Staggered anomalous transport

Gergely Endrődi

University of Bielefeld
in collaboration with Eduardo Garnacho, Bastian Brandt, Francesca Cuteri, Gergely Markó

UNIVERSITÄT BIELEFELD

Novel 2023
MITP Mainz, March 9, 2023

Outline

- introduction: anomalous transport phenomena
- implementation for staggered quarks
- results and discussion

Introduction: anomalous transport

Anomalous transport

- usual transport: vector current due to electric field

$$
\langle\vec{J}\rangle=\sigma \cdot \vec{E}
$$

- chiral magnetic effect (CME): \& Fukushima, Kharzeev, Warringa '08 vector current due to chirality and magnetic field

$$
\langle\vec{J}\rangle=\sigma_{\mathrm{CME}} \cdot \vec{B}
$$

- chiral separation effect (CSE): axial current due to baryon number and magnetic field

$$
\left\langle\overrightarrow{J_{5}}\right\rangle=\sigma_{\mathrm{CSE}} \cdot \vec{B}
$$

Phenomenological and theoretical relevance

- experimental observation of CME in condensed matter systems $\theta \mathrm{Li}, \mathrm{Kharzeev}$, Zhan et al ' 14
- experimental searches for CME and related observables in heavy-ion collisions e STAR collaboration '21
- serves as indirect way to probe topological fluctuations and CP-odd domains in heavy-ion collisions
- recent review: \& Kharzeev, Liao, Voloshin, Wang '16
- CME and CSE are observables sensitive to chirality and thus optimal to test fermionic lattice discretizations

General (handwaving) argument

- spin, momentum CME

General (handwaving) argument

- spin, momentum CSE

More precise argument

- Lorentz covariance, P symmetry for $\operatorname{CSE}\left(\left\langle\vec{J}_{5}\right\rangle \propto \vec{B} \| \vec{e}_{3}\right)$

$$
\left\langle J_{5 \alpha}\right\rangle \propto \quad F_{\gamma \delta}
$$

More precise argument

- Lorentz covariance, P symmetry for $\operatorname{CSE}\left(\left\langle\vec{J}_{5}\right\rangle \propto \vec{B} \| \vec{e}_{3}\right)$

$$
\left\langle J_{5 \alpha}\right\rangle \propto \epsilon_{\alpha \beta \gamma \delta} A_{\beta} \cdot F_{\gamma \delta}
$$

involves a baryon chemical potential

$$
\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B
$$

with $\mu \cdot J_{4}$ in the action

More precise argument

- Lorentz covariance, P symmetry for $\operatorname{CSE}\left(\left\langle\vec{J}_{5}\right\rangle \propto \vec{B} \| \vec{e}_{3}\right)$

$$
\left\langle J_{5 \alpha}\right\rangle \propto \epsilon_{\alpha \beta \gamma \delta} A_{\beta} \cdot F_{\gamma \delta}
$$

involves a baryon chemical potential

$$
\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B
$$

with $\mu \cdot J_{4}$ in the action

- Lorentz covariance, P symmetry for $\operatorname{CME}\left(\langle\vec{J}\rangle \propto \vec{B} \| \vec{e}_{3}\right)$

$$
\left\langle J_{\alpha}\right\rangle \propto \epsilon_{\alpha \beta \gamma \delta} A_{5 \beta} \cdot F_{\gamma \delta}
$$

involves a 'chiral' chemical potential

$$
\left\langle J_{3}\right\rangle=C_{\mathrm{CME}} \cdot \mu_{5} \cdot B
$$

with $\mu_{5} \cdot J_{54}$ in the action

Ward identities

- we consider two degenerate light quark flavors (mass m)
- vector Ward identity

$$
\partial_{\alpha} J_{\alpha}=0
$$

- axial Ward identity

$$
\partial_{\alpha} J_{5 \alpha}=2 m P_{5}+q_{\mathrm{top}}
$$

thus μ_{5} is no true chemical potential but merely an external parameter

Analytical results in the free case

- CSE for non-interacting fermions (no gluons, just magnetic field) Q Metlitski, Zhitnitsky '05

- CME for non-interacting fermions
\& Fukushima, Kharzeev, Warringa '08 Sheng, Rischke, Vasak, Wang

$$
C_{\mathrm{CME}}=\frac{1}{2 \pi^{2}}
$$

Staggered implementation

Staggered vector current

- consider standard staggered Dirac operator (c.f. Q Hölbling)

$$
M=\not D+m=\frac{1}{2} \sum_{\alpha} \eta_{\alpha}\left[V_{\alpha}-V_{\alpha}^{\dagger}\right]+m
$$

