Staggered anomalous transport

Gergely Endrődi

University of Bielefeld

in collaboration with Eduardo Garnacho, Bastian Brandt, Francesca Cuteri, Gergely Markó

Novel 2023 MITP Mainz, March 9, 2023

- introduction: anomalous transport phenomena
- implementation for staggered quarks
- results and discussion

Introduction: anomalous transport

Anomalous transport

 usual transport: vector current due to electric field

$$\langle \vec{J} \rangle = \sigma \cdot \vec{E}$$

$$\langle \vec{J} \rangle = \sigma_{\rm CME} \cdot \vec{B}$$

 chiral separation effect (CSE): axial current due to baryon number and magnetic field

$$\langle \vec{J_5} \rangle = \sigma_{\rm CSE} \cdot \vec{B}$$

Phenomenological and theoretical relevance

- experimental observation of CME in condensed matter systems & Li, Kharzeev, Zhan et al '14
- experimental searches for CME and related observables in heavy-ion collisions & STAR collaboration '21
- serves as indirect way to probe topological fluctuations and CP-odd domains in heavy-ion collisions
- recent review: A Kharzeev, Liao, Voloshin, Wang '16
- CME and CSE are observables sensitive to chirality and thus optimal to test fermionic lattice discretizations

General (handwaving) argument

spin, momentum CME

General (handwaving) argument

spin, momentum CSE

More precise argument

• Lorentz covariance, P symmetry for CSE ($\langle \vec{J_5} \rangle \propto \vec{B} \parallel \vec{e}_3$)

$\langle J_{5lpha} angle \propto F_{\gamma\delta}$

More precise argument

 \blacktriangleright Lorentz covariance, P symmetry for CSE ($\langle \vec{J_5} \rangle \propto \vec{B} \parallel \vec{e}_3)$

 $\langle J_{5\alpha}
angle \propto \epsilon_{lphaeta\gamma\delta} \, A_eta \cdot F_{\gamma\delta}$

involves a baryon chemical potential

$$\langle J_{53} \rangle = C_{\rm CSE} \cdot \mu \cdot B$$

with $\mu \cdot J_4$ in the action

More precise argument

• Lorentz covariance, P symmetry for CSE $(\langle ec{J_5}
angle \propto ec{B} \parallel ec{e}_3)$

 $\langle J_{5\alpha}
angle \propto \epsilon_{lphaeta\gamma\delta} A_eta \cdot F_{\gamma\delta}$

involves a baryon chemical potential

$$\langle J_{53} \rangle = C_{\rm CSE} \cdot \mu \cdot B$$

with $\mu \cdot J_4$ in the action

• Lorentz covariance, P symmetry for CME $(\langle \vec{J}
angle \propto \vec{B} \parallel \vec{e}_3)$

$$\langle J_{\alpha}
angle \propto \epsilon_{lphaeta\gamma\delta} \, A_{5eta} \cdot F_{\gamma\delta}$$

involves a 'chiral' chemical potential

$$\langle J_3 \rangle = C_{\rm CME} \cdot \mu_5 \cdot B$$

with $\mu_5 \cdot J_{54}$ in the action

we consider two degenerate light quark flavors (mass m)

vector Ward identity

$$\partial_{\alpha}J_{\alpha} = 0$$

axial Ward identity

$$\partial_{\alpha}J_{5\alpha} = 2mP_5 + q_{\mathrm{top}}$$

thus μ_5 is no true chemical potential but merely an external parameter

Analytical results in the free case

 CSE for non-interacting fermions (no gluons, just magnetic field) Metlitski, Zhitnitsky '05

CME for non-interacting fermions

Fukushima, Kharzeev, Warringa '08 / Sheng, Rischke, Vasak, Wang

$$C_{
m CME}=rac{1}{2\pi^2}$$

Staggered implementation

Staggered vector current

► consider standard staggered Dirac operator (c.f. Q Hölbling)

$$M = D + m = rac{1}{2} \sum_{\alpha} \eta_{\alpha} \left[V_{\alpha} - V_{\alpha}^{\dagger} \right] + m$$

