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Graphene

Graphene: a “cousin” of diamond and graphite

Nanoscopic material, ultra-thin sheet of matter – a form of the element carbon
that is just a single atom thick

Is a single layer of graphite consisting of a 2-dimensional hexagonal lattice of

carbon atoms

Graphite (pencil, 1564): essentially a jumbled mass of tiny scraps of graphene
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Graphene

Writing with a pencil on paper actually produces graphene stacks

. . . somewhere among them, there could be individual graphene layers

Graphene was identified as a theoretical possibility as early as 1947 (Wallace)

However, for many years it was thought that it couldn’t exist in nature – no one

expected graphene to exist in the free state

Graphene is presumably produced every time someone writes with a pencil

however, no experimental tools existed to search for macroscopic

one-atom-thick flakes among the pencil debris

Only in October 2004 the existence of graphene as a real separate material

was first demonstrated (University of Manchester, UK)

Andre Geim and Konstantin Novoselov, Physics Nobel Prize 2010

In graphene, electrons behave as if they were relativistic massless particles

⇒ ultra-high mobilities exhibited by graphene devices

⇒ a variety of unique, and potentially very useful, characteristics
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Graphene

Its unique electrical characteristics could make graphene the successor to

silicon in a whole new generation of microchips

⇒ further development of ever-smaller, ever-faster silicon chips

Because of its single-atom thickness, pure graphene is transparent , and can

be used to make transparent electrodes for light-based applications such as

LEDs or improved solar cells

Graphene could also substitute for copper to make the electrical connections
between computer chips and other electronic devices, providing much lower

resistance and thus generating less heat

It has also potential uses in quantum-based electronic devices that could

enable a new generation of computation and processing

This field is really in its infancy

There isn’t any other material like graphene

Its strength is 200 times that of steel

The mobility of electrons in graphene is by far the highest of any known

material NOVEL 2023 – p.4



Graphene

Striking: it contains 2 massless Dirac particles

(Hou, Chamon and Mudry, 2006; Jackiw and Pi, 2007)

Creutz’s original motivation: the low energy electronic excitations are

described by the massless relativistic Dirac equation

The solution to a theory of fermions hopping on a hexagonal lattice displays

two Dirac cones

The massless structure is robust , thanks to the topological stability, related to

chirality: map of circles onto circles
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Graphene

Striking: it contains 2 massless Dirac particles

(Hou, Chamon and Mudry, 2006; Jackiw and Pi, 2007)

Creutz’s original motivation: the low energy electronic excitations are

described by the massless relativistic Dirac equation

The solution to a theory of fermions hopping on a hexagonal lattice displays

two Dirac cones

The massless structure is robust , thanks to the topological stability, related to

chirality: map of circles onto circles

These electrons mimic Dirac fermions, but don’t move at the speed of light –

they actually move in graphene with a speed

vF
c

≈
1

300

(comparable to that in half-filled metals)
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Graphene

xx2 1

a b

Michael Creutz, JHEP 0804:017, 2008

Orient one third of the bonds horizontal, one third sloping up at 60 degrees,

and one third sloping down

Clever choice of coordinates:

organize the graphene structure into two-atom “sites” involving “collapsed”

horizontal bonds (as enclosed in ellipses)

use a non-orthogonal coordinate system with axes sloping up and down at 30

degrees intersecting the corresponding sites
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Graphene

The Hamiltonian contains only nearest-neighbor hoppings between a and b
type sites:

H = K
∑

x1,x2

(
a†x1,x2

bx1,x2 + b†x1,x2
ax1,x2 + a†x1+1,x2

bx1,x2 + b†x1−1,x2
ax1,x2

+a†x1,x2−1bx1,x2 + b†x1,x2+1ax1,x2

)

K is the “hopping” parameter and sets the energy scale

In momentum space

H = K
[
ã†p1,p2 b̃p1,p2

(
1 + e−ip1 + eip2

)
+ b̃†p1,p2 ãp1,p2

(
1 + eip1 + e−ip2

)]

can be represented by a matrix K
(

0 z
z∗ 0

)
, where z = 1 + e−ip1 + eip2

Eigenvalues of the energy : ±K|z|

The energy vanishes when |z| does

⇒ only 2 zeros: p1 = p2 = ±2π/3

Consider contours of constant |z| around the zeros
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Graphene

p

2π/3

π

1

−2π/3

−π

π2π/3−π −2π/3

p
2

Contours of constant energy wrapping around one of the zero points

Traversing a contour, the phase of z wraps nontrivially around the unit circle

Then, when one collapses a contour and shrinks it to a point, the energy at

this Dirac point |z| = 0 must vanish

When one fully goes around the contour, the spinor wave function acquires a

minus sign NOVEL 2023 – p.8



Graphene

This is the behavior of a half integer spin system

→ the fermion spin has emerged

spin in two space dimensions is different than in three – there are no helicity
states, but rotations about an axis orthogonal to the spatial plane

one might think of the two cones as representing spin up and spin down in the

direction orthogonal to the spatial plane

We can see again the close ties between the doubling issues and topology

We have here another instance of the Nielsen-Ninomiya no-go theorem that

applies to all lattice actions including mass terms

Since the Brillouin zone is periodic, any contour expanded to the boundaries of
this zone cannot wrap z non-trivially

So, given any Dirac cone, there must exist another about which the topology
unwraps

⇒ an even number of Dirac cones

Two Dirac cones is the minimum possible without breaking the symmetries

The chiral properties of the two cones must be opposite NOVEL 2023 – p.9



Graphene

E

p p

E

allowed forbidden
This mechanism prevents a band gap from opening in the spectrum

⇒ linear dispersion relation

⇒ graphite is black and a conductor

⇒ Dirac equation

Topological stability of the massless structure
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Graphene

E

p p

E

allowed forbidden
This mechanism prevents a band gap from opening in the spectrum

⇒ linear dispersion relation

⇒ graphite is black and a conductor

⇒ Dirac equation

Topological stability of the massless structure

Creutz then constructed an action with similar properties in four dimensions

(in the same paper, JHEP 0804:017, 2008)

Afterwards (2008): further developed by Boriçi , and then again by Creutz

→ Boriçi-Creutz fermions NOVEL 2023 – p.10



Minimally doubled fermions

In addition to spin, this model has an emergent chiral symmetry

b→ −b changes the sign of H, because all hoppings couple a and b sites

σ3 =
(
1 0
0 −1

)
anticommutes with the Hamiltonian H(p1, p2) = K

(
0 z
z∗ 0

)

→ in four dimensions it would correspond to γ5

Four-dimensional extension of the graphene ( Creutz ):

complex numbers → quaternions

Look for an analogous form H(pµ) = K
(

0 z
z∗ 0

)
in four dimensions

H(pµ) is now a 4x4 matrix

z = z(p1, p2, p3, p4) are 2x2 matrices in a quaternionic space:

z = a0 + i~a~σ, with |z|2 =
∑

µ

a2µ

where aµ is a real 4-vector
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Minimally doubled fermions

Eigenvalues of the energy: still ±K|z|

Generalize topology to mapping 3-spheres onto 3-spheres

0
a

a

Constant energy surfaces must involve non-trivial mappings in the quaternionic

space near the zeros (= aµ vanishing as a 4-vector )

⇒ topological stability of the massless structure
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Minimally doubled fermions

Gamma matrices:
~γ = σ1 ⊗ ~σ =

(
0 ~σ
~σ 0

)

γ4 = −σ2 ⊗ 1 =
(

0 i
−i 0

)

γ5 = σ3 ⊗ 1 = γ1γ2γ3γ4 =
(
1 0
0 −1

)

The lattice implementation of γ5D = K
(

0 z
z∗ 0

)
is not unique – we only

need a z(p) with two zeros

Creutz’s proposal:

z = B ( 4C − cos p1 + cos p2 − cos p3 − cos p4)

+iσx (sin p1 + sin p2 − sin p3 − sin p4)

+iσy (sin p1 − sin p2 − sin p3 + sin p4)

+iσz (sin p1 − sin p2 + sin p3 − sin p4)

B and C control anisotropic distortions
NOVEL 2023 – p.13



Minimally doubled fermions

Graphene (2 d): one bond splits into two

and iterate

smallest loops are hexagons

NOVEL 2023 – p.14



Minimally doubled fermions

Graphene (2 d): one bond splits into two

and iterate

smallest loops are hexagons

Diamond (3 d): one bond splits into three

and iterate

smallest loops are cyclohexane “chairs”
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Minimally doubled fermions

Graphene (4 d): one bond splits into four

and iterate

smallest loops are hexagonal “chairs”
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Minimally doubled fermions

Graphene (4 d): one bond splits into four

and iterate

smallest loops are hexagonal “chairs”

(thanks to Mike Creutz for providing many of these pictures)
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Minimally doubled fermions

4d graphene:
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Minimally doubled fermions

4d graphene:

4d GrapheneDiamondGraphene
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Minimally doubled fermions

Boriçi : General family of (massless) actions on non-orthogonal lattices

D(p) = iBγ4

(
4C −

∑

µ

cos pµ

)
+ i

3∑

k=1

γksk(p)

where

s1(p) = sin p1 + sin p2 − sin p3 − sin p4

s2(p) = sin p1 − sin p2 − sin p3 + sin p4

s3(p) = sin p1 − sin p2 + sin p3 − sin p4

All these actions have two zeros, at (p̃, p̃, p̃, p̃) and (−p̃,−p̃,−p̃,−p̃), with

C = cos p̃

Now we go on orthogonal lattices, where B sin p̃ = C

When we then put B = 1, after some translations of the momenta and

rescalings we obtain the Boriçi-Creutz action

The Boriçi-Creutz action can be also constructed directly as a linear

combination of two naive fermion formulations ( Creutz )
NOVEL 2023 – p.17



Boriçi-Creutz fermions

Boriçi and Creutz: fermionic action with the free Dirac operator (in momentum

space)

D(p) = i
∑

µ

(γµ sin pµ + γ′
µ cos pµ)− 2iΓ +m0

where

Γ =
1

2
(γ1 + γ2 + γ3 + γ4) (Γ2 = 1)

and
γ′
µ = ΓγµΓ = Γ− γµ

Useful relations:

∑

µ

γµ =
∑

µ

γ′
µ = 2Γ, {Γ, γµ} = 1, {Γ, γ′

µ} = 1

The action vanishes at p1 = (0, 0, 0, 0) and p2 = (π/2, π/2, π/2, π/2)

Γ = 1
2
(γ1 + γ2 + γ3 + γ4) selects a special direction → hypercubic breaking

A linear combination of two (physically equivalent) naive fermions ,

corresponding to the first two terms in the action
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Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ − 2iΓ

NOVEL 2023 – p.19



Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
16 doublers

+ i
∑

µ

γ′
µ cos pµ − 2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, that is
when any component of the momentum is 0 or π

NOVEL 2023 – p.19



Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
16 doublers

−2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, when any

component of the momentum is 0 or π

The second term has also 16 doublers, but they are positioned at the momenta

(±π/2,±π/2,±π/2,±π/2)
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Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
16 doublers

−2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, when any

component of the momentum is 0 or π

The second term has also 16 doublers, but they are positioned at the momenta

(±π/2,±π/2,±π/2,±π/2)

These are at maximal distance from the zeros of the first term
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Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
16 doublers

−2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, when any

component of the momentum is 0 or π

The second term has also 16 doublers, but they are positioned at the momenta

(±π/2,±π/2,±π/2,±π/2)

These are at maximal distance from the zeros of the first term

Does then this action have 32 doublers?
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Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
16 doublers

−2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, when any

component of the momentum is 0 or π

The second term has also 16 doublers, but they are positioned at the momenta

(±π/2,±π/2,±π/2,±π/2)

These are at maximal distance from the zeros of the first term

Does then this action have 32 doublers?

No!

The massless Boriçi-Creutz action has only the two zeros p1 = (0, 0, 0, 0)

(from the first term) and p2 = (π/2, π/2, π/2, π/2) (from the second term)
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Boriçi-Creutz fermions

Consider the massless case:

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
16 doublers

−2iΓ

The first term, as well-known, has 16 zeros in the first Brillouin zone, when any

component of the momentum is 0 or π

The second term has also 16 doublers, but they are positioned at the momenta

(±π/2,±π/2,±π/2,±π/2)

These are at maximal distance from the zeros of the first term

Does then this action have 32 doublers?

No!

