Staggered fermions with tasty mass terms

Christian Hoelbling (Wuppertal U.)

Workshop on novel lattice fermions ... MITP, March 7

BERGISCHE UNIVERSITÄT WUPPERTAL

Lattice fermions

Re(λ)

e.g. Wilson fermions $D_{\rm W} = \gamma_{\mu} D_{\mu} + r W$ 1+4+6+4+1 species restore χ symmetry e.g. overlap fermions 1+15 species

e.g. minimally doubled $D_{\rm MD} = \gamma_{\mu} D_{\mu} + i\zeta \gamma_4 W_{123}$

Lattice fermions

Re(λ)

Are these options mutually exclusive?

Basics: staggered construction

Covariant hop: $(V_{\mu})_{xy} = U_{\mu}(x)\delta_{x+\hat{\mu},y}$ Covariant Derivative: $D_{\mu} = (V_{\mu} - V_{\mu}^{\dagger})/2$ Covariant second derivative (minus constant) naive action: $\bar{\psi}D_{N} = \gamma_{\mu}D_{\mu}\psi$ $\psi(x) = \Gamma(x)\gamma(x)$ where $\Gamma(x) = \gamma_{\mu}^{x_{\mu}}$ with $V_{\mu}\Gamma = \gamma_{\mu}\Gamma V_{\mu}$ • ϵ -hermiticity: $D_{st}\epsilon = \epsilon D_{st}^{\dagger}$ with

• antihermiticity: $D_{st} = -D_{st}^{\dagger}$

$$: C_{\mu} = (V_{\mu} + V_{\mu}^{\dagger})/2$$

staggered diagonalization:

staggered action: $D_{st} = \bar{\chi} \eta_{\mu} D_{\mu} \chi$ staggered phase factors: $\eta_{\mu} = (-1)^{\sum_{\nu < \mu} x_{\nu}}$ $\zeta_{\mu} = (-1)^{\sum_{\nu > \mu} x_{\nu}}$

$$\epsilon = (-1)^{\sum_{\mu} x_{\mu}} \prod_{\mu} \eta_{\mu} \neq \epsilon!$$

spin-taste structure encoded in geometry: (γ_S

- Γ periodic in elementary hypercubes \rightarrow restrict x y distance to hypercube
- local only for $\gamma_S = \xi_F$, spin-taste mismatch in μ direction implies hop in that direction
- use covariant, symmetrized averages to construct bilinears:

 - where we have defined $\gamma_{\mu_1...\mu_n} = \gamma_{\mu_1}...\gamma_{\mu_n}$

• $A_{\mu_1...\mu_{2n}}$ is diagonal in spinor space, but distinguishes tastes

Basics: staggered taste basis

$$\bigotimes \xi_F_{xy} = \frac{1}{2^{D/2}} \operatorname{tr}(\Gamma^{\dagger}(x)\gamma_S \Gamma(y)\gamma_F^{\dagger}) + O(a)$$

Taste dependent mass terms

(Golterman, Smit '84)

Adding taste dependent mass term $M_{\mu_1...\mu_{2n}}$ to the staggered operator: $M_{\mu_1...\mu_{2n}} = A_{\mu_1...\mu_{2n}} + n$

• even number of hops \rightarrow commutes with $\epsilon \$

• hermiticity:
$$A_{\mu_1...\mu_{2n}} = A_{\mu_1...\mu_{2n}}^{\dagger}$$

hermiticity: $A_{\mu_1...\mu_{2n}} = i^n \varepsilon_{\mu_1...\mu_{2n}} \zeta_{\mu_1}...\zeta_{\mu_{2n}} (C_{\mu_1}...C_{\mu_{2n}})$ $A_{\mu_1...\mu_{2n}}^{\dagger} = (-i)^n \varepsilon_{\mu_1...\mu_{2n}} (C_{\mu_1}...C_{\mu_{2n}})$ syntem $(-1)^{k-1}$ for k^{th} is the set Σ^{2n} (k = 1).

