Staggered fermions with tasty mass terms

Christian Hoelbling
(Wuppertal U.)
Workshop on novel lattice fermions ...
MITP, March 7

Hans Böckler
Stiftung

Lattice fermions

How to cope with doublers?
naive fermions $D_{\mathrm{N}}=\gamma_{\mu} D_{\mu}$ 16 species

imaginary
$\sqrt[2]{ }$ staggered fermions
$D_{\text {st }}=\eta_{\mu} D_{\mu}$
4 species
.

e.g. Wilson fermions $D_{\mathrm{W}}=\gamma_{\mu} D_{\mu}+r W$ $1+4+6+4+1$ species restore $\chi \downarrow$ symmetry
e.g. overlap fermions $1+15$ species
e.g. minimally doubled

$$
\begin{aligned}
D_{\mathrm{MD}}= & \gamma_{\mu} D_{\mu}+i \zeta \gamma_{4} W_{123} \\
& 2 \text { species }
\end{aligned}
$$

Lattice fermions

How to cope with doublers?

Are these options mutually exclusive?

Basics: staggered construction

Covariant hop: $\left(V_{\mu}\right)_{x y}=U_{\mu}(x) \delta_{x+\hat{\mu}, y}$
Covariant Derivative: $D_{\mu}=\left(V_{\mu}-V_{\mu}^{\dagger}\right) / 2$
Covariant second derivative (minus constant): $C_{\mu}=\left(V_{\mu}+V_{\mu}^{\dagger}\right) / 2$
naive action: $\bar{\psi} D_{\mathrm{N}}=\gamma_{\mu} D_{\mu} \psi \quad \xrightarrow{\text { staggered diagonalization: }}$ staggered action: $D_{\text {st }}=\bar{\chi} \eta_{\mu} D_{\mu} \chi$

$$
\begin{array}{cr}
\psi(x)=\Gamma(x) \chi(x) & \text { staggered phase factors: } \\
\text { where } \Gamma(x)=\prod_{\mu} \gamma_{\mu}^{x_{\mu}} \text { with } V_{\mu} \Gamma=\gamma_{\mu} \Gamma V_{\mu} & \eta_{\mu}=(-1)^{\sum_{\nu<\mu} x_{\nu}} \\
\zeta_{\mu}=(-1)^{\sum_{\nu>\mu} x_{\nu}}
\end{array}
$$

- ϵ-hermiticity: $D_{s t} \epsilon=\epsilon D_{s t}^{\dagger}$ with $\epsilon=(-1)^{\Sigma_{\mu} x_{\mu}}$

$$
\prod \eta_{\mu} \neq \epsilon!
$$

- antihermiticity: $D_{s t}=-D_{s t}^{\dagger}$

Basics: staggered taste basis

spin-taste structure encoded in geometry: $\left(\gamma_{S} \otimes \xi_{F}\right)_{x y}=\frac{1}{2^{D / 2}} \operatorname{tr}\left(\Gamma^{\dagger}(x) \gamma_{S} \Gamma(y) \gamma_{F}^{\dagger}\right) \quad+O(a)$

- Γ periodic in elementary hypercubes \rightarrow restrict $x-y$ distance to hypercube
- local only for $\gamma_{S}=\xi_{F}$, spin-taste mismatch in μ direction implies hop in that direction
- use covariant, symmetrized averages to construct bilinears: $(-1)^{\Sigma_{\mu} x_{\mu}}$

$$
\begin{aligned}
\left(\gamma_{1 \ldots D} \otimes \xi_{1 \ldots D}\right) & \sim \epsilon \\
\left(1 \otimes \xi_{\mu_{1} \ldots \mu_{2 n}}\right) & \sim i^{n} \varepsilon_{\mu_{1} \ldots \mu_{2 n}} \zeta_{\mu_{1}} \cdots \zeta_{\mu_{2 n}}\left(C_{\mu_{1}} \ldots C_{\mu_{2 n}}\right)_{\text {sym }}=: A_{\mu_{1} \ldots \mu_{2 n}}
\end{aligned}
$$

$$
\text { where we have defined } \gamma_{\mu_{1} \ldots \mu_{n}}=\gamma_{\mu_{1}} \ldots \gamma_{\mu_{n}}
$$