The massless Boriçi-Creutz action has only the two zeros p1 = (0, 0, 0, 0)

(from the first term) and p2 = (π/2, π/2, π/2, π/2) (from the second term)

How does this happen?
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Boriçi-Creutz fermions

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

×

p z

p
t

(π,π) (π,0)

(0,0) (0,π)

The 16 doublers of the first naive fermion action, representing momentum

space as a product of toroids
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Boriçi-Creutz fermions

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

×

p z

p
t

(π,π) (π,0)

(0,0) (0,π)

The 16 doublers of the first naive fermion action, representing momentum

space as a product of toroids

p x

p
y

(π,π) (π,0)

(0,0) (0,π)

(π/2,π/2)

(π/2,−π/2)

(−π/2,−π/2)

(−π/2,π/2)

The 16 doublers of the second naive action are located at pµ = ±π/2, furthest

from the ones of the first naive action

(Michael Creutz, PoS LATTICE2008:080, 2008)
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ + i
∑

µ

γ′
µ cos pµ − 2iΓ
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ − 2iΓ
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ︸ ︷︷ ︸
restores p1 and p2 as zeros

of the total action
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ︸ ︷︷ ︸
restores p1 and p2 as zeros

of the total action

Since at p2 = (π/2, π/2, π/2, π/2) one has i
∑

µ
γµ sin pµ = i

∑
µ
γµ = 2iΓ,

and (complementarily) at p1 = (0, 0, 0, 0) one has

i
∑

µ
γ′
µ cos pµ = i

∑
µ
γ′
µ = 2iΓ, the addition of a third term in the action,

−2iΓ, is required in order for these two values of p to remain zeros (when

m0 = 0) also of the combination of the two naive fermion actions
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ︸ ︷︷ ︸
restores p1 and p2 as zeros

of the total action

Since at p2 = (π/2, π/2, π/2, π/2) one has i
∑

µ
γµ sin pµ = i

∑
µ
γµ = 2iΓ,

and (complementarily) at p1 = (0, 0, 0, 0) one has

i
∑

µ
γ′
µ cos pµ = i

∑
µ
γ′
µ = 2iΓ, the addition of a third term in the action,

−2iΓ, is required in order for these two values of p to remain zeros (when

m0 = 0) also of the combination of the two naive fermion actions

All the other 30 doublers were already lifted when one put the first and second
term together, and the third term does not change this
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ︸ ︷︷ ︸
restores p1 and p2 as zeros

of the total action

Since at p2 = (π/2, π/2, π/2, π/2) one has i
∑

µ
γµ sin pµ = i

∑
µ
γµ = 2iΓ,

and (complementarily) at p1 = (0, 0, 0, 0) one has

i
∑

µ
γ′
µ cos pµ = i

∑
µ
γ′
µ = 2iΓ, the addition of a third term in the action,

−2iΓ, is required in order for these two values of p to remain zeros (when

m0 = 0) also of the combination of the two naive fermion actions

All the other 30 doublers were already lifted when one put the first and second
term together, and the third term does not change this

Γ = 1
2
(γ1 + γ2 + γ3 + γ4) selects a special direction → hypercubic breaking
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Boriçi-Creutz fermions

D(p) = i
∑

µ

γµ sin pµ

︸ ︷︷ ︸
at p2=(π/2,π/2,π/2,π/2)

= i
∑

µ

γµ = 2iΓ

+ i
∑

µ

γ′
µ cos pµ

︸ ︷︷ ︸
at p1=(0,0,0,0)

= i
∑

µ

γ′
µ = 2iΓ

−2iΓ︸ ︷︷ ︸
restores p1 and p2 as zeros

of the total action

Since at p2 = (π/2, π/2, π/2, π/2) one has i
∑

µ
γµ sin pµ = i

∑
µ
γµ = 2iΓ,

and (complementarily) at p1 = (0, 0, 0, 0) one has

i
∑

µ
γ′
µ cos pµ = i

∑
µ
γ′
µ = 2iΓ, the addition of a third term in the action,

−2iΓ, is required in order for these two values of p to remain zeros (when

m0 = 0) also of the combination of the two naive fermion actions

All the other 30 doublers were already lifted when one put the first and second
term together, and the third term does not change this

Γ = 1
2
(γ1 + γ2 + γ3 + γ4) selects a special direction → hypercubic breaking

Note: this Dirac operator is purely anti-hermitian
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Karsten-Wilczek fermions

Already in the Eighties: Karsten (1981), on a suggestion of Nielsen , and then

Wilczek (1987), proposed particular actions for minimally doubled fermions

Unitary equivalent to each other, after phase redefinitions

Wilczek [ PRL 59, 2397 (1987) ] proposed a special choice of the function

Pµ(p) which minimizes the numbers of doublers

The free Karsten-Wilczek Dirac operator

D(p) = i

4∑

µ=1

γµ sin pµ + iγ4

3∑

k=1

(1− cos pk)

has zeros at p1 = (0, 0, 0, 0) and p2 = (0, 0, 0, π)

Drawback: it destroys the equivalence of the four directions under discrete

permutations

→ breaking of the hypercubic symmetry
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Counterterms

The actions of minimally doubled fermions have two zeros

⇒ there is always a special direction in euclidean space

(the line that connects these two zeros)

Thus, these actions cannot maintain a full hypercubic symmetry

They are symmetric only under the subgroup of the hypercubic group which

preserves (up to a sign) a fixed direction

For the Boriçi-Creutz action this is a major hypercube diagonal, while for other

minimally doubled formulations it may not be a diagonal – for example for the

Karsten-Wilczek action is the x4 axis
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Counterterms

The actions of minimally doubled fermions have two zeros

⇒ there is always a special direction in euclidean space

(the line that connects these two zeros)

Thus, these actions cannot maintain a full hypercubic symmetry

They are symmetric only under the subgroup of the hypercubic group which

preserves (up to a sign) a fixed direction

For the Boriçi-Creutz action this is a major hypercube diagonal, while for other

minimally doubled formulations it may not be a diagonal – for example for the

Karsten-Wilczek action is the x4 axis

Each of these two bare actions does not contain all possible operators
allowed by these respective symmetries (broken hypercubic group)

Radiative corrections generate new operators which are not present in the

original bare actions

Counterterms are then necessary in order to have a consistent renormalized
theory

This consistency requirement will uniquely determine their coefficientsNOVEL 2023 – p.23



Counterterms

Our task: add to the bare actions all possible counterterms allowed by the

remaining symmetries (after hypercubic symmetry has been broken)

They are lattice artefacts peculiar to minimally doubled fermions

We consider operators of dimension four or lower, and we write them first in a

continuum form

Afterwards, we look for convenient discretizations of these counterterms

In the following we will consider the massless case m0 = 0

Chiral symmetry strongly restricts the number of possible counterterms

Since they have to anticommute with γ5, we look only for operators in which a

γµ matrix (or a sum of them) can be present – but not other matrices like 1, γ5,

γµγ5 and σµν

For Boriçi-Creutz fermions, operators are allowed where summations over just

single indices are present (in addition to the standard Einstein summation

over two indices)

Then objects like
∑

µ
γµ = 2Γ appear

NOVEL 2023 – p.24



Counterterms

Three counterterms required for massless Boriçi-Creutz fermions

(S. C., M. Creutz, J. Weber & H. Wittig (2010))

Here operators are allowed with summations over single indices – then objects

like
∑

µ
γµ = 2Γ appear

Dimension-4 fermionic counterterm: c4(g0)ψ Γ
∑

µ
Dµψ

Dimension-3 fermionic counterterm:
ic3(g0)

a
ψ(x) Γψ(x)

There are counterterms also for the pure gauge part

Although at the bare level the breaking of hypercubic symmetry is a feature of

the fermionic actions only, in the renormalized theory it propagates (via the

interactions between quarks and gluons) also to the pure gauge sector

Purely gluonic counterterm for the Boriçi-Creutz action:

cP (g0)
∑

λρτ

trFλρ(x)Fρτ (x)
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Counterterms

Three counterterms required for massless Karsten-Wilczek fermions

(S. C., M. Creutz, J. Weber & H. Wittig (2010))

Here objects appear in which any index can be constrained to be equal to 4

Dimension-4 fermionic counterterm: d4(g0)ψ γ4D4 ψ

Dimension-3 fermionic counterterm:
id3(g0)

a
ψ(x) γ4 ψ(x)

It is not hard to imagine that in the case of Karsten-Wilczek fermions the

temporal plaquettes will be renormalized differently from the other plaquettes

Indeed, the gluonic counterterm should compensate the asymmetry between

these two kinds of plaquettes:

dP (g0)
∑

ρλ

trFρλ(x)Fρλ(x) δρ4

This is the only purely gluonic counterterm needed for this action, since

introducing also a δλ4 in the above expression will produce a vanishing object
NOVEL 2023 – p.26



Counterterms

We can determine all these coefficients by requiring that the renormalized

1-loop propagators assume their standard forms

Perturbative calculation: S. C., M. Creutz, J. Weber & H. Wittig (2010)

Boriçi-Creutz fermions:

c3(g0) = 29.54170 ·
g20

16π2
CF +O(g40)

c4(g0) = 1.52766 ·
g20

16π2
CF +O(g40)

cP (g0) = −0.9094 ·
g20

16π2
C2 +O(g40)

where Tr (tatb) = C2 δ
ab

Karsten-Wilczek fermions:

d3(g0) = −29.53230 ·
g20

16π2
CF +O(g40)

d4(g0) = −0.12554 ·
g20

16π2
CF +O(g40)

dP (g0) = −12.69766 ·
g20

16π2
C2 +O(g40)
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Counterterms

It is interesting to see how this works in the vacuum polarization

For Boriçi-Creutz fermions, without the purely gluonic counterterm :

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g20

16π2
C2

(
−

8

3
log p2a2 + 23.6793

)]

−

(
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2
)

g20
16π2

C2 · 0.9094

For Karsten-Wilczek fermions, without the purely gluonic counterterm :

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g20

16π2
C2

(
−

8

3
log p2a2 + 19.99468

)]

−

(
pµpν (δµ4 + δν4)− δµν

(
p2 δµ4δν4 + p24

)) g20
16π2

C2 · 12.69766

New terms appear, compared with a “normal” case like Wilson fermions

Although each of these actions breaks hypercubic symmetry in its appropriate

and peculiar way, these new terms still satisfy the Ward identity pµΠ
(f)
µν (p) = 0

The cancellation of the hypercubic breaking terms of the vacuum polarization

determines the coefficients of the gluonic counterterm NOVEL 2023 – p.28



Counterterms

All counterterms remain of the same form at all orders of perturbation theory

Only the values of their coefficients depend on the number of loops

Exactly the same counterterms appear at the nonperturbative level, and they

are required for a consistent simulation of these fermions

Counterterms not only provide additional Feynman rules for the calculation of
loop amplitudes

They can also modify Ward identities – in particular, they contribute additional

terms to the expressions of the conserved currents
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Quark propagator and vertices

Inverting the Boriçi-Creutz action we obtain the fermion propagator S(p) as

a
−i
∑

µ
γµ(sin apµ − cos apµ)− iΓ (

∑
µ
cos apµ − 2) + am0∑

µ
(sin apµ

∑
ν
cos apν − 2 sin apµ(cos apµ + 1)− 2 cos apµ) + 8 + (am0)2

The denominator of this propagator cannot be cast (as instead is conveniently

done for many standard actions) in a form which possesses a definite behavior

under parity transformation of each single coordinate (pi → −pi)

By using {γµ, γν} = {γ′
µ, γ

′
ν} = 2δµν and {γµ, γ

′
ν} = 1− 2δµν , the above

quark propagator can also be written in the more convenient form

S(p) = a
−i
∑

µ

[
γµ sin apµ − 2 γ′

µ sin2 apµ/2
]
+ am0

4
∑

µ

[
sin2 apµ/2 + sin apµ

(
sin2 apµ/2−

1
2

∑
ν
sin2 apν/2

)]
+ (am0)2

where the limit of small p (continuum limit) is more transparent

The second pole at ap = (π/2, π/2, π/2, π/2) describes (as expected) a

particle of opposite chirality to the one at ap = (0, 0, 0, 0)
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Quark propagator and vertices

Quark propagator for Karsten-Wilczek fermions (2nd pole at ap = (0, 0, 0, π)):

S(p) = a

−i

4∑

µ=1

γµ sin apµ − 2i γ4

3∑

k=1

sin2 apk
2

+ am0

4∑

µ=1

sin2 apµ + 4 sin ap4

3∑

k=1

sin2 apk
2

+ 4

(
3∑

k=1

sin2 apk
2

)2

+ (am0)
2

Quark-quark-gluon and quark-quark-gluon-gluon vertices (Boriçi-Creutz):

V1(p1, p2) = −ig0

(
γµ cos

a(p1 + p2)µ
2

− γ′
µ sin

a(p1 + p2)µ
2

)

V2(p1, p2) =
1

2
iag20

(
γµ sin

a(p1 + p2)µ
2

+ γ′
µ cos

a(p1 + p2)µ
2

)

Quark-quark-gluon and quark-quark-gluon-gluon vertices (Karsten-Wilczek):

V1(p1, p2) = −ig0

(
γµ cos

a(p1 + p2)µ
2

+ γ4 (1− δµ4) sin
a(p1 + p2)µ

2

)

V2(p1, p2) =
1

2
iag20

(
γµ sin

a(p1 + p2)µ
2

− γ4 (1− δµ4) cos
a(p1 + p2)µ

2

)

(p1 and p2, momenta in and out of the vertex) NOVEL 2023 – p.31



Self-energy

The tadpole of the self-energy can be easily computed from the vertex V2(p, p)

The relevant expression for Boriçi-Creutz fermions is, in a general covariant
gauge ∂µAµ = 0,

1

a2
·
Z0

2

(
1−

1

4
(1− α)

)
· iag20CF

∑

µ

(
γµapµ + (Γ− γµ)(1 +O(a2))

)

which is equal to

g20CF
Z0

2

(
1−

1

4
(1− α)

)(
i6p +

i

a

∑

µ

(Γ− γµ)
)
+O(a)

where

Z0 =

∫
dp

(2π)4
1

p̂2
= 0.1549333....... = 24.466100

1

16π2

Terms of O(a) and higher are not important here

Since
∑

µ
γµ = 2Γ, the result of the one-loop tadpole is

g20CF
Z0

2

(
1−

1

4
(1− α)

)(
i6p +

2iΓ

a

)
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Self-energy

The i6p term is the same as for Wilson fermions, while the other term (as

already noted by Bedaque, Buchoff, Tiburzi and Walker-Loud in 2008) would

imply a power-divergent 1/a mixing with the dimension-3 operator ψ Γψ . . .