Staggered vector current

► consider standard staggered Dirac operator (c.f. Q Hölbling)

$$M = D + m = rac{1}{2} \sum_{lpha} \eta_{lpha} \left[V_{lpha} - V_{lpha}^{\dagger}
ight] + m$$

vector operator & Golterman, Smit '84 & Patel, Sharpe '92

$$\Gamma_{lpha} = rac{1}{2} \, \eta_{lpha} \left[V_{lpha} + V_{lpha}^{\dagger}
ight]$$

vector current

$$\langle J_3 \rangle = \left\langle \operatorname{tr}\left(\frac{\Gamma_3}{M}\right) \right\rangle$$

satisfies VWI i.e. it is conserved & Sharatchandra, Thun, Weisz '81

Staggered vector current

► consider standard staggered Dirac operator (c.f. Q Hölbling)

$$M = D + m = rac{1}{2} \sum_{lpha} \eta_{lpha} \left[V_{lpha} - V_{lpha}^{\dagger}
ight] + m$$

vector operator & Golterman, Smit '84 & Patel, Sharpe '92

$$\Gamma_{lpha} = rac{1}{2} \, \eta_{lpha} \left[V_{lpha} + V_{lpha}^{\dagger}
ight]$$

vector current

$$\langle J_3 \rangle = \left\langle \operatorname{tr}\left(\frac{\Gamma_3}{M}\right) \right\rangle = \left. \frac{\partial \log \mathcal{Z}}{\partial \mu_3} \right|_{\mu_3 = 0}$$

satisfies VWI i.e. it is conserved & Sharatchandra, Thun, Weisz '81

• 'spatial chemical potential' enters D as \mathscr{P} Hasenfratz, Karsch '83

$$\frac{1}{2}\eta_{3}\left[V_{3}e^{\mu_{3}}-V_{3}^{\dagger}e^{-\mu_{3}}\right]$$

Staggered axial current

axial vector operator

$$\Gamma_{5\alpha} = \frac{1}{3!} \sum_{\beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}$$

axial vector current

$$\langle J_{53} \rangle = \left\langle \operatorname{tr}\left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M}\right) \right\rangle + \operatorname{perm.}$$

satisfies AWI & Sharatchandra, Thun, Weisz '81

pseudoscalar operator

$$\Gamma_{5} = \frac{1}{4!} \sum_{\alpha\beta\gamma\delta} \epsilon_{\alpha\beta\gamma\delta} \Gamma_{\alpha} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}$$

Staggered axial current

axial vector operator

$$\Gamma_{5\alpha} = \frac{1}{3!} \sum_{\beta \gamma \delta} \epsilon_{\alpha \beta \gamma \delta} \Gamma_{\beta} \Gamma_{\gamma} \Gamma_{\delta}$$

axial vector current

$$\langle J_{53} \rangle = \left\langle \operatorname{tr}\left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M}\right) \right\rangle + \text{ perm.}$$

satisfies AWI & Sharatchandra, Thun, Weisz '81

▶ pseudoscalar operator sensitive to topology (c.f. □ Dürr)

2 Dürr '13

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto \mathsf{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto \mathsf{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

Taylor expansion

$$C_{\text{CSE}} \cdot B = \left. \frac{\partial \langle J_{53} \rangle}{\partial \mu} \right|_{\mu=0}$$

B-derivative numerically (flux quantization, cf. \bigcirc Hands)

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto \mathsf{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

Taylor expansion

$$C_{\text{CSE}} \cdot B = \left. \frac{\partial \langle J_{53} \rangle}{\partial \mu} \right|_{\mu=0}$$

 $\textit{B}\text{-}derivative numerically}$ (flux quantization, cf. \bigcirc Hands)

Taylor coefficient

 $C_{
m CSE} \cdot B = \langle J_{53} J_4 \rangle$

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto ext{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