- $A_{\mu_{1} \ldots \mu_{2 n}}$ is diagonal in spinor space, but distinguishes tastes

Taste dependent mass terms

(Golterman, Smit '84)

Adding taste dependent mass term $M_{\mu_{1} \ldots \mu_{2 n}}$ to the staggered operator:

$$
M_{\mu_{1} \ldots \mu_{2 n}}=A_{\mu_{1} \ldots \mu_{2 n}}+n
$$

- even number of hops \rightarrow commutes with ϵ
- hermiticity: $A_{\mu_{1} \ldots \mu_{2 n}}=A_{\mu_{1} \ldots \mu_{2 n}}^{\dagger}$ $\} \epsilon$-hermiticity: $A_{\mu_{1} \ldots \mu_{2 n}} \epsilon=\epsilon A_{\mu_{1} \ldots \mu_{2 n}}^{\dagger}$ hermiticity: $\quad A_{\mu_{1} \ldots \mu_{2 n}}=i^{n} \varepsilon_{\mu_{1} \ldots \mu_{2 n}} \zeta_{\mu_{1}} \cdots \zeta_{\mu_{2 n}}\left(C_{\mu_{1}} \ldots C_{\mu_{2 n}}\right)_{\text {sym }}$

$$
\left[C_{\mu}, C_{\nu}\right]=0
$$

$$
A_{\mu_{1} \ldots \mu_{2 n}}^{\dagger}=(-i)^{n} \varepsilon_{\mu_{1} \ldots \mu_{2 n}} \underbrace{\text { nin }}_{\left.(-1)^{k-1} \text { for } k^{\text {th }} \text { highest } \mu_{k} \ldots C_{\mu_{2 n}}\right)_{\text {sym }} \zeta_{\mu_{1}} \cdots \zeta_{\mu_{2 n}}}
$$

\rightarrow total sign flips $(-1)^{\sum_{k=1}^{2 n}(k-1)}=(-1)^{n(2 n-1)}=(-1)^{n}$

$$
C_{\mu} \zeta_{\nu}=\left\{\begin{aligned}
\zeta_{\nu} C_{\mu} & \mu \leq \nu \\
-\zeta_{\nu} C_{\mu} & \mu>\nu
\end{aligned}\right.
$$

Staggered Wilson fermions

(Adams 2010; C.H. 2010; deForcrand et. al. 2010, 2012; Durr 2012)

- adding $A_{\mu_{1} \ldots \mu_{2 n}}$ terms to the staggered operator (partially) lifts taste degeneracy
- ϵ-hermiticity of resulting operator \rightarrow EVs real or in complex conjugate pairs, real determinant
- similar to Wilson term for low (staggered) momentum modes (i.e. there are $O(a)$ corrections)

Issues:

- Breaks $U_{\epsilon}(1)$ remnant chiral symmetry of staggered fermions
- Non-nearest neighbor interaction: $2 n$ hops inside elementary hypercube for $A_{\mu_{1} \ldots \mu_{2 n}}$
- Breaks discrete symmetries

Discrete symmetries

(Adams 2010, Sharpe 2012, Misumi et. al. 2012)
shift (translational) symmetry: • single hop symmetry S_{μ} broken

- subgroup remains, including hypercubic diagonal and 2-hop shifts
axis flip (parity): • simple flip symmetry I_{μ} broken if mass term includes μ-direction
- flip+shift $I_{\mu} S_{\mu}$ unbroken
charge conjugation: • unbroken for maximal mass term $A_{1 \ldots D}$
- replaced by $C_{T}=R_{21} R_{13} C$ for $A_{12}+A_{34}$ in $4 D$ (Misumi et. al. 2012)

Hypercubic rotational symmetry

(Sharpe 2012, Misumi et. al. 2012)

- $R_{\mu \nu}$ unbroken for maximal mass term $A_{1 \ldots D}$
- broken to subgroups by other mass terms
e.g.: mass term $A_{12}+A_{34}$ in 4D: R_{12}, R_{34} and $R_{24} R_{31}$ remaining
$\rightarrow F_{12}^{2}+F_{34}^{2}$ renormalize differently from other $F_{\mu \nu}^{2}$ components gluonic counter terms

```
How big a problem is this in practice?
```

We largely don't know!