. . . if not compensated by an analogous term coming from the other diagram of

the self-energy, the sunset diagram

In our work we have shown that there is no such compensation

The result of the sunset diagram is

i6p ·
g20

16π2
CF

[
log a2p2 − 5.42642 + (1− α)

(
− log a2p2 + 7.850272

)]

+m0 ·
g20

16π2
CF

[
4 log a2p2 − 29.48729 + (1− α)

(
− log a2p2 + 5.792010

)]

+1.52766 ·
g20

16π2
CF · iΓ

∑

µ

pµ

+(5.07558 + 6.11653 (1− α)) ·
g20

16π2
CF · i

Γ

a
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Self-energy

Note that gauge invariance forces the terms proportional to 1− α to be the

same as (for example) Wilson or overlap fermions

This is an important check of the correctness of our calculations

The total self-energy (without counterterms) of a Boriçi-Creutz fermion is then

given at this order by

Σ(p,m0) = i6pΣ1(p) +m0 Σ2(p) + c1(g0) · iΓ
∑

µ

pµ + c2(g0) · i
Γ

a

with

Σ1(p) = 1+
g20

16π2
CF

[
log a2p2+6.80663+(1−α)

(
−log a2p2+4.792010

)]
+O(g40)

Σ2(p) = 1+
g20

16π2
CF

[
4 log a2p2−29.48729+(1−α)

(
−log a2p2+5.792010

)]
+O(g40)

c1(g0) = 1.52766 ·
g20

16π2
CF +O(g40)

c2(g0) = 29.54170 ·
g20

16π2
CF +O(g40)
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Self-energy

As expected, the two terms Γ/a coming from the tadpole and the half-circle

diagrams do not cancel – in fact, they have the same sign

Notice that the parts proportional to 1− α instead exactly cancel, as required
by gauge invariance

The full inverse propagator at one loop can be written (without counterterms)
as

Σ−1(p,m0) =
(
1−Σ1

)
·
{
i6p+m0

(
1−Σ2+Σ1

)
−
ic1
2

∑

µ

γµ
∑

ν

pν −
ic2
a

Γ
}

We can only cast the renormalized propagator in the standard form

Σ(p,m0) =
Z2

i6p + Zmm0

with the wave-function and quark mass renormalization given by

Z2 =
(
1− Σ1

)−1

, Zm = 1−
(
Σ2 − Σ1

)

if we cancel the Lorentz non-invariant factors (c1 and c2) by using the
counterterms
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Self-energy

The term proportional to c1 can be eliminated by using the counterterm of the

form ψ
∑

µ
γµ
∑

ν
Dν ψ (permitted by the symmetries of the theory)

The term proportional to c2 can be eliminated using the counterterm

1

a
ψ Γψ

which is already present in the action:

S(x) = · · · + a4
∑

x

ψ(x)
(
m0 −

2iΓ

a

)
ψ(x)

For Boriçi-Creutz fermions we then determine at one loop

c3(g0) = 29.54170 ·
g20

16π2
CF +O(g40)

c4(g0) = 1.52766 ·
g20

16π2
CF +O(g40)
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Self-energy

For Karsten-Wilczek fermions the result of the tadpole is

g20CF
Z0

2

(
1−

1

4
(1− α)

)(
i6p −

3iγ4
a

)

The complete self-energy (without counterterms) comes out as

Σ(p,m0) = i6pΣ1(p) +m0 Σ2(p) + d1(g0) · i γ4p4 + d2(g0) · i
γ4
a

where

Σ1(p) =
g20

16π2
CF

[
log a2p2 + 9.24089 + (1− α)

(
− log a2p2 + 4.792010

)]

Σ2(p) =
g20

16π2
CF

[
4 log a2p2 − 24.36875 + (1− α)

(
− log a2p2 + 5.792010

)]

d1(g0) = − 0.12554 ·
g20

16π2
CF +O(g40)

d2(g0) = − 29.53230 ·
g20

16π2
CF +O(g40)
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Self-energy

The full inverse propagator at one loop can be written, without counterterms,
as

Σ−1(p,m0) =
(
1− Σ1

)
·
(
i6p +m0

(
1− Σ2 +Σ1

)
− id1 γ4p4 −

id2
a
γ4

)

Similarly to before, by adding to the Karsten-Wilczek action counterterms of

the form

ψ γ4D4 ψ,
1

a
ψ γ4 ψ

the contributions which are not Lorentz invariant can be eliminated, and the
renormalized propagator can be written in the standard form

Σ(p,m0) =
Z2

i6p + Zmm0

Then, at one loop

d3(g0) = −29.53230 ·
g20

16π2
CF +O(g40)

d4(g0) = −0.12554 ·
g20

16π2
CF +O(g40)
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Renormalization of the mass

Chiral symmetry protects the quark mass m0 from an additive renormalization

The relation between the bare and renormalized quark masses, m0 and mR, is
then

mR = Zmm0

The full expression for the renormalization factors of the scalar and
pseudo-scalar densities at one loop is

ZS = ZP = 1−
(
ΛS +Σ1

)

where ΛS is the result for the one-loop vertex diagram of the scalar density

ΛS is exactly equal to the O(g20)-contribution to the quark self-energy Σ2, but

comes with an opposite sign
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Renormalization of the mass

Chiral symmetry protects the quark mass m0 from an additive renormalization

The relation between the bare and renormalized quark masses, m0 and mR, is
then

mR = Zmm0

The full expression for the renormalization factors of the scalar and
pseudo-scalar densities at one loop is

ZS = ZP = 1−
(
ΛS +Σ1

)

where ΛS is the result for the one-loop vertex diagram of the scalar density

ΛS is exactly equal to the O(g20)-contribution to the quark self-energy Σ2, but

comes with an opposite sign

Then, the renormalization factors ZS and ZP satisfy

1/Zm = ZS = ZP

The last equality is a consequence of chiral symmetry

The renormalization of the quark mass for minimally doubled fermions has the

same form as (for instance) overlap fermions
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Conserved vector and axial currents

ZV and ZA (of the local currents) are not equal to one

The local vector and axial currents are not conserved

We need to consider the chiral Ward identities in order to work with currents

which are protected from renormalization

We have constructed the conserved vector and axial currents, and verified that

at one loop their renormalization constants are equal to one

We act on the Boriçi-Creutz action in position space

S = a4
∑

x

[
1

2a

∑

µ

[
ψ(x) (γµ + iγ′

µ)Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ − iγ′
µ)U

†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 −

2iΓ

a

)
ψ(x)

]

with the vector transformation

δV ψ = iαψ, δV ψ = −iαψ

or the axial transformation

δAψ = iα γ5ψ, δAψ = iαψγ5 NOVEL 2023 – p.40



Conserved vector and axial currents

Take the Ward identity

〈
δO(x1 · · ·xn)

δα(x)

〉
=

〈
O(x1 · · ·xn)

δS

δα(x)

〉

For an axial transformation we have

i

〈
δS

δα(x)

〉
= ∇µ

x

〈
O(x1 · · ·xn)Aµ(x)

〉

(and similarly for a vector transformation)

For on-shell matrix elements, O(x1 · · ·xn) is a product of the operators which

generate the required initial and final states from the vacuum

Applying the axial transformation δAψ , we look for a current Acons
µ (x) which

satisfies

i
δS

δα(x)
= ∇⋆Acons

µ (x) = Acons
µ (x)−Acons

µ (x− aµ̂)

If the axial transformation is a symmetry of the action , then this current

Acons
µ (x) is conserved

(and similarly for the vector current)
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Conserved vector and axial currents

Using translational invariance, the vector transformation gives

δS =
ia3

2

∑

x

α(x)
∑

µ

[
ψ(x− aµ̂) (γµ + iγ′

µ)Uµ(x− aµ̂)ψ(x)

−ψ(x+ aµ̂) (γµ − iγ′
µ)U

†
µ(x)ψ(x)

−ψ(x) (γµ + iγ′
µ)Uµ(x)ψ(x+ aµ̂)

+ψ(x) (γµ − iγ′
µ)U

†
µ(x− aµ̂)ψ(x− aµ̂)

]

The corresponding expression for the axial transformation is (for m0 = 0)

δS =
ia3

2

∑

x

α(x)
∑

µ

[
ψ(x− aµ̂) (γµ + iγ′

µ) γ5 Uµ(x− aµ̂)ψ(x)

−ψ(x+ aµ̂) (γµ − iγ′
µ) γ5 U

†
µ(x)ψ(x)

−ψ(x) (γµ + iγ′
µ) γ5 Uµ(x)ψ(x+ aµ̂)

+ψ(x) (γµ − iγ′
µ) γ5 U

†
µ(x− aµ̂)ψ(x− aµ̂)

]

Axial symmetry only works for m0 = 0: ψ(x)ψ(x) → 2iα(x)ψ(x)γ5ψ(x)
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Conserved vector and axial currents

We then obtain the conserved vector current for Boriçi-Creutz fermions:

V cons
µ (x) =

1

2

[
ψ(x) (γµ+i γ

′
µ)Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ

′
µ)U

†
µ(x)ψ(x)

]

The axial current (conserved in the case m0 = 0) is

Acons
µ (x) =

1

2

[
ψ(x) (γµ+i γ

′
µ) γ5 Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ

′
µ) γ5 U

†
µ(x)ψ(x)

]

We can only obtain isospin-singlet currents, since the action describes a

degenerate doublet of fermions

We have then computed the renormalization of these point-split currents

We give here the results for the individual diagrams of the conserved vector
current

For the conserved axial current the numbers are the same, and one just needs
to replace γµ with γµγ5 , and Γ with Γγ5
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Conserved vector and axial currents

The vertex diagram gives the result

g20
16π2

CF γµ

[
− log a2p2+0.61800+(1−α)

(
log a2p2−1.73375

)]
+ cvtx1 (g0) Γ

with the coefficient of the mixing given by

cvtx1 (g0) = −0.43749 ·
g20

16π2
CF +O(g40)

The result of the sails is

g20
16π2

CF γµ

[
4.80841− 6.11653 (1− α)

]
+ csls1 (g0) Γ

with the coefficient of the mixing given by

csls1 (g0) = −1.09017 ·
g20

16π2
CF +O(g40)
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Conserved vector and axial currents

Finally, the operator tadpole gives the same result as for Wilson fermions:

−g20 CF γµ
Z0

2

(
1−

1

4
(1− α)

)

The sum of all these diagrams is

g20
16π2

CF γµ

[
−log a2p2−6.80664+(1−α)

(
log a2p2−4.79202

)]
+ccv1 (g0) Γ

with the coefficient of the mixing given by

ccv1 (g0) = −1.52766 ·
g20

16π2
CF +O(g40)

The term proportional to γµ exactly compensates the contribution of Σ1(p)

from the quark self-energy (wave-function renormalization)
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Conserved vector and axial currents

Finally, the operator tadpole gives the same result as for Wilson fermions:

−g20 CF γµ
Z0

2

(
1−

1

4
(1− α)

)

The sum of all these diagrams is

g20
16π2

CF γµ

[
−log a2p2−6.80664+(1−α)

(
log a2p2−4.79202

)]
+ccv1 (g0) Γ

with the coefficient of the mixing given by

ccv1 (g0) = −1.52766 ·
g20

16π2
CF +O(g40)

The term proportional to γµ exactly compensates the contribution of Σ1(p)

from the quark self-energy (wave-function renormalization)

But what about the mixing term, proportional to Γ ?