 \rightarrow total sign flips $(-1)^{\sum_{k=1}^{2n} (k-1)} = (-1)^{k-1}$

Staggered Wilson fermions

(Adams 2010; C.H. 2010; deForcrand et. al. 2010, 2012; Durr 2012)

- adding $A_{\mu_1...\mu_{2n}}$ terms to the staggered operator (partially) lifts taste degeneracy
- ϵ -hermiticity of resulting operator \rightarrow EVs real or in complex conjugate pairs, real determinant
- similar to Wilson term for low (staggered) momentum modes (i.e. there are O(a) corrections)
 - **Issues**:
 - Breaks $U_{c}(1)$ remnant chiral symmetry of staggered fermions
 - Non-nearest neighbor interaction: 2n hops inside elementary hypercube for $A_{\mu_1...\mu_{2n}}$
 - Breaks discrete symmetries

Discrete symmetries

(Adams 2010, Sharpe 2012, Misumi et. al. 2012)

- shift (translational) symmetry: single hop symmetry S_{μ} broken
 - subgroup remains, including hypercubic diagonal and 2-hop shifts
- axis flip (parity): simple flip symmetry I_{μ} broken if mass term includes μ -direction
 - flip+shift $I_{\mu}S_{\mu}$ unbroken

- charge conjugation: unbroken for maximal mass term $A_{1...D}$
 - replaced by $C_T = R_{21}R_{13}C$ for $A_{12} + A_{34}$ in 4D (Misumi et. al. 2012)

Hypercubic rotational symmetry

(Sharpe 2012, Misumi et. al. 2012)

- $R_{\mu\nu}$ unbroken for maximal mass term $A_{1...D}$
- broken to subgroups by other mass terms e.g.: mass term $A_{12} + A_{34}$ in 4D: R_{12} , R_{34} and $R_{24}R_{31}$ remaining
 - $\rightarrow F_{12}^2 + F_{34}^2$ renormalize differently from other $F_{\mu\nu}^2$ components gluonic counter terms

How big a problem is this in practice?

- problem will appear when unquenching, with all flavors implemented identically

We largely don't know!

• would need further investigation (e.g. degenerate flavors related by $R_{\mu\nu}$ and back to rooting (=)

Eigenvalue spectra on dynamical configs

Indications for continuum behavior

Comparison to Wilson fermions

(Creutz et. al. 2011, Misumi et. al. 2012)

- Aoki phase could be established
- second order PT at boundary in strong coupling
- massless pions and PCAC relation
- continuum limit as for Wilson fermions

Strong coupling

A: parity symmetric phase

Additive mass renormalization

(deForcrand et. al. 2012)

Additive mass renormalization

(Adams et.al. 2014, Zielinski 2016)

Moderate improvements

But comparison is to unimproved Wilson!

Can one improve staggered Wilson?

Symanzik improvement

Clover improvement: similar to Wilson case

Suggestion: $D_i = D - \frac{c_{SW}}{4} \sum_{\mu < \nu} \left\{ F_{\mu\nu}, i\eta_{\mu}\eta_{\nu}(C_{\mu}C_{\nu})_{sym} \right\}$

Open question: is this unique?

needs taste structure ($\sigma_{\mu\nu} \otimes 1$) = $i\eta_{\mu}\eta_{\nu}(C_{\mu}C_{\nu})_{sym}$

Effects of clover term

-2<u>`</u>0

(Durr 2012) 1.5 clover improvement works 0.5 large effect of coupled with smearing (just like in Wilson) -0.5 -1 -1.5 1.5 0.5 -0.5 $M_{A} = M_{1234}$ _1 $M_s = \sqrt{3}\varepsilon_{\mu\nu\alpha\beta}(M_{\mu\nu} + M_{\alpha\beta})/4!$ -1.5

Rotational symmetry breaking in EV spectrum

Chirally symmetric formulation

construction of overlap is straightforward with one key insight: (Adams 2010)

replace $\gamma_{1...D}$ with ϵ

4D: replace γ_5 with ϵ

chiral operator is nontrivial in taste space!