Staggered vector current

- consider standard staggered Dirac operator (c.f. Q Hölbling)

$$
M=\not D+m=\frac{1}{2} \sum_{\alpha} \eta_{\alpha}\left[V_{\alpha}-V_{\alpha}^{\dagger}\right]+m
$$

- vector operator \& Golterman, Smit '84 \& Patel, Sharpe '92

$$
\Gamma_{\alpha}=\frac{1}{2} \eta_{\alpha}\left[V_{\alpha}+V_{\alpha}^{\dagger}\right]
$$

- vector current

$$
\left\langle J_{3}\right\rangle=\left\langle\operatorname{tr}\left(\frac{\Gamma_{3}}{M}\right)\right\rangle
$$

satisfies VWI i.e. it is conserved \quad Sharatchandra, Thun, Weisz ' 81

Staggered vector current

- consider standard staggered Dirac operator (c.f. Q Hölbling)

$$
M=\not D+m=\frac{1}{2} \sum_{\alpha} \eta_{\alpha}\left[V_{\alpha}-V_{\alpha}^{\dagger}\right]+m
$$

- vector operator Golterman, Smit '84 Patel, Sharpe '92

$$
\Gamma_{\alpha}=\frac{1}{2} \eta_{\alpha}\left[V_{\alpha}+V_{\alpha}^{\dagger}\right]
$$

- vector current

$$
\left\langle J_{3}\right\rangle=\left\langle\operatorname{tr}\left(\frac{\Gamma_{3}}{M}\right)\right\rangle=\left.\frac{\partial \log \mathcal{Z}}{\partial \mu_{3}}\right|_{\mu_{3}=0}
$$

satisfies VWI i.e. it is conserved o Sharatchandra, Thun, Weisz ' 81

- 'spatial chemical potential' enters $\not \square$ as Q Hasenfratz, Karsch '83

$$
\frac{1}{2} \eta_{3}\left[V_{3} e^{\mu_{3}}-V_{3}^{\dagger} e^{-\mu_{3}}\right]
$$

Staggered axial current

- axial vector operator

$$
\Gamma_{5 \alpha}=\frac{1}{3!} \sum_{\beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}
$$

- axial vector current

$$
\left\langle J_{53}\right\rangle=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)\right\rangle+\text { perm } .
$$

satisfies AWI o Sharatchandra, Thun, Weisz ' 81

- pseudoscalar operator

$$
\Gamma_{5}=\frac{1}{4!} \sum_{\alpha \beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\alpha} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}
$$

Staggered axial current

- axial vector operator

$$
\Gamma_{5 \alpha}=\frac{1}{3!} \sum_{\beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}
$$

- axial vector current

$$
\left\langle J_{53}\right\rangle=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)\right\rangle+\text { perm. }
$$

satisfies AWI O Sharatchandra, Thun, Weisz '81

- pseudoscalar operator sensitive to topology (c.f. Q Dürr)

$$
\Gamma_{5}=\frac{1}{4!} \sum_{\alpha \beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\alpha} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}
$$

© Dürr '13

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\text {CSE }} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$
- Taylor expansion

$$
C_{\mathrm{CSE}} \cdot B=\left.\frac{\partial\left\langle J_{53}\right\rangle}{\partial \mu}\right|_{\mu=0}
$$

B-derivative numerically (flux quantization, cf. Q Hands)

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$
- Taylor expansion

$$
C_{\mathrm{CSE}} \cdot B=\left.\frac{\partial\left\langle J_{53}\right\rangle}{\partial \mu}\right|_{\mu=0}
$$

B-derivative numerically (flux quantization, cf. Q Hands)

- Taylor coefficient
$C_{\mathrm{CSE}} \cdot B=\left\langle J_{53} J_{4}\right\rangle$

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$
- Taylor expansion

$$
C_{\mathrm{CSE}} \cdot B=\left.\frac{\partial\left\langle J_{53}\right\rangle}{\partial \mu}\right|_{\mu=0}
$$

B-derivative numerically (flux quantization, cf. Q Hands)