We should take into account the counterterms . . .
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Conserved vector and axial currents

The counterterm ψ(x)
iΓ

a
ψ(x) does not modify these Ward identities

On the contrary, the counterterm

c4(g0)

4

∑

µ

∑

ν

(
ψ(x) γν Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂) γν U

†
µ(x)ψ(x)

)

generates new terms in the Ward identities and then in the conserved currents

The additional term in the conserved vector current so generated reads

c4(g0)

4

[
ψ(x)

(∑

ν

γν

)
Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂)

(∑

ν

γν

)
U†

µ(x)ψ(x)
]

Its 1-loop contribution is easy to compute ( c4 is already of order g20 !): c4(g0) Γ

The value of c4 is known from the self-energy ⇒ c4(g0) Γ = −ccv1 (g0) Γ

Only this value of c4 exactly cancels the Γ mixing term present in the 1-loop

conserved current without counterterms

Thus, we obtain that the renormalization constant of these point-split currents

is one – which confirms that they are conserved currents

Everything is consistent. . . NOVEL 2023 – p.46



Conserved vector and axial currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1− δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1− δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4
a

)
ψ(x)

]
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Conserved vector and axial currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1− δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1− δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4
a

)
ψ(x)

]

After adding the counterterms, application of the chiral Ward identities gives for

the conserved axial current of Karsten-Wilczek fermions

Ac
µ(x) =

1

2

(
ψ(x) (γµ − iγ4 (1− δµ4)) γ5 Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂) (γµ + iγ4 (1− δµ4)) γ5 U
†
µ(x)ψ(x)

)

+
d4(g0)

2

(
ψ(x) γ4γ5 U4(x)ψ(x+ a4̂) + ψ(x+ a4̂) γ4γ5 U

†
4 (x)ψ(x)

)

Once more, is a simple expression which involve only nearest-neighbour sites

We checked explicitly that its renormalization constant is one
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Vacuum polarization

Our focus here: the radiative corrections to the gluon propagator due to

fermion loops

Contributions to the vacuum polarization due to loops of gluons and ghosts:

independent of the lattice fermionic action chosen (at one loop)

⇒ do not provide informations relevant for hypercubic breaking

Only the fermionic loops are able to generate hypercubic-breaking terms (as it

in the end happens for both Karsten-Wilczek and Boriçi-Creutz fermions)

The fermionic contribution to the vacuum polarization for one flavor of Wilson

fermions (where neither breaking of hypercubic symmetry nor fermion doubling

occur) is

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g20

16π2
Ct

(
−

4

3
log p2a2 + 4.337002

)]

where Tr (tatb) = C2 δ
ab

We can see that this (gauge invariant) result satisfies the Ward identity

pµΠ
(f)
µν (p) = 0, which expresses the conservation of the fermionic current

NOVEL 2023 – p.48



Vacuum polarization

However, for both Karsten-Wilczek and Boriçi-Creutz fermions the quark loops

are able to generate hypercubic-breaking terms , and this is what indeed

happens

It is thus evident that these hypercubic-breaking contributions must be

eliminated, and this can be achieved by employing the gluonic counterterms

Indeed, the expressions for the gluonic counterterms in momentum space are

structurally identical to the additional terms in the vacuum polarization

We can then eliminate these hypercubic-breaking terms and so determine the

coefficients of the gluonic counterterms
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Vacuum polarization

For Boriçi-Creutz fermions (without the purely gluonic counterterm) :

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g20

16π2
C2

(
−

8

3
log p2a2 + 23.6793

)]

−

(
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2

)
g20

16π2
C2 · 0.9094

For Karsten-Wilczek fermions (without the purely gluonic counterterm) :

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g20

16π2
C2

(
−

8

3
log p2a2 + 19.99468

)]

−

(
pµpν (δµ4 + δν4)− δµν

(
p2 δµ4δν4 + p24

)
)

g20
16π2

C2 · 12.69766

There are new terms, compared with a standard situation like Wilson fermions

Although each of these actions breaks hypercubic symmetry in its appropriate

and peculiar way, these new terms still satisfy the Ward identity pµΠ
(f)
µν (p) = 0

Very important: there are no power divergences (1/a2 or 1/a) in our results for
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Vacuum polarization

In principle divergences like 1/a2 or 1/a could have arisen

We have checked that tadpole contributions, when nonzero, are always of
equal magnitude and opposite sign with respect to the sunset diagram

It is interesting to note that the numbers for these diagrams are much larger

than in the case of Wilson fermions, where the coefficient of g20C2/16π
2 for the

tadpole is −9.67590

For Karsten-Wilczek fermions this number turns out to be −36.31464 for each
spatial component and 7.12931 for the temporal component, and for

Boriçi-Creutz fermions it is even larger, −73.71980

We can understand on general grounds why such power-divergences cannot

appear, from the fact that to construct hypercubic breaking terms one has to

employ objects like Γ and
∑

µ
pµ (for Boriçi-Creutz fermions) and γ4 and p4

(for Karsten-Wilczek fermions)

However, after the traces of the fermions loops are evaluated there are no

Dirac structures left , and no momenta can appear at the 1/a2 level

Linear pieces in the momenta, which would be required in case of a 1/a power

divergence, are instead prohibited by the symmetry of the diagrams
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Vacuum polarization

The hyper-cubic-breaking terms in the vaccum polarizazion can be put for both

actions in the same algebraic form :

p2{γµ,Γ}{γν ,Γ}+δµν{6p,Γ}{6p,Γ}−
1

2
{6p,Γ}

(
{γµ, 6p}{γν ,Γ}+{γν , 6p}{γµ,Γ}

)

In the case of Karsten-Wilczek fermions we have the same expression but with

Γ replaced by γ4/2

This substitution is suggested by comparison of the standard relation of

Boriçi-Creutz fermions

Γ =
1

4

∑

µ

(γµ + γ′
µ)

with the formula
γ4 =

1

2

∑

µ

(γµ + γ′
µ)

expressing the symmetries of the action (as can be seen expanding the

propagator of the Karsten-Wilczek action around the second Fermi point)

Is there any deeper significance to this structural equivalence of the

hyper-cubic-breaking structures in the vacuum polarizations?
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Simulations

For Boriçi-Creutz fermions the renormalized action reads

Sf
BC = a4

∑

x

{
1

2a

4∑

µ=1

[
ψ(x) (γµ + c4(β) Γ + iγ′

µ)Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + c4(β) Γ− iγ′
µ)U

†
µ(x)ψ(x)

]

+ψ(x)
(
m0 + c̃3(β)

iΓ

a

)
ψ(x)

+β
∑

µ<ν

(
1−

1

Nc
Re trPµν

)
+ cP (β)

∑

µνρ

trF lat
µρ (x)F lat

ρν (x)

}

We have redefined the coefficient of the dimension-3 counterterm, using

c̃3(β) = −2 + c3(β) (which does not vanish at tree level)

F lat is a lattice discretization of the field-strength tensor
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Simulations

The renormalized action for Karsten-Wilczek fermions reads

Sf
KW = a4

∑

x

{
1

2a

4∑

µ=1

[
ψ(x) (γµ(1 + d4(β) δµ4)− iγ4 (1− δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ(1 + d4(β) δµ4) + iγ4 (1− δµ4))U
†
µ(x)ψ(x)

]

+ψ(x)
(
m0 + d̃3(β)

i γ4
a

)
ψ(x)

+β
∑

µ<ν

(
1−

1

Nc
Re trPµν

)(
1 + dP (β) δµ4

)}

where d̃3(β) = 3 + d3(β) has a non-zero value at tree level

In perturbation theory the coefficients of the counterterms have the expansions

c̃3(g0) = −2 + c
(1)
3 g20 + c

(2)
3 g40 + . . . ; d̃3(g0) = 3 + d

(1)
3 g20 + d

(2)
3 g40 + . . .

c4(g0) = c
(1)
4 g20 + c

(2)
4 g40 + . . . ; d4(g0) = d

(1)
4 g20 + d

(2)
4 g40 + . . .

cP (g0) = c
(1)
P g20 + c

(2)
P g40 + . . . ; dP (g0) = d

(1)
P g20 + d

(2)
P g40 + . . .
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Simulations

In perturbation theory the four-dimensional counterterm to the fermionic action

is necessary for the proper construction of the conserved currents

Its coefficient, as determined from the one-loop self-energy, has exactly the

right value for which the conserved currents remain unrenormalized

Another effect of radiative corrections is to move the poles of the quark

propagator away from their tree-level positions

It is the task of the dimension-3 counterterm, for the appropriate value of the

coefficient c3 (or d3), to bring the two poles back to their original locations

These shifts can introduce oscillations in some hadronic correlation functions
(similarly to staggered fermions)

One possible way to determine c3 (d3): tune it in appropriately chosen

correlation functions until these oscillations are removed

No sign problem for the Monte Carlo generation of configurations: the gauge

action is real, and the eigenvalues of the Dirac operator come in complex

conjugate pairs → fermion determinant always non-negative
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Simulations

The purely gluonic counterterm for Boriçi-Creutz fermions introduces in the

renormalized action operators of the kind E ·B, E1E2, B2B3 (and similar)

In a Lorentz invariant theory, instead, only the terms E2 and B2 are allowed

Fixing the coefficient cP could then be done by measuring 〈E ·B〉, 〈E1E2〉, · · ·,

and tuning cP in such a way that one (or more) of these expectation values is

restored to its proper value pertinent to a Lorentz invariant theory, i.e. zero

These effects could turn out to be rather small , given that in the tree-level

action only the fermionic part breaks the hypercubic symmetry

It could also be that other derived quantities are more sensitive to this

coefficient, and more suitable for its nonperturbative determination

In general one can look for Ward identities in which violations of the standard

Lorentz invariant form, as functions of cP , occur

For Karsten-Wilczek fermions the purely gluonic counterterm introduces an

asymmetry between the plaquettes with a temporal index and the other ones

One could then fix dP by computing a Wilson loop lying entirely in two spatial

directions, and then equating its result to an ordinary Wilson loop which also
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Summary

Boriçi-Creutz and Karsten-Wilczek fermions are described by a fully

consistent renormalized quantum field theory

Three counterterms need to be added to the bare actions

All their coefficients can be calculated in perturbation theory – or

nonperturbatively from Monte Carlo simulations

After these subtractions are consistently taken into account, the power

divergence in the self-energy is eliminated

No other power divergences occur for all quantities that we calculated

Scalar, pseudoscalar and tensor operators show no new mixings at all

Local vector and axial currents mix with new operators which are not
invariant under the hypercubic group

The vacuum polarization does not present new divergences

Conserved vector and axial currents can be defined, and they involve
only nearest-neighbors sites

they do not have mixings, and their renormalization constant is one

one of the very few cases where one can define a simple

conserved axial current (also ultralocal)
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Towards better actions

It would be of substantial interest to find minimally doubled actions that (like

the above two standard cases) have the correct continuum limit, but that

require fewer counterterms, or even possibly none at all

We have made some investigations to explore these issues

Can we have minimally doubled fermions which require fewer than three

counterterms?

. . . maybe even just one?

. . . and maybe even none?

We introduce here new nearest-neighbor minimally doubled actions which

depend on 2 continuous parameters

For each counterterm, there exist curves in the parameter space on which its

coefficient vanishes

⇒ renormalized actions with only 2 counterterms

Besides these generalized Karsten-Wilczek actions (and moreover some also

with next-to-nearest-neighbor interactions), we have also constructed

generalized Boriçi-Creutz actions
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Towards better actions

For all generalized Karsten-Wilczek actions that we introduce here, the 3

possible counterterms are the same of the standard Karsten-Wilczek fermions

This happens because both poles of the quark propagator still lie entirely on

the temporal axis, and thus the temporal direction is always selected as the

special one (irrespective of the values of the parameters α and λ describing

the actions)

Furthermore, the spinorial structure of all these actions is also the same

Thus, P is a symmetry, and also CT ( Bedaque et al. , 2008), but T and C
separately are violated (unless the actions are properly renormalized)

The values of the coefficients of the counterterms for which one obtains a
consistent renormalized theory depend on the particular choices of α and λ

We investigate what happens when one varies these parameters, and see if

one can remove some of the counterterms

The values of the coefficients of the counterterms for which the hypercubic

symmetry is restored are continuous real functions of α and λ

→ in general there will be values of the these parameters for which some of
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Towards better actions

One of the motivations for these investigations:

for standard Boriçi-Creutz and Karsten-Wilczek fermions the two

diagrams of the 1-loop quark self-energy (sunset and tadpole)

always give contributions of opposite sign to the dimension-three

counterterm (the one which scales as 1/a )

One could suspect that using a generalization of these actions an exact

cancellation can occur for some values of the parameters α and λ, with the

effect that this counterterm (or possibly in general other counterterms) can be

removed from the game

This is indeed what happens!

We have found a few curves in the parameter space spanned by α and λ for

which one of the counterterms can be removed

Then, the renormalized actions corresponding to these particular choices of

the parameters require only 2 counterterms

Moreover, this means in quenched QCD there are many choices of α and λ for

which only one counterterm remains (out of originally 2)
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Nearest-neighbor minimally doubled actions

We study the class of (bare) nearest-neighbor fermionic actions

Sf (x;α, λ) = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (λ+ δµ4(cotα− λ)))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (λ+ δµ4(cotα− λ)))U†
µ(x)ψ(x)

]

+ψ(x)
(
m0 +

iγ4
a

(3λ+ cotα)
)
ψ(x)

]
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Nearest-neighbor minimally doubled actions

We study the class of (bare) nearest-neighbor fermionic actions

Sf (x;α, λ) = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (λ+ δµ4(cotα− λ)))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (λ+ δµ4(cotα− λ)))U†
µ(x)ψ(x)

]

+ψ(x)
(
m0 +

iγ4
a

(3λ+ cotα)
)
ψ(x)

]

These Wilson-like minimally doubled fermions satisfy γ5-hermiticity and have

µ = 4 as a special direction (like for the standard Karsten-Wilczek action)

They can also be expressed in the simple form

a4
∑

x

ψ(x)
{
1

2

∑

µ

[
γµ(∇µ+∇⋆

µ)−iaγ4 (λ+ δµ4(cotα− λ))∇⋆
µ∇µ

]
+m0

}
ψ(x)

where the lattice discretizations of the covariant derivative are

∇µ ψ(x) =
Uµ(x)ψ(x+ aµ̂)− ψ(x)

a
, ∇⋆

µ ψ(x) =
ψ(x)− U†

µ(x− aµ̂)ψ(x− aµ̂)

a
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Nearest-neighbor minimally doubled actions

In momentum space the Dirac operator of the above minimally doubled

fermions reads, in the free case,

Df (p;α, λ) =
i

a

4∑

µ=1

γµ sin apµ+
iγ4
a

[
λ

3∑

k=1

(1−cos apk)+cotα (1−cos ap4)
]
+m0
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Nearest-neighbor minimally doubled actions

