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Lattice fermions

2

naive fermions




16 species
DN = γμDμ

staggered fermions




4 species
Dst = ημDμ

e.g. Wilson fermions




1+4+6+4+1 species
DW = γμDμ + rW

e.g. minimally doubled




2 species
DMD = γμDμ + iζγ4W123

How to cope with doublers?

add flavor 
dependent 
mass term

remove 4-fold 
degeneracy

real

imaginary

e.g. overlap fermions

1+15 species

restore     symmetryχ



Lattice fermions

3

naive fermions




16 species
DN = γμDμ

How to cope with doublers?

add flavor 
dependent 
mass term

remove 4-fold 
degeneracy

real

imaginary

Are these options 
mutually exclusive?



Basics: staggered construction
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naive action: ψ̄DN = γμDμψ

Covariant hop: (Vμ)xy = Uμ(x)δx+ ̂μ,y

Covariant Derivative: Dμ = (Vμ − V†
μ)/2

Covariant second derivative (minus constant): Cμ = (Vμ + V†
μ)/2

staggered action: Dst = χ̄ημDμχ
staggered diagonalization:


 ψ(x) = Γ(x)χ(x)

where  with Γ(x) = ∏
μ

γxμ
μ VμΓ = γμΓVμ

staggered phase factors:


 
ημ = (−1)∑ν<μ xν

ζμ = (−1)∑ν>μ xν

• -hermiticity:   with   

• antihermiticity: 

ϵ Dstϵ = ϵD†
st ϵ = (−1)∑μ xμ

Dst = − D†
st

Vμ

!∏
μ

ημ ≠ ϵ



Basics: staggered taste basis
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spin-taste structure encoded in geometry:        (γS ⊗ ξF)xy =
1

2D/2
tr(Γ†(x)γSΓ(y)γ†

F) +O(a)

•  periodic in elementary hypercubes → restrict  -  distance to hypercube


• local only for , spin-taste mismatch in  direction implies hop in that direction


• use covariant, symmetrized averages to  construct bilinears: 
 
 
 
 
 

•  is diagonal in spinor space, but distinguishes tastes

Γ x y

γS = ξF μ

Aμ1…μ2n

(γ1…D ⊗ ξ1…D) ∼ ϵ
(1 ⊗ ξμ1…μ2n

) ∼ inεμ1…μ2n
ζμ1

…ζμ2n
(Cμ1

…Cμ2n
)sym =: Aμ1…μ2n

where we have defined γμ1…μn
= γμ1

…γμn

(−1)∑μ xμ

Levi-Civita



• even number of hops → commutes with  

• hermiticity: 

ϵ

Aμ1…μ2n
= A†

μ1…μ2n

Taste dependent mass terms
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Adding taste dependent mass term  to the staggered operator:Mμ1…μ2n

(Golterman, Smit ’84)

}→ -hermiticity: ϵ Aμ1…μ2n
ϵ = ϵA†

μ1…μ2n

Aμ1…μ2n
= inεμ1…μ2n

ζμ1
…ζμ2n

(Cμ1
…Cμ2n

)sym

A†
μ1…μ2n

= (−i)nεμ1…μ2n
(Cμ1

…Cμ2n
)symζμ1

…ζμ2n

hermiticity: 
[Cμ, Cν] = 0

Cμζν = {
ζνCμ μ ≤ ν

−ζνCμ μ > ν for  highest (−1)k−1 kth μk

→ total sign flips (−1)∑2n
k=1 (k−1) = (−1)n(2n−1) = (−1)n

Mμ1…μ2n
= Aμ1…μ2n

+ n



Staggered Wilson fermions
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• adding  terms to the staggered operator (partially) lifts taste degeneracy 

• -hermiticity of resulting operator → EVs real or in complex conjugate pairs, real determinant 

• similar to Wilson term for low (staggered) momentum modes (i.e. there are  corrections)

Aμ1…μ2n

ϵ

O(a)

(Adams 2010; C.H. 2010; deForcrand et. al. 2010, 2012; Durr 2012)

Issues:

• Breaks  remnant chiral symmetry of staggered fermions 

• Non-nearest neighbor interaction:  hops inside elementary hypercube for  

• Breaks discrete symmetries

Uϵ(1)

2n Aμ1…μ2n



Discrete symmetries
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(Adams 2010, Sharpe 2012, Misumi et. al. 2012)

shift (translational) symmetry: • single hop symmetry  broken 

• subgroup remains, including hypercubic diagonal and 2-hop shifts

Sμ

axis flip (parity): • simple flip symmetry  broken if mass term includes -direction 

• flip+shift  unbroken

Iμ μ

IμSμ

charge conjugation: • unbroken for maximal mass term  

• replaced by  for  in  (Misumi et. al. 2012)

A1…D

CT = R21R13C A12 + A34 4D



Hypercubic rotational symmetry
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(Sharpe 2012, Misumi et. al. 2012)

•  unbroken for maximal mass term  

• broken to subgroups by other mass terms

Rμν A1…D

e.g.: mass term  in 4D: ,  and  remaining


                                      →  renormalize differently from other  components

A12 + A34 R12 R34 R24R31

F2
12 + F2

34 F2
μν

How big a problem is this in practice?                 We largely don’t know!

gluonic counter terms

• problem will appear when unquenching, with all flavors implemented identically 

• would need further investigation (e.g. degenerate flavors related by  and back to rooting 🙂)Rμν



Free eigenvalue spectrum
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split 


2+2 flavors

Dst + M1234

∼ (1 ⊗ ξ5)




split 


1+2+1 flavors

Dst + M12 + M34

∼ (1 ⊗ (ξ12 + ξ34))

just for fun: 6D





split 


1+3+3+1 flavors

Dst + M12 + M34 + M56

∼ (1 ⊗ (ξ12 + ξ34 + ξ56))

(Adams 2010)



Some 4D single flavor options
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split 


1+3 flavors

Dst + (M1234 + M12 + M34)/2

∼ (1 ⊗ (ξ5 + ξ12 + ξ34)/2)

(Durr 2012)




split 


1+2+1 flavors

Dst + M1234 + M12

∼ (1 ⊗ (ξ5 + ξ34))




split 


1+2+1 flavors

Dst + M12 + M34

∼ (1 ⊗ (ξ12 + ξ34))

              ξ5 = diag(1,1, − 1, − 1) ξ12 = diag(−1,1, − 1,1) ξ34 = diag(1, − 1, − 1,1)



Eigenvalue spectra on dynamical configs
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(deForcrand et. al. 2012)

MA = M1234

Ms = 3εμναβ(Mμν + Mαβ)/4!



Indications for continuum behavior
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(Adams et.al. 2010-14, Zielinski 2016)

Dst + MA



Comparison to Wilson fermions
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(Adams et.al. 2010-14, Zielinski 2016)

Dst + MA DW



Strong coupling
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(Creutz et. al. 2011, Misumi et. al. 2012)

• Aoki phase could be established 

• second order PT at boundary in strong coupling 

• massless pions and PCAC relation 

• continuum limit as for Wilson fermions

Aoki 
phase

A: parity symmetric phase



Additive mass renormalization
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(deForcrand et. al. 2012)

MA
Ms



Additive mass renormalization
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(Adams et.al. 2014, Zielinski 2016)



Computational cost estimates
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(Adams et.al. 2014, Zielinski 2016)

Moderate improvements

But comparison is to 
unimproved Wilson!

Can one improve 
staggered Wilson?



Symanzik improvement
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Clover improvement: similar to Wilson case

needs taste structure (σμν ⊗ 1) = iημην(CμCν)sym

Suggestion: Di = D −
cSW

4 ∑
μ<ν

{Fμν, iημην(CμCν)sym}
(Durr 2012)

Open question: is this unique?



Effects of clover term
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(Durr 2012)

MA MA + M12

Ms (MA + Ms)/2

MA = M1234

Ms = 3εμναβ(Mμν + Mαβ)/4!