- problem will appear when unquenching, with all flavors implemented identically
- would need further investigation (e.g. degenerate flavors related by $R_{\mu \nu}$ and back to rooting :)

Free eigenvalue spectrum

$$
D_{\mathrm{st}}+M_{1234}
$$

split $\sim\left(1 \otimes \xi_{5}\right)$
2+2 flavors
(Adams 2010)

$$
D_{\mathrm{st}}+M_{12}+M_{34}
$$

split $\sim\left(1 \otimes\left(\xi_{12}+\xi_{34}\right)\right)$
$1+2+1$ flavors

just for fun: 6D

$$
D_{\mathrm{st}}+M_{12}+M_{34}+M_{56}
$$

split $\sim\left(1 \otimes\left(\xi_{12}+\xi_{34}+\xi_{56}\right)\right)$
$1+3+3+1$ flavors

Some 4D single flavor options

$$
D_{\mathrm{st}}+M_{12}+M_{34}
$$

$$
D_{\mathrm{st}}+\left(M_{1234}+M_{12}+M_{34}\right) / 2
$$

$$
D_{\mathrm{st}}+M_{1234}+M_{12}
$$

$$
\text { split } \sim\left(1 \otimes\left(\xi_{12}+\xi_{34}\right)\right) \quad \text { split } \sim\left(1 \otimes\left(\xi_{5}+\xi_{12}+\xi_{34}\right) / 2\right)
$$

split $\sim\left(1 \otimes\left(\xi_{5}+\xi_{34}\right)\right)$
1+3 flavors
(Dur 2012)
1+2+1 flavors

$$
\xi_{5}=\operatorname{diag}(1,1,-1,-1) \quad \xi_{12}=\operatorname{diag}(-1,1,-1,1) \quad \xi_{34}=\operatorname{diag}(1,-1,-1,1)
$$

Eigenvalue spectra on dynamical configs

Indications for continuum behavior

(Adams et.al. 2010-14, Zielinski 2016)
$D_{\text {st }}+M_{A}$

[^0]

(b) 10^{4} lattice at $\beta=6$
(c) $12^{3} \times 16$ lattice at $\beta=6$

Comparison to Wilson fermions

(Adams et.al. 2010-14, Zielinski 2016)

Strong coupling

- Aoki phase could be established
- second order PT at boundary in strong coupling
- massless pions and PCAC relation
- continuum limit as for Wilson fermions

A: parity symmetric phase

Additive mass renormalization

(deForcrand et. al. 2012)

Additive mass renormalization

(Adams et.al. 2014, Zielinski 2016)
Pion mass m_{π} at $\beta=6.14,20^{3} \times 40$ lattice

Computational cost estimates

(Adams et.al. 2014, Zielinski 2016)

Moderate improvements

But comparison is to unimproved Wilson!

Can one improve staggered Wilson?

Cond. num. vs. CG iterations (averaged ratios, wall sources)

Symanzik improvement

Clover improvement: similar to Wilson case

$$
\text { needs taste structure }\left(\sigma_{\mu \nu} \otimes 1\right)=i \eta_{\mu} \eta_{\nu}\left(C_{\mu} C_{\nu}\right)_{\text {sym }}
$$

$\underset{\text { (Durr 2012) }}{\text { Suggestion: }} D_{i}=D-\frac{c_{\mathrm{SW}}}{4} \sum_{\mu<\nu}\left\{F_{\mu \nu}, i \eta_{\mu} \eta_{\nu}\left(C_{\mu} C_{\nu}\right)_{\text {sym }}\right\}$

Open question: is this unique?