In momentum space the Dirac operator of the above minimally doubled

fermions reads, in the free case,

Df (p;α, λ) =
i

a

4∑

µ=1

γµ sin apµ+
iγ4
a

[
λ

3∑

k=1

(1−cos apk)+cotα (1−cos ap4)
]
+m0

The two zeros, at ap̄1 = (0, 0, 0, 0) and ap̄2 = (0, 0, 0,−2α), describe two

fermions of equal mass and opposite chirality

The range of α can be taken as 0 < α < π

For α = 0 and α = π the action becomes singular ( cotα = ∞)

Although for the quark propagators corresponding to α and π − α the distance

between the poles is the same, the actions corresponding to these two choices

of α are not equivalent (even for the same value of λ)

Varying λ does not change the location of any of the zeros – this parameter

has only the task of decoupling the 14 other fermions from the naive fermionic

action giving them a mass of order 1/a

It must also be λ > (1− cosα)/(2 sinα) to avoid the appearance of other

doublers
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Nearest-neighbor minimally doubled actions

All the actions considered here have the correct leading behavior for small p
(irrespective of the values of α and λ)

All these actions still contain only nearest-neighbor interactions, that is they

are Wilson-like with hopping terms of only one unit of lattice spacing

For this reason they are rather cheap to simulate – they are a little more

expensive than Wilson fermions because the spinor matrices are slightly more

complicated

The computational effort will be about a few times the one required for Wilson

fermions

For λ = 1/ sinα our actions can be cast, after a redefinition of p4, into the

actions written by Creutz in Fourier space in 2010, which in the free massless
case read

DCreutz(p;α) =
i

a

3∑

k=1

γk sin apk +
iγ4

a sinα

(
cosα+ 3−

4∑

µ=1

cos apµ

)

Furthermore, when this choice of λ is taken, the standard Karsten-Wilczek
action can be then obtained as a special case by setting α = π/2
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Nearest-neighbor minimally doubled actions

P is a symmetry, and also CT , but T and C separately are violated unless the

action is properly renormalized – like for the standard Karsten-Wilczek action

Then, the counterterms that must be added to these generalized actions are

the same needed for the standard Karsten-Wilczek action

In quenched QCD only 2 of them are needed
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Nearest-neighbor minimally doubled actions

P is a symmetry, and also CT , but T and C separately are violated unless the

action is properly renormalized – like for the standard Karsten-Wilczek action

Then, the counterterms that must be added to these generalized actions are

the same needed for the standard Karsten-Wilczek action

In quenched QCD only 2 of them are needed

One can construct a conserved axial current for all these actions, which only
involves nearest-neighbor sites:

Acons
µ (x;α, λ) =

1

2

(
ψ(x) (γµ − iγ4 (λ+ δµ4(cotα− λ))) γ5 Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂) (γµ + iγ4 (λ+ δµ4(cotα− λ))) γ5 U
†
µ(x)ψ(x)

)

+
d4(g0)

2

(
ψ(x) γ4γ5 U4(x)ψ(x+ a4̂) + ψ(x+ a4̂) γ4γ5 U

†
4 (x)ψ(x)

)

This is particularly important, as not many fermionic formulations exist for

which a conserved axial current exists and is of such a simple form
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1-loop calculations

The values of the coefficients of the counterterms for which these actions are
properly renormalized can be determined by computing in the cases of d3 and

d4 the quark self-energy

For these specific values, the hypercubic-breaking factors in the radiative

corrections disappear

In the case of dP one enforces the restoration of the hypercubic symmetry on

the renormalized vacuum polarization of the gluon
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1-loop calculations

The values of the coefficients of the counterterms for which these actions are
properly renormalized can be determined by computing in the cases of d3 and

d4 the quark self-energy

For these specific values, the hypercubic-breaking factors in the radiative

corrections disappear

In the case of dP one enforces the restoration of the hypercubic symmetry on

the renormalized vacuum polarization of the gluon

Due to the non-trivial form of the denominator of the quark propagator, it is not

possible to provide results with an analytic dependence on α or λ

The search for the special values of these parameters which remove the

hypercubic-breaking factors in the 1-loop quark self-energy and vacuum

polarization must then be carried out numerically , through a sample of many

values of α and λ

The tadpole of the self-energy however can be calculated analytically , and its

result has a simple dependence on α and λ

NOVEL 2023 – p.65



1-loop calculations

In a general covariant gauge one obtains

T =
1

a2
·
Z0

2

(
1−

1

4
(1− ξ)

)
· iag20 CF

4∑

µ=1

(
γµapµ − γ4 (λ+ δµ4(cotα− λ))

)

= g20 CF
Z0

2

(
1−

1

4
(1− ξ)

)(
i6p −

iγ4
a

(3λ+ cotα)
)

The quantity Z0 is an often-recurring lattice integral, defined as

Z0 =

∫ π/a

−π/a

d4p

(2π)4
1

p̂2
= 0.1549333 . . . =

24.466100 . . .

16π2
, p̂2 =

4

a2

∑

µ

sin2
(
apµ
2

)

The result for the i6p term is the same of Wilson fermions

The other term, which is linearly divergent as 1/a, has a functional form

already present in the bare minimally doubled action, where however its

coefficient is a fixed number

In the renormalized action instead it becomes a counterterm, whose coefficient
must be properly adjusted as a function of the gauge coupling
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1-loop calculations

The 1/a term of the tadpole diverges not only when a→ 0 (contributing so to

the relevant counterterm d3), but also when α→ 0 – in the latter case with a

behavior which goes like 1/ sinα (for fixed lattice spacing)

It also diverges at the other end of the range, α→ π, with a similar behavior

To carry out the calculations of the two other diagrams required for the tuning

of the counterterms we have used a set of computer codes written in the

algebraic manipulation language FORM – extended to include the special

features of the actions presented here

Every curve of zeros separates, for its corresponding counterterm, the region

where its coefficients is positive from the region where it is negative

The dependence is rather smooth

One interpolates between values in the positive and negative regions, and so

determines the exact values of α and λ for which this coefficient is indeed zero

Some of our results are summarized in the following figures

They show the curves for which each counterterm has a vanishing coefficient
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1-loop calculations
4 CONTENTS

0 1 2 3
0

1

2

3

α

λ

d3

d4

dP

dP

Curves of zeros for the coefficients of
the counterterms – interpolations of

points obtained from 1-loop calcula-
tions

Our calculations show no intersections
between these curves

The curve corresponding to a zero of

d4 is not symmetric with respect to the

reflection α→ π/2− α

The distance between the 2 poles of
the quark propagator does not change

when α→ π/2−α, but these values of

α correspond to different actions

The purpose here is not the computa-

tion of all zeros with a high precision,

but rather to show that such curves of
zeros exist and see what shape they
have
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1-loop calculations

The curve corresponding to the vanishing of the dimension-3 counterterm, d3,

has instead a domain which is restricted to α > π/2

For α→ π/2 (from above) along this curve, λ goes asymptotically to zero

For α→ π instead, λ grows very rapidly and tends to infinity

This is a behavior which is substantially different from the one of the
dimension-4 counterterms
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1-loop calculations

The curve corresponding to the vanishing of the dimension-3 counterterm, d3,

has instead a domain which is restricted to α > π/2

For α→ π/2 (from above) along this curve, λ goes asymptotically to zero

For α→ π instead, λ grows very rapidly and tends to infinity

This is a behavior which is substantially different from the one of the
dimension-4 counterterms

The locations of the zeros of the coefficient of the gluonic counterterm could

be determined only with an error of about ten per cent

This is due to the difficulty of evaluating the numerous integrals needed for this

diagram, which arise from a quadratic Taylor expansion in the lattice spacing

and are quite expensive to compute

Since the number of terms is some orders of magnitude larger than in the case

of the quark self-energy, and moreover the vacuum polarization is divergent at

both poles of the fermion propagator, the search for the zeros of dP turns out to

be much more expensive than for the fermionic counterterms d3 and d4, and
the precision that can be achieved is much smaller
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1-loop calculations

For the fermionic counterterms the zeros could instead be easily determined

with a precision of about 10−4

Of course one can always compute a few selected zeros in a small region of

the space of parameters with very high precision

The complete mapping of the whole space of parameters requires however an

extremely larger computational effort, so that only a much lower precision can

be accomplished

At any rate the main purpose of the present investigations is not the exact

computation of all zeros with a high precision

We want rather to show that such curves of zeros exist and see what shape
they have

These curves could also be connected to some symmetries

There is no need here to compute these curves of zeros with high precision

Of course when one will eventually be able to construct a nonperturbatively
renormalized action with just one or no counterterm, a determination with

higher precision of the corresponding parameters will be desirable
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1-loop calculations

For the special α = π/2 (= standard Karsten-Wilczek action) there is no way

for d3 (the coefficient of the O(1/a) counterterm) to become zero by varying

the value of λ

The reason is that, although the tadpole and sunset diagrams have opposite

sign and their absolute values decrease as λ is lowered, the sunset always

remains in magnitude much smaller than the tadpole and so a cancellation

can never take place

The calculations presented in this work show that, on the contrary, such

cancellations can take place when α > π/2

Indeed, for any π/2 < α < π there is always a value of λ for which a

cancellation happens
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1-loop calculations4 CONTENTS

0 1 2 3
0

1

2

3

α

λ

λ =
1

sin α

d3

d4

dP

dP

It is interesting that there are two points

for which the curve λ = 1/ sinα inter-

sects the curve of zeros of d4

Then, the action proposed by Creutz,
which in general requires three coun-

terterms, needs only two of them

when either of the following two

choices of α is made:

(α, λ) = (1.47, 1.01)

or
(α, λ) = (2.41, 1.49)

In both cases it is the fermionic coun-
terterm of dimension 4 which is elimi-
nated
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1-loop calculations

Generalized Karsten-Wilczek fermions: the counterterms needed for a
consistent 1-loop renormalized theory can be fewer than the 3 required for the

standard massless Karsten-Wilczek and Boriçi-Creutz actions

There are many choices of α and λ for which a counterterm can be left out →
the corresponding actions are cheaper and more convenient to simulate

If some of the curves of zeros had an intersection point , this would give a

renormalized minimally doubled action which requires only one counterterm

Unfortunately the (perturbative) curves that we have obtained do not intersect,
and so one remains always with at least two counterterms – at least in

perturbation theory and within the families of actions considered in this paper

However one can still choose in some convenient way which counterterms to
keep and which one to discard

In the quenched case, one has the possibility to construct an

action with just one counterterm

In full QCD, one can choose to use only the 2 fermionic

counterterms, and then there is no need to fine-tune and employ a

gluonic operator of the FF form
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Going nonperturbative

Will the qualitative pattern of the curves that we have found
be reproduced also nonperturbatively?

The dependence of the coefficients of the counterterms on the parameters of
the action appears to be rather smooth

Then it will probably be not too expensive to perform first a quick rough tuning

of the parameters around the curves of zeros that we have found perturbatively

Afterwards one can compute with more precision the positions of these

nonperturbative zeros, using a much finer tuning

It could be that the locations of these zeros do not differ too much from the
perturbative results, and so one could take them as a good starting guess

It is also possible that nonperturbatively the vanishing of the counterterm of

dimension 3 occurs in the region where there is minimal doubling

Since this is the only relevant counterterm, in this case only two marginal

counterterms (of dimension 4, whose coefficient is likely to be small) would

remain to be tuned in order to carry out consistent Monte Carlo simulations,
leading to milder numerical cancellations

NOVEL 2023 – p.74



Going nonperturbative

It could happen that nonperturbatively an intersection point does exist

This would make possible to simulate renormalized minimally doubled actions
with at most one counterterm

In the case in which the (nonperturbative) curves indeed intersect, the

intersection points will be the most important numbers to find

Since there will likely be not many of them, it will not be overly expensive to
determine them with high precision

Even when it is not possible to remove all counterterms, it is covenient to

accomplish a reduction in the dimensionality of the parameter space of their

coefficients – it makes their numerical determination easier

In particular, if there is only one counterterm left, it is much simpler to
carry out the determination of its coefficient, because one has to deal
with just a one-dimensional space instead of a multi-parameter one

Besides the removal of counterterms, it is always useful to have as many
minimally doubled actions as possible and keep on trying to construct new

ones – some particular actions could turn out to have better theoretical or

practical properties, and be particularly advantageous for lattice simulations of
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Still more actions?