• clover improvement works 

• large effect of coupled with smearing 
(just like in Wilson)



Rotational symmetry breaking in EV spectrum
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(Dürr 2012)

MA MA + M12

Ms (MA + Ms)/2

MA = M1234

Ms = 3εμναβ(Mμν + Mαβ)/4!

seems to mostly affect UV modes



Chirally symmetric formulation
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!∏
μ

ημ ≠ ϵ

construction of overlap is straightforward with one key insight: (Adams 2010)

replace  with γ1…D ϵ = (−1)∑μ xμ ∼ (γ1…D ⊗ ξ1…D)

4D: replace  with γ5 ϵ = (−1)∑μ xμ ∼ (γ5 ⊗ ξ5)

chiral operator is nontrivial in taste space!

consistent with intuitive , but remember ϵ = ηD+1 = (−1)∑ν<D+1 xν

4D:    but  ϵ = (−1)x1+x2+x3+x4 η1η2η3η4 = 1 × (−1)x1 × (−1)x1+x2 × (−1)x1+x2+x3 = (−1)x1+x3



Spectral flow
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define hermitian kernel operator  with 


topology is evident in spectral flow (eigenvalues of  as  is varied)

HSW(m) = ϵDSW(m) DSW = Dstag + M + m

HSW(m) m

(deForcrand et. al. 2012; Azcoiti et.al. 2014; CH and Zielinski 2016, Dürr and Weber 2022)

example: Schwinger model

                Q=2

Wilson

staggered Wilson



Staggered overlap
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staggered overlap operator: DSO = 1 + ϵ
HSW(−ρ)

H2
SW(−ρ)

 … negative mass parameter

        determines number of flavors

        just as for standard overlap

ρ

is it local?

DSO = 1 + DSW(−ρ)/ D†
SW(−ρ)DSW(−ρ)



Locality: numerical evidence
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Numerical check:

2-flavor operator

decays exponentially 
in lattice distance

practically 
indistinguishable from 
standard overlap

(deForcrand et. al. 2012)



Locality: proof
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(Chreim et. al. 2022)

(similar to Hernandez et. al. 1999)

• established in 4D for kernel operator mass terms  and  

• dependent on “admissibility condition” for plaquette: 
 

  for  

 for  

• technique: expand  in Legendre polynomials 
 
                  → relates decay radius  to condition number  of : 
 
                   bound on  from bound on plaquette

M1234 M12 + M34

δ <
r2(1 − |1 − ρ | )2

6 + 12r + 9r2 r,ρ→1

1
27

M1234

δ <
r2(1 − |1 − ρ | )2

6 + 4r + 6r2 r,ρ→1

1
16

M12 + M34

(A†A)1/2

ξ C A†A

C

ρ r

DSO = 1 + A/ A†A
A = Dst + r(M − ρ)

ξ−1 =
1

2la
ln

1 + C

1 − C
∝

1
a

hop distance in kernel



Staggered domain wall
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(Adams 2010; CH, Zielinski 2016)

standard domain wall operator: (Kaplan 1992; Shamir 1993; Furman and Shamir 1994)

ψ̄DDWψ =
Ns

∑
s=1

ψ̄s(D+
Wψs−P−ψs+1−P+ψs−1) P± =

1
2

(1 ± γ5) D±
W = DW(−M0) ± 1

boundary conditions with mass term:

P+(ψ0 − mψNs
) = 0 P−(ψNs+1 − mψ1) = 0

Boriçi modification: (Boriçi 1999) P±ψs∓1 → − D−
WP±ψs∓1

optimal DWF: (Chiu 2002) D±
W → D±

W(s) = ωsDW(−M0) ± 1

staggered version: (Adams 2010) γ5 → ϵ = (−1)∑μ xμ ∼ (γ5 ⊗ ξ5)
DW → DSW

constructed as approximation to overlap



Schwinger model study
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normality violation:




GW violation:







residual mass:


ΔN = | | [D, D†] | |

ΔGW = | |γ5D + D ̂γ5 | |
ΔGW = | |ϵD + D ̂ϵ | |

meff = |λmin |



Continuum behavior
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Peek at QCD
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Prospects
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✔ better condition number

✔ smaller vectors

✔ somewhat improved chirality

✘ 4-hop ✘ 2-hop

✔ no additional counterterms ✘ gluonic CT

2 flavor 1 flavor

many open questions: • symmetries

• mixing

• observables

• improvement

can potentially speed up one calculations by

1/2 to 1 order of magnitude

my take:

but

• competition is not plain Wilson

• lots of “tricks”, some of them 

based on genuine physical insight

• all of this will need to work for 

new formulations

• today, two degenerate light 

flavors is not good enough!