Taylor expansion

$$C_{\text{CSE}} \cdot B = \left. \frac{\partial \langle J_{53} \rangle}{\partial \mu} \right|_{\mu=0}$$

B-derivative numerically (flux quantization, cf. □ Hands)
 Taylor coefficient

 $C_{\rm CSE} \cdot B = \langle J_{53} J_4 \rangle$ $= \left\langle \operatorname{tr}\left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M}\right) \operatorname{tr}\left(\frac{\Gamma_4}{M}\right) - \operatorname{tr}\left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M}\frac{\Gamma_4}{M}\right) \right\rangle$

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto \mathsf{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

Taylor expansion

$$C_{\text{CSE}} \cdot B = \left. \frac{\partial \langle J_{53} \rangle}{\partial \mu} \right|_{\mu=0}$$

B-derivative numerically (flux quantization, cf. \bigcirc Hands)

Taylor coefficient

$$C_{\rm CSE} \cdot B = \langle J_{53} J_4 \rangle + \left\langle \frac{\partial J_{53}}{\partial \mu} \right\rangle$$
$$= \left\langle \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \right) \operatorname{tr} \left(\frac{\Gamma_4}{M} \right) - \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \frac{\Gamma_4}{M} \right) \right\rangle + \left\langle \operatorname{tr} \left(\frac{1}{M} \frac{\partial \Gamma_1 \Gamma_2 \Gamma_4}{\partial \mu} \right) \right\rangle$$

• remember
$$\langle J_{53}
angle = \mathcal{C}_{ ext{CSE}} \cdot \mu \cdot B$$
 and $J_{53} \propto \mathsf{tr} \Big(rac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \Big)$

Taylor expansion

$$C_{\text{CSE}} \cdot B = \left. \frac{\partial \langle J_{53} \rangle}{\partial \mu} \right|_{\mu=0}$$

B-derivative numerically (flux quantization, cf. \bigcirc Hands)

Taylor coefficient

$$C_{\rm CSE} \cdot B = \langle J_{53} J_4 \rangle + \left\langle \frac{\partial J_{53}}{\partial \mu} \right\rangle$$
$$= \left\langle \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \right) \operatorname{tr} \left(\frac{\Gamma_4}{M} \right) - \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \frac{\Gamma_4}{M} \right) \right\rangle + \left\langle \operatorname{tr} \left(\frac{1}{M} \frac{\partial \Gamma_1 \Gamma_2 \Gamma_4}{\partial \mu} \right) \right\rangle$$
$$= \left\langle \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \right) \operatorname{tr} \left(\frac{\Gamma_4}{M} \right) - \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2 \Gamma_4}{M} \frac{\Gamma_4}{M} \right) \right\rangle + \left\langle \operatorname{tr} \left(\frac{\Gamma_1 \Gamma_2}{M} \frac{\partial \Gamma_4}{\partial \mu} \right) \right\rangle$$

disconnected

connected

tadpole

analogously to CSE, here we need

$$C_{\rm CME} \cdot B = \left. \frac{\partial \left\langle J_3 \right\rangle}{\partial \mu_5} \right|_{\mu_5 = 0}$$

analogously to CSE, here we need

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0}$$

 \blacktriangleright chiral chemical potential enters $ot\!\!/$ as

$$\frac{1}{2}\eta_4\left[U_4e^{\mu_5\Gamma_5}-U_4^{\dagger}e^{-\mu_5\Gamma_5}\right]$$

analogously to CSE, here we need

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0}$$

 \blacktriangleright chiral chemical potential enters $ot\!\!/$ as

$$\frac{1}{2}\eta_4\left[U_4e^{\mu_5\Gamma_5}-U_4^{\dagger}e^{-\mu_5\Gamma_5}\right]$$

swap derivatives

$$C_{\rm CME} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0} = \left. \frac{\partial \langle J_{54} \rangle}{\partial \mu_3} \right|_{\mu_3 = 0}$$

analogously to CSE, here we need

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0}$$

 \blacktriangleright chiral chemical potential enters $ot\!\!/$ as

$$\frac{1}{2}\eta_4\left[U_4e^{\mu_5\Gamma_5}-U_4^{\dagger}e^{-\mu_5\Gamma_5}\right]$$

swap derivatives

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0} = \left. \frac{\partial \langle J_{54} \rangle}{\partial \mu_3} \right|_{\mu_3 = 0}$$

again leads to disconnected+connected+tadpole

$$C_{\text{CME}} \cdot B = \langle J_{54} J_3 \rangle + \left\langle \frac{\partial J_{54}}{\partial \mu_3} \right\rangle$$