Effects of clover term

- clover improvement works
- large effect of coupled with smearing (just like in Wilson)

4D: $N C=3, \beta=5.8, L=6, T=6,|q|=1, c _S W=1$

4D: $N C=3, \beta=5.8, L=6, T=6,|q|=1, c _S W=1$

4D: $N C=3, \beta=5.8, L=6, T=6,|q|=1, c _S W=1$

Rotational symmetry breaking in EV spectrum

seems to mostly affect UV modes

$$
\begin{aligned}
& M_{A}=M_{1234} \\
& M_{s}=\sqrt{3} \varepsilon_{\mu \nu \alpha \beta}\left(M_{\mu \nu}+M_{\alpha \beta}\right) / 4!
\end{aligned}
$$

Chirally symmetric formulation

construction of overlap is straightforward with one key insight: (Adams 2010)

$$
\begin{aligned}
& \text { replace } \gamma_{1 \ldots D} \text { with } \epsilon=(-1)^{\Sigma_{\mu} x_{\mu}} \sim\left(\gamma_{1 \ldots D} \otimes \xi_{1 \ldots D}\right) \\
& \text { 4D: replace } \gamma_{5} \text { with } \epsilon=(-1)^{\sum_{\mu} x_{\mu}} \sim\left(\gamma_{5} \otimes \xi_{5}\right)
\end{aligned}
$$

chiral operator is nontrivial in taste space!
consistent with intuitive $\epsilon=\eta_{D+1}=(-1)^{\Sigma_{\nu<D+1} x_{\nu}}$, but remember $\prod \eta_{\mu} \neq \epsilon$!
4D: $\epsilon=(-1)^{x_{1}+x_{2}+x_{3}+x_{4}}$ but $\eta_{1} \eta_{2} \eta_{3} \eta_{4}=1 \times(-1)^{x_{1}} \times(-1)^{x_{1}+x_{2}} \times(-1)^{\mu}{ }^{x_{1}+x_{2}+x_{3}}=(-1)^{x_{1}+x_{3}}$

Spectral flow

define hermitian kernel operator $H_{\mathrm{SW}}(m)=\epsilon D_{\mathrm{SW}}(m)$ with $D_{\mathrm{SW}}=D_{\text {stag }}+M+m$
topology is evident in spectral flow (eigenvalues of $H_{\mathrm{SW}}(m)$ as m is varied)

(b) Smeared configuration

(c) Topological configuration

Staggered overlap

staggered overlap operator: $D_{\mathrm{SO}}=1+\epsilon \frac{H_{\mathrm{SW}}(-\rho)}{\sqrt{H_{\mathrm{SW}}^{2}(-\rho)}}$
$\rho \ldots$ negative mass parameter determines number of flavors just as for standard overlap

$$
D_{\mathrm{SO}}=1+D_{\mathrm{SW}}(-\rho) / \sqrt{D_{\mathrm{SW}}^{\dagger}(-\rho) D_{\mathrm{SW}}(-\rho)}
$$

is it local?

Locality: numerical evidence

(deForcrand et. al. 2012)
Numerical check:
2-flavor operator decays exponentially in lattice distance
practically
indistinguishable from standard overlap

Locality: proof

(Chreim et. al. 2022)

- established in 4D for kernel operator mass terms M_{1234} and $M_{12}+M_{34}$
- dependent on "admissibility condition" for plaquette:

$$
\begin{aligned}
& \delta<\frac{r^{2}(1-|1-\rho|)^{2}}{6+12 r+9 r^{2}} \underset{r, \rho \rightarrow 1}{\longrightarrow} \frac{1}{27} \text { for } M_{1234} \\
& \delta<\frac{r^{2}(1-|1-\rho|)^{2}}{6+4 r+6 r^{2}} \underset{r, \rho \rightarrow 1}{\longrightarrow} \frac{1}{16} \text { for } M_{12}+M_{34}
\end{aligned}
$$

$$
\begin{aligned}
D_{\mathrm{SO}} & =1+A / \sqrt{A^{\dagger} A} \\
A & =D_{\mathrm{st}}+r(M-\rho)
\end{aligned}
$$

- technique: expand $\left(A^{\dagger} A\right)^{1 / 2}$ in Legendre polynomials (similar to Herrandez et. al. 1999)
\rightarrow relates decay radius ξ to condition number C of $A^{\dagger} A: \quad \xi^{-1}=\frac{1}{2 l a} \ln \frac{1+\sqrt{\mathrm{C}}}{1-\sqrt{\mathrm{C}}} \propto \frac{1}{a}$ bound on C from bound on plaquette

