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Why is Lattice Perturbation Theory hard?

Feynman rules become very complex
Uµ(x) = e igaAµ(x+

1
2 µ̂) ⇒ vertices of arbitrary adicity

Discrete Fourier-transform ⇒ trigonometric functions appear
Improved actions ⇒ many additional operators contribute
No Lorentz symmetry ⇒ more complicated Lorentz index
structures allowed

Number of diagrams grows very quickly
Vertices of arbitrary adicity ⇒ many possible contractions
from high-adicity vertices
Book-keeping effort grows rapidly

Standard tricks don’t work
Trigonometric functions ⇒ inverse propagator is not a
quadratic form
No Lorentz symmetry ⇒ cannot use it to simplify numerators
Cannot complete squares; no Schwinger parameter
representation; no Feynman trick
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Why is Lattice Perturbation Theory hard?
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Why is Lattice Perturbation Theory hard?

This was the simplest possible gauge action (Wilson)!
Improvement makes things much worse:

# of terms for
prop. 3-gluon 4-gluon 5-gluon 6-gluon

Wilson 76 240 826 1583 3184
Symanzik 252 1456 6022 15488 36148

Quark actions become even worse after improvement:
# of terms for

prop. 1-gluon 2-gluon 3-gluon
Naive 9 8 8 8
Asqtad 17 1248 8376 29480
Fat3 9 152 2888 54584
Fat5 9 632 49928 ?
Fat7 9 1080 145800 ?

G.M. von Hippel Automated Perturbation Theory



Why is Lattice Perturbation Theory hard?

G.M. von Hippel Automated Perturbation Theory



Why is Lattice Perturbation Theory hard?

The number of Feynman diagrams grows quickly:
continuum lattice

1-loop quark s.e. 1 2
1-loop gluon s.e. 4 7
1-loop qqg vertex corr. 2 6
1-loop ggg vertex corr. 8 16
2-loop quark s.e. 11 29

If one wishes to simplify the numerator algebra on the lattice,
the lack of Lorentz invariance makes the calculations much
more involved.
Ultimately, lattice integrals cannot be evaluated analytically,
and have to be treated with numerical integration methods.
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What can we do about it?

Automate the derivation of the Feynman rules
Avoid human error in the extremely complex calculation
Enable use of highly improved actions, iterated smearing and
higher orders
Algorithm easily implementable in any language with list and
dictionary types (e.g. Python)
Output in machine-readable format for use by separate generic
vertex code

Automate the generation of the Feynman diagrams
Take advantage of generic vertex code
At least for low orders, we can simply apply Wick’s theorem

Automate the evaluation of the Feynman diagrams
Use numerical integration (e.g. VEGAS) or finite-volume sums
Employ techniques of automatic differentiation
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Automating the derivation of lattice Feynman rules

Lattice gauge action is given as a sum of Wilson loops:

Sg = β
∑
i

ci
∑
x

Re Tr (UCi (x))

We want the action in vertex form:
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0
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From this, the vertex functions in momentum space are obtained as
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(k1, . . . , kr ) = Tr (ta1 · · · tar )

×
∑
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∑

j kj ·v{µ},i,j
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Automating the derivation of lattice Feynman rules

Lattice fermion action is given as a sum of Wilson lines capped by
fermion fields:

Sf =
∑
i

ci
∑
x

ψ̄(yi )ΓiUDi (yi , x)ψ(x)

We want the action in vertex form:
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∑
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ψ
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From this, the fermionic vertex functions are obtained as

W a1···ar ,bc
µ1···µr

(k1, . . . , kr ; p, q) = (ta1 · · · tar )bc
×

∑
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f{µ},iΓα{µ},i e
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∑
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Automating the derivation of lattice Feynman rules

Need to automate translation [Lüscher, Weisz, NPB 266 (1986) 309;
Hart, vH, Horgan, Müller, arXiv:0904.0375]
{(c, Γ, C)} 7→ {({µ}, {v}, y , Γ, f )}
The basic object is a gauge link

Uµ(x) = e igaAµ(x+
1
2 µ̂) =

∞∑
r=0

g r

r !
ta1 · · · tarAa1

µ (x + 1
2 µ̂) · · ·A

ar
µ (x + 1

2 µ̂)

Hence, basic mapping is

F (Uµ) = {(µ; 1
2 µ̂; µ̂; 11; 1), (µ, µ;

1
2 µ̂,

1
2 µ̂; µ̂; 11; 1), . . .}

Build action from links by using

F (UC + UC′) = F (UC) ∪ F (UC′)

F (cUC) = {cE : E ∈ F (UC)}
F (ΓUC) = {ΓE : E ∈ F (UC)}

F (UCUC′) = {E ∗ E ′ : E ∈ F (UC),E
′ ∈ F (UC′)}
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Automating the derivation of lattice Feynman rules