Results

 \blacktriangleright full agreement with analytical result \checkmark

Detour: butterflies

• writing traces in the basis of
$$\not{D}^2 = \not{D}_{12}^2 + \not{\partial}_3^2 + \not{\partial}_4^2 \rightarrow \lambda_n^2, |\varphi_n\rangle$$

 $C_{\text{CSE}} \cdot B = -\sum_{n,k} \frac{\langle \varphi_n | \Gamma_{53} M^{\dagger} | \varphi_k \rangle}{\lambda_n^2} \frac{\langle \varphi_k | \Gamma_4 M^{\dagger} | \varphi_n \rangle}{\lambda_k^2} + \sum_n \frac{\langle \phi_n | \Gamma_1 \Gamma_2 \frac{\partial \Gamma_4}{\partial \mu} M^{\dagger} | \varphi_n \rangle}{\lambda_n^2}$

► Hofstadter's butterfly (c.f. Q Hands)

Hofstadter '76 Zendrődi '14

Detour: butterflies

• writing traces in the basis of
$$\not{D}^2 = \not{D}_{12}^2 + \not{\partial}_3^2 + \not{\partial}_4^2 \rightarrow \lambda_n^2, |\varphi_n\rangle$$

 $C_{\text{CSE}} \cdot B = -\sum_{n,k} \frac{\langle \varphi_n | \Gamma_{53} M^{\dagger} | \varphi_k \rangle}{\lambda_n^2} \frac{\langle \varphi_k | \Gamma_4 M^{\dagger} | \varphi_n \rangle}{\lambda_k^2} + \sum_n \frac{\langle \phi_n | \Gamma_1 \Gamma_2 \frac{\partial \Gamma_4}{\partial \mu} M^{\dagger} | \varphi_n \rangle}{\lambda_n^2}$

► Hofstadter's butterfly (c.f. Q Hands)

Hofstadter '76 Ø Endrődi '14

on QCD configurations & Bruckmann, Endrődi, Giordano et al. '17 13 / 16

Chiral separation effect: full QCD

- ▶ $N_f = 1 + 1 + 1$ flavors of dynamical (rooted) staggered quarks
- physical quark masses $m_u = m_d$, m_s
- ▶ physical electric charges $q_u = -2q_d = -2q_s = 2e/3$
- ▶ $N_t = 6$, 8, 10, 12 to approach continuum limit

🖉 Garnacho, Brandt, Cuteri, Endrődi, Markó '22

Chiral separation effect: full QCD

- ▶ $N_f = 1 + 1 + 1$ flavors of dynamical (rooted) staggered quarks
- physical quark masses m_u = m_d, m_s
- ▶ physical electric charges $q_u = -2q_d = -2q_s = 2e/3$
- ▶ $N_t = 6$, 8, 10, 12 to approach continuum limit

🖉 Garnacho, Brandt, Cuteri, Endrődi, Markó '22

compare: overlap on quenched 2 Puhr, Buividovich '17
 Wilson/DW on staggered SU(2) 2 Buividovich, Smith, von Smekal '21

same setup as above

 \blacktriangleright both for non-interacting fermions and in full QCD, ${\it C}_{\rm CME}=0$

compare: Wilson quenched and dynamical & Yamamoto '11 free overlap & Buividovich '14

- anomalous transport phenomena involve chirality-sensitive observables
- non-trivial test of fermion discretizations
- CSE: first results in full physical QCD