The effective amount of important physical quantities such as the mass
splittings within otherwise degenerate multiplets, could turn out to be rather

small only for a few of these actions

By moving the distance between the two poles one could minimize in the

continuum limit the effects coming from having only a U(1) chiral symmetry

In general it is convenient to have minimally doubled actions where the

distance between the two poles of the quark propagator can be varied

Special values of this distance could turn out to be particularly convenient for

efficient numerical simulations of minimally doubled fermions

It is possible that still cleverer minimally doubled actions can be constructed –
and maybe arrive at the optimal situation where a maximal reduction can be
accomplished, that is no counterterms at all are needed

Then one will be able to obtain consistent physical results from simulations

using just the bare tree-level actions – no tuning of counterterms needed

Simulations of minimally doubled actions without counterterms will be cheaper
than when one needs to add counterterms to the bare actions – and than the
already convenient standard Karsten-Wilczek fermions NOVEL 2023 – p.76



Next-to-nearest-neighbor actions

We would like to have actions for which intersections between the curves of
zeros exist, so that 2 or even more of the possible counterterms can then be
removed

One can think of widening the pool by considering also couplings between

next-to-nearest-neighbor lattice sites

In the quest for minimally doubled actions without counterterms, investigating

such kind of actions could turn out at the end to be rewarding

We do not know in fact whether there could be theoretical impediments in
principle to countertermless minimally doubled actions when one only
considers nearest-neighbor interactions

It is conceivable that introducing interactions also at distance 2a or larger could

allow actions with different kinds of properties

The hope is that at the end some of these actions will not require any
counterterms to be properly renormalized

We find then useful to propose here a first example of a class of minimally
doubled actions with next-to-nearest-neighbor interactions:
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Next-to-nearest-neighbor actions

Sf
ntn(x;α, λ, λ

′, ρ) = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 f

(1)
µ )Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 f
(1)
µ )U†

µ(x)ψ(x)
]

+
i

4a

4∑

µ=1

f (2)
µ ·

[
ψ(x) γ4 Uµ(x)Uµ(x+ aµ̂)ψ(x+ 2aµ̂)

+ψ(x+ 2aµ̂) γ4 U
†
µ(x+ aµ̂)U†

µ(x)ψ(x)
]

+ψ(x)
(
m0 +

iγ4
a
f (0)
)
ψ(x)

]

where

f (0)(α, λ, λ′, ρ) = 3λ+
9

2
λ′ +

(
ρ+

3

4

1− ρ

sin2 α

)
cotα

f (1)
µ (α, λ, λ′, ρ) = λ+ 2λ′ + δµ4

((
ρ+

1− ρ

sin2 α

)
cotα− λ− 2λ′

)

f (2)
µ (α, λ′, ρ) = λ′ + δµ4

(
1− ρ

2 sin2 α
cotα− λ′

)

are functions diagonal in spinor and color space NOVEL 2023 – p.78



Next-to-nearest-neighbor actions

There are simple relations between these functions, and if one defines

f (h)
µ (α, λ, ρ) = λ+ δµ4

(
ρ cotα− λ

)

then knowing f
(1)
µ one can obtain

f (2)
µ =

1

2

(
f (1)
µ − f (h)

µ

)

f (0) =

4∑

µ=1

(
3

4
f (1)
µ + f (h)

µ

)
=

4∑

µ=1

(
f (h)
µ +

3

2
f (2)
µ

)
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Next-to-nearest-neighbor actions

There are simple relations between these functions, and if one defines

f (h)
µ (α, λ, ρ) = λ+ δµ4

(
ρ cotα− λ

)

then knowing f
(1)
µ one can obtain

f (2)
µ =

1

2

(
f (1)
µ − f (h)

µ

)

f (0) =

4∑

µ=1

(
3

4
f (1)
µ + f (h)

µ

)
=

4∑

µ=1

(
f (h)
µ +

3

2
f (2)
µ

)

The corresponding momentum-space actions are given in the free case by

i

a

4∑

µ=1

γµ sin apµ +
iγ4
a

{ 3∑

k=1

(
λ (1− cos apk) + λ′ (1− cos apk)

2
)

+cotα
(
ρ (1− cos ap4) +

1− ρ

2 sin2 α
(1− cos ap4)

2
)}

+m0

For λ′ = 0 & ρ = 1 one falls back to the case of the nearest-neighbor actions
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Next-to-nearest-neighbor actions

These actions satisfy γ5 -hermiticity, and the temporal direction is again the

special one which is selected and which then breaks hypercubic symmetry

Same symmetries of the Karsten-Wilczek action: P is a symmetry but T and C
separately are violated, unless the action is properly renormalized

So, the counterterms that must be added to these generalized actions are

again the same needed for the standard Karsten-Wilczek action

The parameter α regulates the distance between the two zeros, which are at

the same positions ap̄1 = (0, 0, 0, 0) and ap̄2 = (0, 0, 0,−2α) as in the

nearest-neighbor actions

That there are only two zeros is certain if −3 ≤ ρ ≤ 1 and −π/2 < α < π/2

For choices of ρ outside of this range, additional zeros can in general appear,

and one can still get minimally doubled actions but only for a restricted domain

of α (whose extension depends on the value of ρ)

One must also take, to ensure that there are no more than two fermions,

λ+2λ′ > −min {sinx+cotα (ρ (1− cosx)+ (1−ρ) (1− cosx)2/(2 sin2 α))}/2
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Next-to-nearest-neighbor actions

Obtaining minimally doubled actions is not trivial: profile of the action

(proportional to γ4) vs. p4 (for ~p = (0, 0, 0)) in the case (α, ρ) = (0.1, 1.1)
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Next-to-nearest-neighbor actions

It is worth noting that the above actions in position space can also be written

more concisely in the simple form

a4
∑

x

ψ(x)

{
∑

µ

[
1

2
γµ(∇µ+∇⋆

µ)−iaγ4

{
1

2
f (1)
µ ∇⋆

µ∇µ−f
(2)
µ ∇̃⋆

µ∇̃µ

}]
+m0

}
ψ(x)

where in addition to the standard ∇µ and ∇⋆
µ one has also introduced another

discretization for the lattice covariant derivative, extending this time over two

lattice sites:

∇̃µ ψ(x) =
Uµ(x)Uµ(x+ aµ̂)ψ(x+ 2aµ̂)− ψ(x)

2a

∇̃⋆
µ ψ(x) =

ψ(x)− U†
µ(x− aµ̂)U†

µ(x− 2aµ̂)ψ(x− 2aµ̂)

2a

Note that in this concise notation it is apparent that there is no mass term left if
one sets m0 = 0

This was also true for the nearest-neighbor actions

Terms like iψ(x)γ4ψ(x)/a are in fact part of the various Laplacians
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Next-to-nearest-neighbor actions

Our primary motivation for introducing these next-to-nearest-neighbor actions

is that for special choices of the parameters one could hit on renormalized
actions which do not require any counterterms

Since there are 4 parameters, and not just 2 as in the nearest-neighbor case,

there should be many more “curves” on which the counterterms become zero

and, above all, more chances for intersections among these curves

(Actually, the “curves” are likely to be 3-dimensional manifolds)

It could then happen that there are some values of the parameters for which
one ends up with just one counterterm, or none at all

Of course to explore adequately this larger parameter space will be more

expensive than for the nearest-neighbor actions

It is probably not too difficult to go one step further and construct minimally

doubled fermions with hopping terms extending to 3 (or more) lattice spacings

This will enlarge even further the space in which to search for actions which do

not require counterterms – although incrementing the range of the couplings

renders such actions increasingly less convenient for simulations
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Generalized Boriçi-Creutz actions

We have also generalized the Boriçi-Creutz action

The second zero αµ can be moved to an arbitrary position

−π < αµ < π (αµ 6= 0)

and the direction which breaks the hypercubic symmetry can also be arbitrarily
chosen

The components of αµ do not need to be equal, and they can even be all

different from one another

The direction of hypercubic breaking can never exactly correspond to one of

the pµ axes

In this sense, “complementary” to the generalized Karsten-Wilczek actions

The action has still the correct continuum limit

Minimal doubling is guaranteed if the distance between the two zeros does not

become too large
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Generalized Boriçi-Creutz actions

Boriçi-Creutz fermions: special place among minimally doubled fermions

They have sparked off the revival of this class of ultralocal chiral formulations –

and their particular construction has arisen from investigations of the

properties of electrons in graphene

Boriçi-Creutz fermions are an instructive example of models based on spinless

fermions hopping on a lattice, in which the low-energy excitations come out at

the end to carry half-integer spin

This view of the emergence of spin from spinless particles has been

discussed by Creutz:

“Emergent spin”, arXiv:1308.3672, Ann. Phys. (Amsterdam) 342, 21 (2014)

How the spin arises is dictated by the topological properties of the action in

momentum space, which

protect from additive mass renormalization

constrain the fermionic flavors to appear only in an even number

→ intriguing picture of the workings of the Nielsen-Ninomiya theorem
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Generalized Boriçi-Creutz actions

Dirac operator:

D =
1

2

{
4∑

µ=1

γµ(∇µ +∇∗
µ) + ia

4∑

µ=1

(
γµ cotαµ + γ′

µ cscαµ

)
∇∗

µ∇µ

}
+m0

where γ′ is another set of Dirac matrices

After expanding the covariant derivatives this fermionic action reads

a4
∑

x

{
1

2a

4∑

µ=1

[
ψ(x)

(
γµ + i

(
γµ cotαµ + γ′

µ cscαµ

))
Uµ(x)ψ(x+ aµ̂)

− ψ(x+ aµ̂)

(
γµ − i

(
γµ cotαµ + γ′

µ cscαµ

))
U†

µ(x)ψ(x)

]

+ ψ(x)

(
m0 −

i

a

∑

µ

(
γµ cotαµ + γ′

µ cscαµ

))
ψ(x)

}

Only nearest-neighbor interactions (like the Wilson action)

Since {γ′
µ, γ5} = 0, it preserves a U(1) chiral symmetry (for m0 = 0), which

protects from additive mass renormalization, and also satisfies γ5-hermiticity
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Construction of the generalized action

The standard Boriçi-Creutz action can be viewed as the outcome of an

ingenious construction, devised by Creutz

It can be represented as a linear combination of two physically equivalent

naive fermion actions – the second one having been given a momentum shift

We first try to use again two naive fermions

Make a translation in momentum space of the second naive fermion action:

DBC′

(p) = i
∑

µ

(
γµ sin pµ + γ′

µ sin(pµ + π − αµ)
)
− i
∑

µ

γ′
µ sinαµ +m0

Then the second zero of the whole action is now at pµ = αµ

The Γ term has to be modified in order to achieve the desired minimal doubling

→ now is Γ = (1/2)
∑

µ
γµ sinαµ = (1/2)

∑
µ
γ′
µ sinαµ

This action can be written also as

DBC′

(p) = i
∑

µ

(
γµ sin pµ + γ′

µ

(
sin(αµ − pµ)− sinαµ

))
+m0

= i
∑

µ

(
γµ
(
sin pµ − sinαµ

)
+ γ′

µ sin(αµ − pµ)
)
+m0
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Construction of the generalized action

A major problem with this action: wrong continuum limit

Indeed, its leading term for small p is

DBC′

(p) ≃ i6p − i
∑

µ

γ′
µ pµ cosαµ

One consequence: the basic vertex for the emission of a gluon by a quark

current is not simply proportional to γµ, but still contains also γ′
µ terms, even in

the continuum limit

Wrong continuum limit: because at the point pµ = (0, 0, 0, 0), where the

coefficient of iγµ vanishes, the first derivative of the function expressing the

coefficient of iγ′
µ does not vanish

One then has to find a way to overcome this limitation

In order to obtain that this derivative becomes zero, we have to modify the

shape of the naive actions in momentum space

→ make the substitution
sin pµ −→ sin pµ − cotαµ (1− cos pµ)
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Construction of the generalized action

The mechanism of minimal doubling is now similar as before

Main difference: at pµ = 0, where the coefficient of γµ is zero, that of γ′
µ has a

maximum, and thus its first derivative is zero

At pµ = αµ the roles of γµ and γ′
µ are just reversed

The minimally doubled action coming out of this choice of modified naive

actions is then

D(p) = i
∑

µ

[
γµ

(
sin pµ − cotαµ (1− cos pµ)

)

+ γ′
µ

(
sin(pµ + αµ)− cotαµ (1− cos(pµ + αµ))

)]
− inΓ +m0

= i
∑

µ

1

sinαµ

[
γµ

(
cos(pµ − αµ)− cosαµ

)

+ γ′
µ

(
cos pµ − cosαµ

)]
− inΓ +m0

→ the continuum limit is now the correct one!
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The new Gammas

A new definition of Γ must be now used!