Staggered domain wall

(Adams 2010; CH, Zielinski 2016)
standard domain wall operator: (Kaplan 1992; Shamir 1993; Furman and Shamir 1994)

$$
\bar{\psi} D_{\mathrm{DW}} \psi=\sum_{s=1}^{N_{s}} \bar{\psi}_{s}\left(D_{W}^{+} \psi_{s}-P_{-} \psi_{s+1}-P_{+} \psi_{s-1}\right) \quad P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \quad D_{W}^{ \pm}=D_{W}\left(-M_{0}\right) \pm 1
$$

boundary conditions with mass term:

$$
P_{+}\left(\psi_{0}-m \psi_{N_{s}}\right)=0 \quad P_{-}\left(\psi_{N_{s}+1}-m \psi_{1}\right)=0
$$

Boriçi modification: (Borici 1999) $\quad P_{ \pm} \psi_{s \mp 1} \rightarrow-D_{W}^{-} P_{ \pm} \psi_{s \mp 1}$
optimal DWF: (chiu 2002)

$$
D_{W}^{ \pm} \rightarrow D_{W}^{ \pm}(s)=\omega_{s} D_{W}\left(-M_{0}\right) \pm 1
$$

constructed as approximation to overlap
staggered version: (Adams 2010)

$$
\gamma_{5} \rightarrow \epsilon=(-1)^{\sum_{\mu} x_{\mu}} \sim\left(\gamma_{5} \otimes \xi_{5}\right)
$$

$$
D_{W} \rightarrow D_{S W}
$$

Schwinger model study

Continuum behavior

Peek at QCD

$6^{4} \times 8, \beta=6$, APE smeared $\mathrm{SU}(3)$ plaquette action

Boriçi Wilson

Boriçi staggered

Prospects

2 flavor

\checkmark smaller vectors
\checkmark better condition number
\checkmark somewhat improved chirality
x gluonic CT
x 4-hop
x 2-hop
many open questions:

- symmetries
- mixing
- observables
- improvement
my take:
can potentially speed up one calculations by $1 / 2$ to 1 order of magnitude

but

- competition is not plain Wilson
- lots of "tricks", some of them based on genuine physical insight
- all of this will need to work for new formulations
- today, two degenerate light flavors is not good enough!

Minimally doubled staggered?

Old suggestion: (van den Doel, Smit '83)

- χ on even and $\bar{\chi}$ on odd sites only
- breaks ϵ-hermiticity \rightarrow determinant not real

In 2D staggered is minimally doubled!
\rightarrow construction needs to be impossible in arbitrary dimensions!
(\rightarrow Catterall 2021+this workshop)

What about Karsten-Wilczek or Boriçi-Creutz like pole coalescence?
Start with free theory: • staggered momentum eigenstates: $P_{s}(x)=e^{i\left(p_{\mu}+\pi s_{\mu}\right) x_{\mu}}=(-1)^{s_{\mu} x_{\mu}} e^{i p_{\mu} x_{\mu}}$

- eigenvalues: $D_{\text {st }} P_{s}=i \eta_{\mu} \hat{p}_{\mu}(-1)^{s}{ }_{\mu} P_{s}$

$$
s_{\mu} \in\{0,1\} \quad\left|p_{\mu}\right|<\pi / 2
$$

$$
\stackrel{\stackrel{\downarrow}{\downarrow}}{\lambda_{p \pm}= \pm i \sqrt{\hat{p}_{\mu} \hat{p}_{\mu}}}
$$

$$
\hat{p}_{\mu}=\sin \left(p_{\mu}\right)
$$

$\lambda_{p \pm}$ each 8-fold degenerate, with eigenvectors of opposite ϵ chirality

Minimally doubled staggered?

pole condition: $\lambda_{p}=0 \rightarrow \hat{p}_{\mu}=0 \rightarrow p_{\mu}=0$

$$
\left|p_{\mu}\right|<\pi / 2
$$

16 poles, 4 tastes

$$
\lambda_{p \pm}= \pm i \sqrt{\hat{p}_{\mu} \hat{p}_{\mu}}
$$

Try to coalesce poles: • modify $\hat{p}_{\mu} \rightarrow \hat{p}_{\mu}^{\prime}$ so that $\hat{p}_{\mu}^{\prime} \hat{p}_{\mu}^{\prime}=0$ has only 8 solutions (4 per ϵ-chirality)