Minimally doubled staggered?
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Old suggestion: (van den Doel, Smit ’83)

•  on even and  on odd sites only

• breaks -hermiticity → determinant not real 

(→ Catterall 2021+this workshop)

χ χ̄
ϵ

What about Karsten-Wilczek or Boriçi-Creutz like pole coalescence?

Start with free theory: • staggered momentum eigenstates:  

• eigenvalues:                                                        

Ps(x) = ei(pμ+πsμ)xμ = (−1)sμxμeipμxμ

DstPs = iημ ̂pμ(−1)sμPs
|pμ | < π/2sμ ∈ {0,1}

̂pμ = sin(pμ)
λp± = ± i ̂pμ ̂pμ

 each 8-fold degenerate, with eigenvectors of opposite  chiralityλp± ϵ

In 2D staggered is minimally doubled!


→construction needs to be impossible

    in arbitrary dimensions!



Minimally doubled staggered?
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|pμ | < π/2

λp± = ± i ̂pμ ̂pμ

pole condition:  →  → λp = 0 ̂pμ = 0 pμ = 0

16 poles, 4 tastes

Try to coalesce poles: • modify  so that  has only 8 solutions (4 per -chirality) 

• results in new operator:  →  

• with , where  

̂pμ → ̂p′ μ ̂p′ μ ̂p′ μ = 0 ϵ

Dst = iημ ̂pμ(−1)sμ D = iημ ̂p′ μ(−1)sμ

̂p′ μ = ̂pμ + fμ(p, s) fμ(p, s) • is smooth in full Brillouin zone 

• is real 

• commutes with ϵ

locality

antihermiticity


-hermiticityϵ

→ obvious candidate: taste dependent mass term



Candidate operator
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D = iημ ̂p′ μ(−1)sμ ̂p′ μ = ̂pμ + fμ(p, s)

• on momentum modes:   with  

• simplest guess:   and  

• would give:    →         
 
    solutions for :          
                                                                for  only even  ✔  

• full operator:  
 

• candidate: 

CμPs = ̂cs
μPs ̂cs

μ = (−1)sμcos(pμ)

fi = 0 f4 = ζ(1 − ̂c1 ̂c2)

̂p′ μ ̂p′ μ = 0 ̂pi = 0 ̂p4 + ζ(1 − ̂c1 ̂c2) = 0

|pμ | < π/2 pi = 0 sin(ap4) = ζ((−1)s1+s2 − 1)
ζ > 1 s1 + s2

D = Dst + iη4ζ(1 − (C1C2)sym)(−1)s4

D = Dst + iη4ζ(1 − (C1C2)sym)C4

Ps(x) = (−1)sμxμeipμxμ

discontinuous! try ̂cs
4 = (−1)s4cos(p4)

note:  → ̂pi = 0 ̂ci = (−1)si



Candidate operator
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• candidate:  

• free case:  
 
→ pole conditions:      
 
     →solutions for :          
 
                                                                16 solutions for arbitrary  ! 
 
       note: actual  of doubler poles need not be realized exactly on the lattice

D = Dst + iη4ζ(1 − (C1C2)sym)C4

D = iημ ̂pμ(−1)sμ + iη4ζ(1 − ̂c1 ̂c2) ̂c4

̂pi = 0 ̂p4+ζ(1 − ̂c1 ̂c2) ̂c4 = 0

|pμ | < π/2 pi = 0 ̂p4/ ̂c4 = tan(ap4) = ζ((−1)s1+s2 − 1)

ζ

p4

note:  → ̂pi = 0 ̂ci = (−1)si