We need algebra of expansion entities E = ({µ}; {v}; y ; Γ; f ):

cE = ({µ}; {v}; y ; Γ; cf )
Γ′E = (({µ}; {v}; y ; Γ′Γ; f )

E ∗ E ′ = ({µ} ∪ {µ′}; {v} ∪ {v ′ + y}; y ′ + y ; ΓΓ′;Cff ′)

In practice, naive implementation of link algebra in terms of entity
algebra will yield many redundant entities

To avoid associated cost, implement link algebra in terms of
dictionaries mapping partial entities Ê = ({µ}; {v}; y ; Γ) to their
associated amplitude f

Momentum conservation means that ({µ}; {v}; y ; Γ) and
({µ}; {v + c}; y + c ; Γ) give same contribution to vertex

Identify and combine entities that differ only by a constant
translation of their vectors
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Automating the derivation of lattice Feynman rules

The resulting expansion of the action in terms of entities
is written out in a machine-readable format

The HPSRC library of generic vertex functions
vertex_*(k,mu,a) is used to construct Feynman
diagrams

The HPSRC library reads in the list of entities at runtime
and constructs vertices from entities on the fly

This separates the coding of the Feynman diagrams from
the derivation of the Feynman rules

Note that this allows to rerun a calculation with a
different action with as little overhead as possible

For very complex actions, the HPSRC library allows to
factor the action into parts whose Feynman rules are
derived separately and combined on the fly at runtime

Also includes hand-written Feynman rules for
Fadeev-Popov ghosts and for counterterms from the
Haar measure
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Automating the generation of lattice Feynman diagrams

Feynman diagrams can be generated by applying Wick’s
theorem
For one-loop calculations, it is generally easier to code the
diagrams by hand
For two-loop calculations, a straightforward implementation of
Wick’s theorem is currently used
Standard tools like QGRAF could be used, but these would
need adapting for Lattice QCD
It is extremely desirable to output the diagrams directly as
sequences of function calls to the HPSRC generic vertex
routines
Further work needed in this area if one wants to go to even
higher orders
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Automating the evaluation of lattice Feynman diagrams

For the numerical evaluation of the lattice integrals we use parallel
VEGAS (for lattices with infinite extent) or trivially parallelised
finite-volume mode sums (for finite lattices)
We usually need wavefunction renormalisation constants, i.e. derivatives
of self-energy diagrams
Require methods of automatic differentiations [vH, arXiv:0910.5111]
Implement a type that encodes a function along with its first few
derivatives w.r.t. external momentum
Overload arithmetic operations to fulfill Leibniz’s and Faà di Bruno’s rules
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dxn
(fg)(x) =
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k
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(
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Derivatives of vertex functions are simple to compute (exponentials!)
Overloaded operations take care of the rest
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Applications

Unquenching contributions from improved staggered quarks
asqtad [Hao, vH, Horgan, Mason, Trottier, arXiv:0705.4660]
HISQ [Hart, vH, Horgan, arXiv:0812.0503]

Improving the NRQCD action
hyperfine splittings [Hammant, Hart, vH, Horgan, Monahan,
arXiv:1105.5309, arXiv:1303.3234]
kinetic couplings [Davier, Harrison, Hughes, Horgan, vH, Wingate,
arXiv:1812.11639]
hindered M1 radiative decays of Υ(2S) [Hughes, Dowdall,
Davies, Horgan, vH, Wingate, arXiv:1508.01694]
leptonic widths of S-wave quarkonia [Hart, vH, Horgan,
hep-lat/0605007]

Perturbative subtraction of lattice artifacts in NPR
with Wilson quarks [Harris, vH, Junnarkar, Meyer, Ottnad,
Wilhelm, Wittig, Wrang, arXiv:1905.01291]

G.M. von Hippel Automated Perturbation Theory



Did you say staggered?

Actually, the staggered calculations were done with naive fermions.

But this is essentially the same thing (except easier):
The naive propagator is

S(x , y) = g(x , y)Ω(x)Ω(y)†

in terms of the single-component staggered propagator g and the
Kawamoto-Smit transform

Ω(x) =
∏
µ

(γµ)
xµ
a

whence the vertices become

Ω(x + µ̂)†ΓµΩ(x) = αµ(x)11
in terms of staggered phase factors

αµ(x) = (−1)
∑

ν<µ
xν
a

This implies that
naive loops are four times the corresponding staggered loop,
naive incoming (outgoing) legs give a factor Ω (Ω†),
everything else just goes through.
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Did you say staggered?

There is actually a version of Reisz’s power-counting theorem
for staggered fermions [Giedt, hep-lat/0606003]

No completed proof of perturbative renormalizability, though
But no reason to expect serious obstacles
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And what about minimally-doubled?

No direct technical obstacles to applying automated methods
Four-component spinors, Wilson-like structure (naive +
symmetry-breaking)
Breaking of discrete spacetime symmetries not a problem in
automated treatment
Taste structure may require some interpreting, though
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