- results in new operator: $D_{\text {st }}=i \eta_{\mu} \hat{p}_{\mu}(-1)^{s_{\mu}} \rightarrow D=i \eta_{\mu} \hat{p}_{\mu}^{\prime}(-1)^{s_{\mu}}$
- with $\hat{p}_{\mu}^{\prime}=\hat{p}_{\mu}+f_{\mu}(p, s)$, where $f_{\mu}(p, s)$ - is smooth in full Brillouin zone locality antihermiticity
ϵ-hermiticity \rightarrow • commutes with ϵ
\rightarrow obvious candidate: taste dependent mass term

Candidate operator

$$
D=i \eta_{\mu} \hat{p}_{\mu}^{\prime}(-1)^{s_{\mu}} \quad \hat{p}_{\mu}^{\prime}=\hat{p}_{\mu}+f_{\mu}(p, s)
$$

- on momentum modes: $C_{\mu} P_{s}=\hat{c}_{\mu}^{s} P_{s}$ with $\hat{c}_{\mu}^{s}=(-1)^{s_{\mu}} \cos \left(p_{\mu}\right)$

$$
P_{s}(x)=(-1)^{s_{\mu} x_{\mu} x_{\mu} i_{\mu} x_{\mu}}
$$

- simplest guess: $f_{i}=0$ and $f_{4}=\zeta\left(1-\hat{c}_{1} \hat{c}_{2}\right)$
- would give: $\hat{p}_{\mu}^{\prime} \hat{p}_{\mu}^{\prime}=0 \rightarrow \hat{p}_{i}=0 \quad \hat{p}_{4}+\zeta\left(1-\hat{c}_{1} \hat{c}_{2}\right)=0$
note: $\hat{p}_{i}=0 \rightarrow \hat{c}_{i}=(-1)^{s_{i}}$

$$
\begin{array}{ll}
\text { solutions for }\left|p_{\mu}\right|<\pi / 2: \quad p_{i}=0 & \sin \left(a p_{4}\right)=\zeta\left((-1)^{s_{1}+s_{2}}-1\right) \\
& \text { for } \zeta>1 \text { only even } s_{1}+s_{2}
\end{array}
$$

- full operator: $D=D_{\text {st }}+i \eta_{4} \zeta\left(1-\left(C_{1} C_{2}\right)_{\text {sym }}\right)(-1)^{S_{4}}$

$$
\text { discontinuous! try } \hat{c}_{4}^{s}=(-1)^{s_{4}} \cos \left(p_{4}\right)
$$

- candidate: $D=D_{\text {st }}+i \eta_{4} \zeta\left(1-\left(C_{1} C_{2}\right)_{\text {sym }}\right) C_{4}$

Candidate operator

- candidate: $D=D_{\text {st }}+i \eta_{4} \zeta\left(1-\left(C_{1} C_{2}\right)_{\text {sym }}\right) C_{4}$
- free case: $D=i \eta_{\mu} \hat{p}_{\mu}(-1)^{s_{\mu}}+i \eta_{4} \zeta\left(1-\hat{c}_{1} \hat{c}_{2}\right) \hat{c}_{4}$
\rightarrow pole conditions: $\hat{p}_{i}=0 \quad \hat{p}_{4}+\zeta\left(1-\hat{c}_{1} \hat{c}_{2}\right) \hat{c}_{4}=0$
note: $\hat{p}_{i}=0 \rightarrow \hat{c}_{i}=(-1)^{s_{i}}$
\rightarrow solutions for $\left|p_{\mu}\right|<\pi / 2: \quad p_{i}=0 \quad \hat{p}_{4} / \hat{c}_{4}=\tan \left(a p_{4}\right)=\zeta\left((-1)^{s_{1}+s_{2}}-1\right)$
16 solutions for arbitrary ζ !
note: actual p_{4} of doubler poles need not be realized exactly on the lattice

[^0]: (a) 8^{4} lattice at $\beta=6$