consistent with intuitive $\epsilon = \eta_{D+1} = (-1)^{\sum_{\nu < D+1} x_{\nu}}$, but remember $\eta_{\mu} \neq \epsilon!$ 4D: $\epsilon = (-1)^{x_1 + x_2 + x_3 + x_4}$ but $\eta_1 \eta_2 \eta_3 \eta_4 = 1 \times (-1)^{x_1} \times (-1)^{x_1 + x_2} \times (-1)^{x_1 + x_2 + x_3} = (-1)^{x_1 + x_3}$ 22

$$\varepsilon = (-1)^{\sum_{\mu} x_{\mu}} \sim (\gamma_{1...D} \otimes \xi_{1...D})$$
$$\varepsilon = (-1)^{\sum_{\mu} x_{\mu}} \sim (\gamma_{5} \otimes \xi_{5})$$

define hermitian kernel operator $H_{SW}(m) = \epsilon D_{SW}(m)$ with $D_{SW} = D_{stag} + M + m$

topology is evident in spectral flow (eigenvalues of $H_{SW}(m)$ as m is varied)

Spectral flow

(deForcrand et. al. 2012; Azcoiti et.al. 2014; CH and Zielinski 2016, Dürr and Weber 2022)

Staggered overlap

staggered overlap operator: $D_{\rm SO} = 1 + \epsilon - 1$

 $D_{\rm SO} = 1 + D_{\rm SW}$

$$H_{\rm SW}(-\rho)$$

$$H_{\rm SW}^2(-\rho)$$

ho ... negative mass parameter determines number of flavors just as for standard overlap

$$V_V(-\rho)/\sqrt{D_{\rm SW}^{\dagger}(-\rho)D_{\rm SW}(-\rho)}$$

is it local?

Locality: numerical evidence

(deForcrand et. al. 2012)

Numerical check:

2-flavor operator decays exponentially in lattice distance

practically indistinguishable from standard overlap

Locality: proof

(Chreim et. al. 2022)

- established in 4D for kernel operator mass terms M_{1234} and $M_{12} + M_{34}$
- dependent on "admissibility condition" for plaquette:

$$\begin{split} \delta &< \frac{r^2 (1 - |1 - \rho|)^2}{6 + 12r + 9r^2} \xrightarrow[r, \rho \to 1]{} \frac{1}{27} \text{ for } M_{123} \\ \delta &< \frac{r^2 (1 - |1 - \rho|)^2}{6 + 4r + 6r^2} \xrightarrow[r, \rho \to 1]{} \frac{1}{16} \text{ for } M_{12} - 0 \end{split}$$

• technique: expand $(A^{\dagger}A)^{1/2}$ in Legendre polynomials (similar to Hernandez et. al. 1999)

bound on C from bound on plaquette

→ relates decay radius ξ to condition number C of $A^{\dagger}A$: $\xi^{-1} = \frac{1}{2la} \ln \frac{1 + \sqrt{C}}{1 - \sqrt{C}}$

hop distance in kernel

Staggered domain wall

(Adams 2010; CH, Zielinski 2016)

standard domain wall operator: (Kaplan 1992; Shamir 1993; Furman and Shamir 1994)

$$\bar{\psi}D_{\mathrm{DW}}\psi = \sum_{s=1}^{N_s} \bar{\psi}_s (D_W^+ \psi_s - P_- \psi_{s+1} - P_+ \psi_{s-1}) \qquad P_{\pm} = \frac{1}{2} (1 \pm \gamma_5) \qquad D_W^{\pm} = D_W (-M_0) \pm 1$$

boundary conditions with mass term:

$$P_{+}(\psi_{0} - m\psi_{N_{s}}) = 0 \qquad P_{-}(\psi_{N_{s}+1} - m\psi_{1}) = 0$$

Boriçi modification: (Boriçi 1999) $P_{\pm}\psi_{s\mp1} \rightarrow -D_W^-P_{\pm}\psi_{s\mp1}$

