tmp);

}
}
return result;

}
};

Listing 1: An example functor, PlaquetteKernel, utilizing functor syntax. It is templated to allow for arbitrary precision floatT, to run
on GPU with onDevice==True, for arbitrary HaloDepth, and to allow the Gaugefield to use arbitrary CompressionType. This functor takes
a Gaugefield object as argument, whose elements are accessed in memory through the gaugeAcessor gAcc, set to point to the Gaugefield
accessor in the initializer list. The argument of operator() indicates that this functor will be iterated over gSite objects. We indicate with
All that we run over both even and odd parity sites. The method getLinkPath multiplies all links starting at site, following a path in the
specified directions. We compute the real part of the trace with tr d. Due to our functor syntax, all lattice splitting, communication, and
distribution to GPU threads is done behind the scenes.

Sites are separated by the lattice spacing a. These quan-
tities are related to the physical volume by V = (aN⌧)3

and temperature by T = 1/aN⌧ . Each site has coordi-
nates (x, y, z, t) 2 Z4 with x, y, z 2 {0, ..., N� � 1} and
t 2 {0, ..., N⌧ � 1}, and each direction is represented by µ,
µ 2 {0, 1, 2, 3}. The gluon fields Uµ(x) 2 SU(3) are the
links, and staggered fermion (spinor) field objects �c(x) 2
C3 [3], where c 2 {0, 1, 2}, rest on the sites. Links are im-
plemented straightforwardly as 3⇥3 complex matrices and
the spinor fields as complex 3-vectors. These fundamen-
tal variables are stored in Gaugefield and Spinorfield
objects, which contain arrays of links and spinors, respec-
tively. Gaugefield objects have periodic boundary condi-
tions (BCs) while Spinorfield objects have periodic spa-
tial BCs and an anti-periodic time BC.

Our site indexing is done in lexicographic order, but for
many purposes, it is convenient to characterize sites with
an even/odd parity7. For applications where this is the
case, it is more e�cient to organize sites in memory such
that all even sites are in the first half of the memory and
all odd sites are in the second half. Therefore we convert
the 4-d coordinate of a site to the 1-d memory index as

index =
1

2

�
x+ yN� + zN

2
� + tN

3
�

�

+
1

2
N

3
�N⌧ (x+ y + z + t) mod 2.

(7)

7Sometimes referred to as a checkerboard with red/black sites.

Building up from this, links are indexed by

index =
1

2

�
x+ yN� + zN

2
� + tN

3
�

�

+
1

2
N

3
�N⌧ (x+ y + z + t) mod 2 + µN

3
�N⌧ .

(8)

When using multiple GPUs, similar formulae hold for
the sublattices, except that the extensions are replaced by
N� ! N�,sub and N⌧ ! N⌧,sub. Hence we distinguish
between the local index and global index. Moreover, as
explained in the previous section and as depicted in Fig. 3,
information about neighboring fields is stored in a halo
surrounding the bulk. Therefore besides bulk indexing,
each sub-lattice has so-called “full” indices that include
the halos. This scheme is computed by

indexFull =
1

2
(x+ yNx + zNxNy + tNxNyNz)

+
1

2
NxNyNzNt (x+ y + z + t) mod 2,

(9)

while the links are indexed by

indexFull =
1

2
(x+ yNx + zNxNy + tNxNyNz)

+
1

2
NxNyNzNt(x+ y + z + t) mod 2

+ µNxNyNzNt,

(10)

with
Ni = N� +Hi, i 2 x, y, z,

Nt = N⌧ +Ht,

where Hi, Ht are the halo depths in di↵erent directions.

7

SIMULATeQCD 10

Flexibility with respect to hardware

Hardware specific APIs
collected in backend modules

Can be easily exchanged

Currently supported CUDA
and HIP

RHMC GradientFlow Observables

DSlash Inverter HISQ
Modules:

Gaugefield
Physics and
Math Objects:

Spinorfield LatticeContainer

GSU3 gVect3 GCOMPLEX

RunFunctors

Back End:

Iteration on CPU

MemoryManagement

API kernel calls

API Malloc

CommunicationBase

API Memcpy

MPI_Isend

MPI_Ireceive

SIMULATeQCD 11

Benchmarks of HISQ Dslash

100

101

102

101 102

T
F
L
O

P
/
s

GCDs

Ideal

100

101

102

100 101 102

T
F
L
O

P
/
s

GCDs

Ideal

Figure 6: Scaling of HISQ Dirac operator with a single RHS on
LUMI-G. Top: Strong scaling for a 964 lattice. Bottom: Weak scal-
ing for a 324 local lattice.

TODO: Why? At the largest number of GCDs, both
strong and weak scaling miss the ideal by a factor 2.

5.2. CUDA benchmarks

In Fig. 7 we show our HISQ DSlash benchmarks on
Perlmutter, which has 4 NVIDIA A100 GPUs per node.
We find good weak scaling on this system up to 250 GPUs.

The performance of our MRHS inverter for varying
number of RHS and GPUs is given in Fig. 3 (top) of
Ref. [67]. It was performed on Juwels Booster, where
each node is configured with 4 NVIDIA A100 GPUs. We
see good single-node improvement with increasing num-
ber of RHS up to about 6 RHS, regardless of the number
of GPUs. In the left and right plots of this figure, the
speedup, defined as

speedup =
T0

TN
, (13)

where T0 is the time needed for the minimum number of
GPUs or nodes required for the problem size, and TN is

101

102

101 102

T
F
L
O

P
/
s

GPUs

Ideal

101

102

100 101 102

T
F
L
O

P
/
s

GPUs

Ideal

Figure 7: Scaling of HISQ Dirac operator with a single RHS on
Perlmutter. Top: Strong scaling for a 964 lattice. Bottom: Weak
scaling for a 324 local lattice.

the time when you increase the problem size as well as
number of GPUs or nodes by a factor N . We achieved on
good on-node scaling, as well as good scaling10 up to 4
nodes.

TODO: Do deviations from ideal have to do

with how the computers are laid out? What about

the lattice layouts vs memory? Can we show/dis-

cuss how close we get to the bandwidth limit?

Roofline analysis for NVIDIA and AMD. Do we

know why NVIDIA performs di↵erently than AMD?

Are there any obvious places we can try to boost

performance? Is there anything we already tried

that did not help?

6. Outlook

We presented SIMULATeQCD, our multi-GPU, multi-node
lattice code that allows simulation of dynamical fermions

10Fig. 3 (right) starts its scaling at 2 nodes, which was the mini-
mum required number for that problem size.

11

LUMI Perlmutter

Strong
scaling
964

Weak
scaling,
local lattice
324

SIMULATeQCD 12

Outlook

New actions: Wilson, …

New Backends: SYCL, oneAPI

More ILDG tools

SIMULATeQCD 13

Outlook

New actions: Wilson, …

New Backends: SYCL, oneAPI

More ILDG tools

Your are welcome to participate!

Than you for
your attention!