The generalization of Γ that, when combined with the sum of the modified

naive actions, builds a minimally doubled action is

Γ =
1

n

∑

µ

1− cosαµ

sinαµ
γµ =

1

n

∑

µ

1− cosαµ

sinαµ
γ′
µ ; n =

√∑

µ

(1− cosαµ)2

sin2 αµ

With this definition the action has always at least two zeros, located at the

origin and at αµ (if the components of αµ become large other zeros can

appear)

The matrix Γ encodes the generic direction of hypercubic breaking that is now

possible to choose

One can also write it as Γ =
1

n

∑

µ

γµ tan(αµ/2)

So, there is a one-to-one correspondence between Γ and the direction of
hypercubic breaking

Γ2 = 1, and so this matrix is also unitary
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The new Gammas

We can then observe that also the two modified naive actions out of which the
action is built are physically equivalent

Indeed if we take the unitary transformations

ψ(x) → e−iαµxµ Γψ(x)

ψ(x) → eiαµxµ ψ(x) Γ

in momentum space, the corresponding effect is given by the substitutions

sin(pµ) → sin(pµ + αµ) and cos(pµ) → cos(pµ + αµ)

Thus, under this unitary transformation the first modified naive action
goes exactly into the second one

An important consequence of this equivalence is that the relation γ′
µ = ΓγµΓ of

the standard Boriçi-Creutz action is still valid, even though now the explicit

expressions of the γ′
µ matrices depend on the choice of αµ

This equivalence can be seen from the fact that the unitary transformation

brings the first zero onto the second one , and so

ψγµψ → ψΓγµΓψ = ψγ′
µψ
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The new Gammas

Moreover, from this relation (and together with Γ2 = 1) the equivalence of the

two previous definitions of Γ can be verified, as well as that

{γ′
µ, γ

′
ν} = {ΓγµΓ,ΓγνΓ} = Γ{γµ, γν}Γ = 2δµν

which shows that the matrices γ′
µ are a fully legitimate set of Dirac matrices

They are a linear combination of the γµ, which can be expressed as

γ′
µ =

∑
ν
aµνγν , where a is an orthogonal matrix (Borici, 2007)

The specific values of the entries of γ′
µ depend on the actual location of the

second zero
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The new Gammas

Moreover, from this relation (and together with Γ2 = 1) the equivalence of the

two previous definitions of Γ can be verified, as well as that

{γ′
µ, γ

′
ν} = {ΓγµΓ,ΓγνΓ} = Γ{γµ, γν}Γ = 2δµν

which shows that the matrices γ′
µ are a fully legitimate set of Dirac matrices

They are a linear combination of the γµ, which can be expressed as

γ′
µ =

∑
ν
aµνγν , where a is an orthogonal matrix (Borici, 2007)

The specific values of the entries of γ′
µ depend on the actual location of the

second zero

Another useful relation for the γ′
µ matrices is

γ′
µ = {Γ, γµ}Γ− γµ =

2

n

1− cosαµ

sinαµ
Γ− γµ

This relation was γ′
µ = Γ− γµ for the standard Boriçi-Creutz action

The relation γ′
µ = ΓγµΓ remains instead unmodified also in the generalized

Boriçi-Creutz action, and so it looks as though it could be the more

fundamental of the two main ways of expressing γ′
µ in terms of γµ
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The new Gammas

So, the relation γ′
µ = ΓγµΓ of the standard Boriçi-Creutz action is still valid –

even though now the explicit expressions of the γ′
µ matrices depend on the

choice of αµ

It is also easy to see from γ′
µ = ΓγµΓ that {γ′

µ, γ5} = 0

Then chiral symmetry and the γ5-hermiticity of the action immediately follow

It must be αµ 6= 0 and αµ 6= π, otherwise the two modified naive actions

collapse onto each other, or their sum is identically zero, and so the

construction of the action obviously degenerates
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Regions of minimal doubling

What we have generalized here is the standard Boriçi-Creutz action whose

second zero is conventionally taken at (π/2, π/2, π/2, π/2), and hence its

direction of hypercubic breaking is the positive major diagonal

However, from the second (modified) naive action one could choose any of its

other 15 zeros out of (±π/2,±π/2,±π/2,±π/2) to survive at the end

If for instance one picks (π/2,−π/2, π/2, π/2), the new direction of hypercubic

breaking is a different major hypercubic diagonal, and Γ = 1
2
(γ1 − γ2 + γ3 + γ4)

Each of these 16 possible choices corresponds to a four-dimensional orthant

The generalized action that we have derived is instead valid for all the sixteen

orthants combined (except for the pµ axes)

Also the expression for Γ already covers this general case, and for example if

−π < α2 < 0 then the coefficient of γ2 becomes automatically negative

Not all possible choices of αµ preserve minimal doubling – additional zeros

can appear if some components of αµ become too large

It can however be proven that for a large region of choices of αµ there are

indeed only two flavors NOVEL 2023 – p.94



Regions of minimal doubling

Any zero of the action has to satisfy the trace equations

∑

µ

cos
(
pµ − αµ/2

)

cos
(
αµ/2

) = 4,
sin
(
pµ − αµ/2

)

sin
(
αµ/2

) =
sin
(
pν − αν/2

)

sin
(
αν/2

)

They come out from imposing respectively TrΓD(p) = 0 and

Tr (γµ sinαµ/(1− cosαµ)− γν sinαν/(1− cosαµ))D(p) = 0

With the help of these trace equations one can always check, by direct

inspection, whether or not a given pµ is a zero for a given choice of αµ

Two important properties of the zeros can be inferred from the trace equations:

symmetric under permutations of the coordinates

symmetric under reflections of any of the coordinates axes

Then, each orthant can be studied separately, since the distribution patterns of

the zeros is the same and every orthant, and only changes of signs have to be

taken into account

We can then restrict our considerations to αµ’s which have only positive

components – that is to the first orthant
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On a major hypercubic diagonal

When αµ lies on the positive major diagonal, αµ = (α, α, α, α), the trace

equations for the zeros become much simpler

One can solve them analytically along the entire length of the diagonal

When α < 2π/3 there cannot be additional zeros, and thus minimal doubling

is preserved

When α ≥ 2π/3 additional doublers do appear:

pµ =
(
α/2 + η+, α/2 + η+, α/2 + η+, α/2 + η−

)
, η± = arccos (±2 cosα/2)

For αµ = (2π/3, 2π/3, 2π/3, 2π/3), pµ = (π/3, π/3, π/3,−2π/3) (and its

nontrivial permutations) are the additional zeros

In the general case where αµ is not on a major hypercubic diagonal, it is

difficult to obtain exact solutions to the trace equations, however one can still

obtain a lot of information

(These and the following ones are still tree-level considerations – the actual

surfaces of demarcation between the regions of minimal doubling and those

that contain additional doublers may be slightly different after all interactions

have been taken into account) NOVEL 2023 – p.96



Regions of minimal doubling

In the general case where αµ is outside a major hypercubic diagonal, minimal

doubling can be guaranteed if the components of αµ do not become too large

A uniform bound for all components is given by cos
(
αµ/2

)
≥

3

5
, which

corresponds to αµ ≤ 0.590334π ∼ 106.26o

Then no other zeros can appear in the action beyond the “standard” two

One can also see, by direct inspection of the trace equations, that for the

actions defined by
cos
(
αµ/2

)
=
(
3− 3δ

5− 4δ
,
3− 3δ

5− 4δ
,
3− 3δ

5− 4δ
, 1− δ

)

there are extra zeros given by
cos
(
pµ − αµ/2

)
= (1, 1, 1,−1)

If one takes δ to be very small (it has to be δ > 0), the existence of these zeros

shows that it is not possible to further improve the above uniform bound

If for all components cos
(
αµ/2

)
≤

1

2
, then minimal doubling is lost, that is

extra zeros always appear

This corresponds to αµ ≥ 2π/3
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Counterterms

Standard Boriçi-Creutz fermions: appearance of sums involving only one

Lorentz index,
∑

µ
fµ, which mirrors 2Γ =

∑
µ
γµ

Generalized Boriçi-Creutz fermions: the sums over only one Lorentz index

must be of the form
∑

µ
fµ(1− cosαµ)/ sinαµ, which mirrors the generalized Γ

The fermionic counterterms should look formally like the ones of standard

Boriçi-Creutz fermions ψ Γ
∑

µ

Dµψ,
1

a
ψ(x) Γψ(x)

where the explicit expressions now depend on the actual choice of αµ

The gluonic counterterm also contains information about the special direction:
∑

µνρ

1− cosαµ

sinαµ

1− cosαν

sinαν
TrFµρ(x)Fρν(x)

Many choices of αµ are likely to have a reduced number of counterterms (as it

has occurred in the case of generalized Karsten-Wilczek fermions)

No counterterms at all for some special value of αµ?

This could be helped by the fact that αµ can provide 4 independent parameters
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Summary

New minimally doubled (families of) actions:

generalized Karsten-Wilczek fermions

nearest-neighbors, 2 parameters

next-to-nearest-neighbors, 4 parameters

generalized Boriçi-Creutz fermions, 4 parameters

Generalized Karsten-Wilczek, nearest-neighbors:

For special values of the parameters, counterterms can be eliminated

The counterterm of dimension 3 (the only relevant one) can be always
eliminated – . . . but at lowest order in perturbation theory this does not

happen in the domain of minimal doubling . . .

Are there intersection between the curves of zero?

Wait for nonperturbative studies

Can we find a minimally doubled action with no counterterms?

This work can also be considered as an inspiration to undertake further

searches for new minimally doubled actions which possess a reduced number

of counterterms – and possibly (in the best of cases) none at all
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Chiral fermions on the lattice

Simplest discretization of the Dirac action: naive fermions

∂µψ(x) −→
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

Massless propagator of these naive fermions: a
−i
∑

µ
γµ sin apµ∑

µ
sin2 apµ

This propagator has a pole at ap = (0, 0, 0, 0), as expected

But: sin apµ vanishes whenever any component pµ is either 0 or π/a

So, there are many other poles, at ap = (π, 0, 0, 0), (0, π, 0, 0), . . . , (π, π, 0, 0),

. . . , (π, π, π, π) ( = the corners of the first Brillouin zone)
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Chiral fermions on the lattice

Simplest discretization of the Dirac action: naive fermions

∂µψ(x) −→
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

Massless propagator of these naive fermions: a
−i
∑

µ
γµ sin apµ∑

µ
sin2 apµ

This propagator has a pole at ap = (0, 0, 0, 0), as expected

But: sin apµ vanishes whenever any component pµ is either 0 or π/a

So, there are many other poles, at ap = (π, 0, 0, 0), (0, π, 0, 0), . . . , (π, π, 0, 0),

. . . , (π, π, π, π) ( = the corners of the first Brillouin zone)

Each pole of the propagator corresponds to a massless fermion in the theory

These Dirac particles are pair produced as soon as interactions are switched
on – they appear in internal loops and contribute to intermediate processes

⇒ 24 = 16 particles are propagating on our lattice

Although they are a lattice artifact, one must then take into account

all these 16 fermions in lattice computations NOVEL 2023 – p.101



Chiral fermions on the lattice

Is there a way out of this?
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Is there a way out of this?

Naive fermions:

D(p) =
i

a

∑

µ

γµ sin apµ
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Chiral fermions on the lattice

Is there a way out of this?

Naive fermions:

D(p) =
i

a

∑

µ

γµ sin apµ

Wilson fermions:

D(p) =
i

a

∑

µ

γµ sin apµ +
2r

a

∑

µ

sin2 apµ
2
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Chiral fermions on the lattice

Is there a way out of this?

Naive fermions:

D(p) =
i

a

∑

µ

γµ sin apµ

Wilson fermions:

D(p) =
i

a

∑

µ

γµ sin apµ +
2r

a

∑

µ

sin2 apµ
2

︸ ︷︷ ︸
Wilson term, ∼ O(a)
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Chiral fermions on the lattice

Is there a way out of this?

Naive fermions:

D(p) =
i

a

∑

µ

γµ sin apµ

Wilson fermions:

D(p) =
i

a

∑

µ

γµ sin apµ +
2r

a

∑

µ

sin2 apµ
2

︸ ︷︷ ︸
Wilson term, ∼ O(a)

Wilson term : “lifts” the mass of 15 of the 16 doublers to O(1/a) , and they

disappear from the dynamics

⇒ Wilson fermions contain only one flavor of quarks

However: the Wilson term breaks chiral symmetry (it’s a mass term. . . )

Lattice simulations of massless QCD with Wilson fermions do not preserve

chiral symmetry → tuning of masses . . . (critical mass)
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Chiral fermions on the lattice

Is there a way out of this?

Naive fermions:

D(p) =
i

a

∑

µ

γµ sin apµ

Wilson fermions:

D(p) =
i

a

∑

µ

γµ sin apµ +
2r

a

∑

µ

sin2 apµ
2

︸ ︷︷ ︸
Wilson term, ∼ O(a)

Wilson term : “lifts” the mass of 15 of the 16 doublers to O(1/a) , and they

disappear from the dynamics

⇒ Wilson fermions contain only one flavor of quarks

However: the Wilson term breaks chiral symmetry (it’s a mass term. . . )

Lattice simulations of massless QCD with Wilson fermions do not preserve

chiral symmetry → tuning of masses . . . (critical mass)

Other (simple) solution which preserves chiral symmetry: staggered fermions

. . . but four doublers remain – and one gets a complicated intertwining of

spinor indices and spacetime NOVEL 2023 – p.102



Chiral fermions on the lattice

On the lattice:

it is impossible to eliminate the doublers in any fermion action without at the

same time breaking chiral symmetry or some important property of field theory

This is a special case of a very important no-go theorem, established by

Nielsen and Ninomiya many years ago
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Chiral fermions on the lattice

On the lattice:

it is impossible to eliminate the doublers in any fermion action without at the

same time breaking chiral symmetry or some important property of field theory

This is a special case of a very important no-go theorem, established by

Nielsen and Ninomiya many years ago

No-go theorem: it is impossible to construct a lattice fermion

formulation without fermion doubling and with an explicit continuous

chiral symmetry – unless one gives up some other fundamental
properties, like locality, unitarity, . . .
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Chiral fermions on the lattice

On the lattice:

it is impossible to eliminate the doublers in any fermion action without at the

same time breaking chiral symmetry or some important property of field theory

This is a special case of a very important no-go theorem, established by

Nielsen and Ninomiya many years ago

No-go theorem: it is impossible to construct a lattice fermion

formulation without fermion doubling and with an explicit continuous

chiral symmetry – unless one gives up some other fundamental
properties, like locality, unitarity, . . .