- Taylor coefficient
$C_{\mathrm{CSE}} \cdot B=\left\langle J_{53} J_{4}\right\rangle$

$$
=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right) \operatorname{tr}\left(\frac{\Gamma_{4}}{M}\right)-\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M} \frac{\Gamma_{4}}{M}\right)\right\rangle
$$

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\mathrm{CSE}} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$
- Taylor expansion

$$
C_{\mathrm{CSE}} \cdot B=\left.\frac{\partial\left\langle J_{53}\right\rangle}{\partial \mu}\right|_{\mu=0}
$$

B-derivative numerically (flux quantization, cf. Q Hands)

- Taylor coefficient
$C_{\mathrm{CSE}} \cdot B=\left\langle J_{53} J_{4}\right\rangle+\left\langle\frac{\partial J_{53}}{\partial \mu}\right\rangle$
$=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right) \operatorname{tr}\left(\frac{\Gamma_{4}}{M}\right)-\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M} \frac{\Gamma_{4}}{M}\right)\right\rangle+\left\langle\operatorname{tr}\left(\frac{1}{M} \frac{\partial \Gamma_{1} \Gamma_{2} \Gamma_{4}}{\partial \mu}\right)\right\rangle$

Chiral separation effect

- remember $\left\langle J_{53}\right\rangle=C_{\text {CSE }} \cdot \mu \cdot B$ and $J_{53} \propto \operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right)$
- Taylor expansion

$$
C_{\mathrm{CSE}} \cdot B=\left.\frac{\partial\left\langle J_{53}\right\rangle}{\partial \mu}\right|_{\mu=0}
$$

B-derivative numerically (flux quantization, cf. Q Hands)

- Taylor coefficient
$C_{\mathrm{CSE}} \cdot B=\left\langle J_{53} J_{4}\right\rangle+\left\langle\frac{\partial J_{53}}{\partial \mu}\right\rangle$

$$
\begin{gathered}
=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right) \operatorname{tr}\left(\frac{\Gamma_{4}}{M}\right)-\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M} \frac{\Gamma_{4}}{M}\right)\right\rangle+\left\langle\operatorname{tr}\left(\frac{1}{M} \frac{\partial \Gamma_{1} \Gamma_{2} \Gamma_{4}}{\partial \mu}\right)\right\rangle \\
=\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M}\right) \operatorname{tr}\left(\frac{\Gamma_{4}}{M}\right)-\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2} \Gamma_{4}}{M} \frac{\Gamma_{4}}{M}\right)\right\rangle+\left\langle\operatorname{tr}\left(\frac{\Gamma_{1} \Gamma_{2}}{M} \frac{\partial \Gamma_{4}}{\partial \mu}\right)\right\rangle \\
\text { disconnected }
\end{gathered} \text { connected } \quad \text { tadpole } \quad .
$$

Chiral magnetic effect

- analogously to CSE, here we need

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}
$$

Chiral magnetic effect

- analogously to CSE, here we need

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}
$$

- chiral chemical potential enters $\not D$ as

$$
\frac{1}{2} \eta_{4}\left[U_{4} e^{\mu_{5} \Gamma_{5}}-U_{4}^{\dagger} e^{-\mu_{5} \Gamma_{5}}\right]
$$

Chiral magnetic effect

- analogously to CSE, here we need

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}
$$

- chiral chemical potential enters $\not D$ as

$$
\frac{1}{2} \eta_{4}\left[U_{4} e^{\mu_{5} \Gamma_{5}}-U_{4}^{\dagger} e^{-\mu_{5} \Gamma_{5}}\right]
$$

- swap derivatives

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}=\left.\frac{\partial\left\langle J_{54}\right\rangle}{\partial \mu_{3}}\right|_{\mu_{3}=0}
$$

Chiral magnetic effect

- analogously to CSE, here we need

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}
$$

- chiral chemical potential enters $\not D$ as

$$
\frac{1}{2} \eta_{4}\left[U_{4} e^{\mu_{5} \Gamma_{5}}-U_{4}^{\dagger} e^{-\mu_{5} \Gamma_{5}}\right]
$$

- swap derivatives

$$
C_{\mathrm{CME}} \cdot B=\left.\frac{\partial\left\langle J_{3}\right\rangle}{\partial \mu_{5}}\right|_{\mu_{5}=0}=\left.\frac{\partial\left\langle J_{54}\right\rangle}{\partial \mu_{3}}\right|_{\mu_{3}=0}
$$