This statement only applies to the “standard” chiral symmetry, which acts on

the spinor fields according to the transformations

ψ → ψ + ǫγ5ψ

ψ → ψ + ǫψγ5

One of the major theoretical advances in this field (1998): there are other

transformation laws that can define a lattice chiral symmetry – and which do

not necessarily imply fermion doubling

⇒ Ginsparg-Wilson fermions NOVEL 2023 – p.103



Chiral fermions on the lattice

NO-GO THEOREM OF Nielsen & Ninomiya (1981)

Any massless Dirac operator D = γµDµ ≡ D(x− y) in a lattice fermionic

action cannot satisfy the following properties at the same time:

D(x) is local (in the sense that is bounded by Ce−γ|x|)

i.e. D couples only fields ψ(x), ψ(y) with (x− y) = O(a)

(avoids interactions over macroscopic distances)

its Fourier transform has the right continuum behavior for small p:

D̃(p) = iγµpµ +O(ap2)

D̃(p) is invertible for any p 6= 0

⇒ avoidance of additional poles

⇒ there are no massless doublers

γ5D +Dγ5 = 0: it is invariant under chiral transformations

(a realization of the chiral symmetry)

This is always true – there are no exceptions NOVEL 2023 – p.104



Chiral fermions on the lattice

These 4 conditions cannot be fulfilled at the same time, by whatever lattice

formulation

Therefore, for any lattice action that one can think of, at least one of these

conditions has to fail

⇒ either fermion doubling, or explicit chiral symmetry breaking, or . . .

All this can be seen already at the level of FREE fermions (Uµ = 1)

Examples:

Naive fermions: 16-fold degeneracy

Wilson fermions: degeneracy completely removed, but they break

chiral symmetry

staggered fermions: 4-fold degeneracy; entanglement of flavor, spin

and spacetime

only a U(1)⊗ U(1) subgroup of the full SU(Nf )⊗ SU(Nf ) chiral group

remains unbroken; the doublers are removed only partially, and taken as

different flavors (tastes)

SLAC fermions: non-local
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Chiral fermions on the lattice

We can intuitively understand why all this happens from general arguments

regarding the free fermion propagator on the lattice, and the

energy-momentum relation in the Brillouin zone

Minimal requirements: periodicity, continuum-like dispersion relation around

p = 0, and (desirable) continuity

The general form of a propagator on the lattice for a massless chiral fermion

( = anticommutes with γ5 ) is 1

i
∑

µ
γµPµ(p)

For naive fermions: Pµ(p) =
1

a
sin apµ

Let us assume at first that Pµ(p) is a continuous function

Looking at a given coordinate µ: there is always a first order zero at pµ = 0,

and because of periodicity and continuity there must be another zero

somewhere else in the first Brillouin zone

This other crossing is a doubler – and must have a derivative of opposite sign,

which means opposite chirality
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Chiral fermions on the lattice

pµ

Pµ(p)

−
π

a

π

a

pµ

Pµ(p)

−
π

a

π

a

pµ

Pµ(p)

−
π

a

π

a

pµ

(2S(p))−1

−
π

a

π

a

•
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Chiral fermions on the lattice

It is unavoidable to have these extra particles in the theory

In four dimensions: 24 = 16 doublers

There is an equal number of left-handed and right-handed fermions (negative

chirality: when an odd number of components has a zero different from pµ = 0)

This argument is independent of the particular shape of the function Pµ(p),
as long as this is continuous

The only possibility to avoid a second crossing: Pµ(p) must be a discontinuous

function

Most famous example of this: the SLAC propagator [Drell, Weinstein and

Yankielowicz, 1976], for which Pµ(p) = pµ throughout the whole Brillouin zone

However, this choice implies a nonlocality in the lattice action – it corresponds

to a nonlocal lattice derivative:

∂µ = infinite series in (∇µ +∇⋆
µ)

n

⇒ many problems: the very existence of the continuum limit is in doubt

(∂µ: continuum derivative; ∇µ, ∇⋆
µ: lattice finite differences) NOVEL 2023 – p.108



Chiral fermions on the lattice

The fermion doubling occurs because the Dirac equation is of first order

For a scalar particle things are different, because it is described by a

second-order equation

⇒ the linear crossings at p = 0 become now second-order zeros

Then, the function Pµ(p) does not need to have another zero , because at the

origin behaves as O(p2), and thus does not need to become negative!

⇒ no further crossings ⇒ no doublers
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Chiral fermions on the lattice

The fermion doubling occurs because the Dirac equation is of first order

For a scalar particle things are different, because it is described by a

second-order equation

⇒ the linear crossings at p = 0 become now second-order zeros

Then, the function Pµ(p) does not need to have another zero , because at the

origin behaves as O(p2), and thus does not need to become negative!

⇒ no further crossings ⇒ no doublers

How do Wilson fermions manage to avoid the necessity of doublers?

The form of the propagator is fundamentally different:

1

i
∑

µ
γµPµ(p) +Q(p)

(
Pµ(p) =

1

a
sin apµ; Q(p) =

2r

a

∑

µ

sin2 apµ
2

)

and at π/a the denominator, instead of being zero, is proportional to r/a

The price is that the additional term (a mass term) breaks chiral symmetry
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Chiral fermions on the lattice

The issues with chiral symmetry are an unpleasant drawback of the lattice

. . . but the appearance of doublers is a necessity , and we can understand why
by looking at the axial anomaly

Some symmetries of the classical action might not survive quantization

In the continuum the process of regularization destroys chiral symmetry

– a mass scale appears in the renormalized theory

After the removal of the cutoff, it may happen that not all the unphysical

degrees of freedom actually decouple

Then, we are left with an imperfect decoupling of the unphysical degrees of

freedom needed to regularize the theory

When this occurs, not all the symmetries of the formal continuum action can be
recovered

⇒ quantum anomalies appear

So, even in theories that are chirally symmetric classically, the axial current

may acquire an anomalous divergence through quantum effects

(Adler, Bell & Jackiw, 1969) NOVEL 2023 – p.110



Chiral fermions on the lattice

The lattice regularization can in general preserve chiral invariance at every

step of the transition from the classical to the quantum theory

Naive lattice fermions: a regularization of Dirac fermions that does not break

chiral symmetry , for any finite value of a

Then there is no chiral anomaly

In this case, extra particles (the doublers) must necessarily appear on the

lattice, with the task of canceling the “continuum” axial anomaly

The number of fermion species must always be even , so that the anomaly

can cancel between pairs of them (like it happens in staggered fermions)

When one tries to remove the doublers from the game, the anomaly has to

come back again – and then chiral symmetry must be violated

This is what happens with Wilson fermions: when one removes the doubler,
the continuum anomaly is not canceled anymore – and the so recovered axial
anomaly corresponds to a regularization which has to break chiral symmetry
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Chiral fermions on the lattice

Contrary to what one would naively expect from the Nielsen-Ninomiya

theorem, it is still possible to construct a Dirac operator which satisfies the first
three conditions and it is also chirally invariant

Solution to this apparent paradox : the corresponding chiral symmetry is not

the one associated with a Dirac operator which anticommutes with γ5

The fourth condition of the theorem is instead replaced by the

Ginsparg-Wilson relation: γ5D +Dγ5 is not zero, but proportional to aDγ5D

Thus, the actual lattice chiral symmetry is not what one would naively expect
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Chiral fermions on the lattice

Contrary to what one would naively expect from the Nielsen-Ninomiya

theorem, it is still possible to construct a Dirac operator which satisfies the first
three conditions and it is also chirally invariant

Solution to this apparent paradox : the corresponding chiral symmetry is not

the one associated with a Dirac operator which anticommutes with γ5

The fourth condition of the theorem is instead replaced by the

Ginsparg-Wilson relation: γ5D +Dγ5 is not zero, but proportional to aDγ5D

Thus, the actual lattice chiral symmetry is not what one would naively expect

Lüscher [1998] has shown that Ginsparg-Wilson fermions are invariant under

an exact global chiral symmetry at any finite lattice spacing, of the form

ψ → ψ + ǫγ5

(
1− aD

)
ψ

ψ → ψ + ǫψγ5

It is a sort of “escape” from the Nielsen-Ninomiya theorem

The Nielsen-Ninomiya theorem is still valid, but – in spite of this – one can still

construct a formulation of chiral fermions with no doublers NOVEL 2023 – p.112



Chiral fermions on the lattice

When the condition that the Dirac operator anticommutes with γ5 is released

(at a 6= 0), the lattice quark propagator is not restricted to be of the form

1

i
∑

µ
γµPµ(p)

Then, the previous considerations about the presence of the doublers that we

derived from it are not valid anymore

Non-trivial solutions of the Ginsparg-Wilson relation (1982 → 1997) were

found:

domain-wall fermions (Kaplan, Shamir & Furman, 1992/93)

overlap fermions (Neuberger & Narayanan, 1992 → Neuberger, 1998)

fixed-point fermions [perfect actions] (Hasenfratz & Niedermayer, 1993)

The divergence of the axial symmetry of Ginsparg-Wilson fermions has now

the well-known anomaly – and one can simulate a single chiral fermion

But these actions are not ultralocal, and extremely costly – Ginsparg-Wilson

fermions are much more complicated and computationally expensive than

Wilson or staggered fermions

. . . and not everything seems to be really ok . . . NOVEL 2023 – p.113



Chiral fermions on the lattice

The group of Lüscher’s lattice chiral symmetry is not the same as the

continuum one

Mandula (2009) : this chiral group has an infinite number of generators –

indeed, there are an infinite number of lattice axial transformations
corresponding to each continuum transformation:

ψ → ψ + ǫγ5

(
1− aD

)
ψ ψ → ψ + ǫγ5

(
1−

a

2
D
)
ψ ψ → ψ + ǫγ5ψ

ψ → ψ + ǫψγ5 ψ → ψ + ǫψ
(
1−

a

2
D
)
γ5 ψ → ψ + ǫψ

(
1− aD

)
γ5

Infinite-parameter symmetry groups are often a sign of disease in a theory

Quite bad: many different axial transformations correspond to the same
conserved Noether current

In the canonical formulation there is a one-to-one correspondence between

them: the generators of symmetry transformations are the space integrals of

the time components of their conserved currents

So, the Euclidean path integral does not automatically correspond to a

canonical quantum field theory – indeed, the antifermions are represented by

variables that are not the conjugates of the fermion variables NOVEL 2023 – p.114



Chiral fermions on the lattice

The fact is that in the path integral fermion and antifermion variables are

independent, and not necessarily conjugate as in the canonical formalism

Usually there is no problem with this – but for Ginsparg-Wilson symmetry

transformations, this prevents the construction of a Hamiltonian theory

The noncanonical elements of this lattice chiral symmetry violate reflection
positivity, produce singularities, and impede continuation to Minkowski space

So, for overlap, domain-wall, and perfect-action chiral fermions it seems to be

possible to only define a path integral in Euclidean space

NOVEL 2023 – p.115



Chiral fermions on the lattice

The fact is that in the path integral fermion and antifermion variables are

independent, and not necessarily conjugate as in the canonical formalism

Usually there is no problem with this – but for Ginsparg-Wilson symmetry

transformations, this prevents the construction of a Hamiltonian theory

The noncanonical elements of this lattice chiral symmetry violate reflection
positivity, produce singularities, and impede continuation to Minkowski space

So, for overlap, domain-wall, and perfect-action chiral fermions it seems to be

possible to only define a path integral in Euclidean space

Lüscher: if the gauge fields are smooth enough (admissibility condition,

|Fµν(x)| < ǫ, 0 < ǫ < π/3), the topological charge can be given a unique

lattice definition, and a unique index theorem follows

Creutz: forcing the gauge fields to be so smooth, and non-analytic, brings a

violation of reflection positivity, and makes the Hamiltonian non-hermitian

. . . but if one does not impose the smoothness condition, there are gauge fields

for which the index of the overlap operator is not uniquely defined . . .

Also: Lüscher was not able to construct a chiral gauge theory for nonabelian
groups NOVEL 2023 – p.115



Minimally doubled fermions

Nielsen-Ninomiya theorem:

using two fermion flavors one can maintain an exact chiral symmetry for

any finite lattice spacing a , together with locality and unitarity

A chiral symmetry of the standard type (not Ginsparg-Wilson) – for a

degenerate doublet of quarks

Minimally doubled fermions can still be kept ultralocal , like Wilson fermions

→ cheap for simulations

no tuning of masses is required – chiral symmetry protects masses from

additive renormalization

One can construct a conserved axial current, which has a simple expression,
involving only nearest-neighbors sites

One of the very few lattice discretizations in which one can give a simple

expression (and ultralocal) for a conserved axial current

A convenient implementation of chiral symmetry at nonzero lattice

spacing NOVEL 2023 – p.116



Minimally doubled fermions

Compared with staggered fermions:

same kind of U(1) chiral symmetry

2 flavors instead of 4

⇒ no uncontrolled extrapolations to 2 physical light flavors

no complicated intertwining of spin and flavor

Ideal for Nf = 2 simulations: no rooting needed !

Much cheaper and simpler than Ginsparg-Wilson fermions

Very convenient for vector-like theories like QCD

Might be practical for simulations of finite temperature QCD , where staggered

fermions are extensively used

Two realizations of minimally doubled fermions:

Boriçi-Creutz fermions

Karsten-Wilczek fermions

The twisted-ordering method by Creutz and Misumi (2010) can also be useful

for constructing other minimally doubled actions NOVEL 2023 – p.117
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