- again leads to disconnected+connected+tadpole

$$
C_{\mathrm{CME}} \cdot B=\left\langle J_{54} J_{3}\right\rangle+\left\langle\frac{\partial J_{54}}{\partial \mu_{3}}\right\rangle
$$

Results

Chiral separation effect: free case

- non-interacting fermions (no gluons, just B)

Chiral separation effect: free case

- non-interacting fermions (no gluons, just B)

Chiral separation effect: free case

- non-interacting fermions (no gluons, just B)

Chiral separation effect: free case

- non-interacting fermions (no gluons, just B)

Chiral separation effect: free case

- non-interacting fermions (no gluons, just B)

- full agreement with analytical result \checkmark

Detour: butterflies

- writing traces in the basis of $\not D^{2}=\ddot{D}_{12}^{2}+\not \ddot{y}_{3}^{2}+\not \ddot{q}_{4}^{2} \rightarrow \lambda_{n}^{2},\left|\varphi_{n}\right\rangle$
$C_{\mathrm{CSE}} \cdot B=-\sum_{n, k} \frac{\left\langle\varphi_{n}\right| \Gamma_{53} M^{\dagger}\left|\varphi_{k}\right\rangle}{\lambda_{n}^{2}} \frac{\left\langle\varphi_{k}\right| \Gamma_{4} M^{\dagger}\left|\varphi_{n}\right\rangle}{\lambda_{k}^{2}}+\sum_{n} \frac{\left\langle\phi_{n}\right| \Gamma_{1} \Gamma_{2} \frac{\partial \Gamma_{4}}{\partial \mu} M^{\dagger}\left|\varphi_{n}\right\rangle}{\lambda_{n}^{2}}$
- Hofstadter's butterfly (c.f. Q Hands)
\& Hofstadter '76 Endrődi '14

Detour: butterflies

- writing traces in the basis of $\not D^{2}=\ddot{D}_{12}^{2}+\not \ddot{y}_{3}^{2}+\not \ddot{q}_{4}^{2} \rightarrow \lambda_{n}^{2},\left|\varphi_{n}\right\rangle$
$C_{\mathrm{CSE}} \cdot B=-\sum_{n, k} \frac{\left\langle\varphi_{n}\right| \Gamma_{53} M^{\dagger}\left|\varphi_{k}\right\rangle}{\lambda_{n}^{2}} \frac{\left\langle\varphi_{k}\right| \Gamma_{4} M^{\dagger}\left|\varphi_{n}\right\rangle}{\lambda_{k}^{2}}+\sum_{n} \frac{\left\langle\phi_{n}\right| \Gamma_{1} \Gamma_{2} \frac{\partial \Gamma_{4}}{\partial \mu} M^{\dagger}\left|\varphi_{n}\right\rangle}{\lambda_{n}^{2}}$
- Hofstadter's butterfly (c.f. Q Hands)
\& Hofstadter '76 Endrődi '14

on QCD configurations Bruckmann, Endrődi, Giordano et al. '17

Chiral separation effect: full QCD

- $N_{f}=1+1+1$ flavors of dynamical (rooted) staggered quarks
- physical quark masses $m_{u}=m_{d}, m_{s}$
- physical electric charges $q_{u}=-2 q_{d}=-2 q_{s}=2 e / 3$
- $N_{t}=6,8,10,12$ to approach continuum limit

Q Garnacho, Brandt, Cuteri, Endrődi, Markó '22

Chiral separation effect: full QCD

- $N_{f}=1+1+1$ flavors of dynamical (rooted) staggered quarks
- physical quark masses $m_{u}=m_{d}, m_{s}$
- physical electric charges $q_{u}=-2 q_{d}=-2 q_{s}=2 e / 3$
- $N_{t}=6,8,10,12$ to approach continuum limit
© Garnacho, Brandt, Cuteri, Endrődi, Markó '22

- compare: overlap on quenched $\&$ Puhr, Buividovich '17 Wilson/DW on staggered $\mathrm{SU}(2) \curvearrowright$ Buividovich, Smith, von Smekal '21

Chiral magnetic effect

- same setup as above
- both for non-interacting fermions and in full $\mathrm{QCD}, C_{\mathrm{CME}}=0$

- compare: Wilson quenched and dynamical Q Yamamoto '11 free overlap \& Buividovich '14

Summary

- anomalous transport phenomena involve chirality-sensitive observables
- non-trivial test of fermion discretizations
- CSE: first results in full physical QCD