 $D_W^{\pm} \rightarrow D_W^{\pm}(s) = \omega_s D_W(-M_0) \pm 1$ optimal DWF: (Chiu 2002)

$$D_W \rightarrow D_{SW}$$

constructed as approximation to overlap

staggered version: (Adams 2010) $\gamma_5 \to \epsilon = (-1)^{\sum_{\mu} x_{\mu}} \sim (\gamma_5 \otimes \xi_5)$

Schwinger model study

Continuum behavior

	1			
Agv	0.9		Stagge	ered Wi
	0.8			
	0.7			
	0.6			
	0.5			
	0.4			
	0.3			
	0.2			
	0.1			
	0			
	•	0	0.2	0.4

$6^4 \times 8$, $\beta = 6$, APE smeared SU(3) plaquette action $\Delta_{\rm N} = 0.539, \, \Delta_{\rm GW} = 1.096$ 1.0

Peek at QCD

 $\Delta_{\rm N} = 0.087, \, \Delta_{\rm GW} = 0.089$

Prospects

smaller vectors

better condition number

somewhat improved chirality

X gluonic CT no additional counterterms

× 4-hop

×2-hop

many open questions: • symmetries

- mixing
- observables
- improvement

my take:

can potentially speed up one calculations by 1/2 to 1 order of magnitude

but

- competition is not plain Wilson
- lots of "tricks", some of them based on genuine physical insight
- all of this will need to work for new formulations
- today, two degenerate light flavors is not good enough!

Minimally doubled staggered?

Old suggestion: (van den Doel, Smit '83)

- χ on even and $\overline{\chi}$ on odd sites only
- breaks ϵ -hermiticity \rightarrow determinant not real (→ Catterall 2021+this workshop)

What about Karsten-Wilczek or Borici-Creutz like pole coalescence?

• eigenvalues:
$$D_{st}P_s =$$

In 2D staggered is minimally doubled!

 \rightarrow construction needs to be impossible in arbitrary dimensions!

Start with free theory: • staggered momentum eigenstates: $P_s(x) = e^{i(p_\mu + \pi s_\mu)x_\mu} = (-1)^{s_\mu x_\mu} e^{ip_\mu x_\mu}$

 $s_{\mu} \in \{0,1\} |p_{\mu}| < \pi/2$ $i\eta_{\mu}\hat{p}_{\mu}(-1)^{s_{\mu}}P_{s}$ $\hat{p}_{\mu} = \sin(p_{\mu})$ $\lambda_{p\pm} = \pm i \sqrt{\hat{p}_{\mu} \hat{p}_{\mu}}$

 $\lambda_{p\pm}$ each 8-fold degenerate, with eigenvectors of opposite ϵ chirality

Minimally doubled staggered?

pole condition:
$$\lambda_p = 0 \rightarrow \hat{p}_\mu = 0 \rightarrow p_\mu = 0$$

16 poles

results in new operation

→ obvious candidate: taste dependent mass term

 $|p_{\mu}| < \pi/2$

s, 4 tastes

$$\lambda_{p\pm} = \pm i \sqrt{\hat{p}_{\mu}\hat{p}}$$

Try to coalesce poles: • modify $\hat{p}_{\mu} \rightarrow \hat{p}'_{\mu}$ so that $\hat{p}'_{\mu}\hat{p}'_{\mu} = 0$ has only 8 solutions (4 per ϵ -chirality)

ator:
$$D_{\text{st}} = i\eta_{\mu}\hat{p}_{\mu}(-1)^{s_{\mu}} \rightarrow D = i\eta_{\mu}\hat{p}'_{\mu}(-1)^{s_{\mu}}$$

• with $\hat{p}'_{\mu} = \hat{p}_{\mu} + f_{\mu}(p, s)$, where $f_{\mu}(p, s)$ is smooth in full Brillouin zone locality is real antihermiticity ϵ -hermiticity \rightarrow commutes with ϵ

Candidate operator

- $D = i\eta_{\mu}\hat{p}'_{\mu}(-1)^{s_{\mu}} \qquad \hat{p}'_{\mu} = \hat{p}_{\mu} + f_{\mu}(p,s)$ • on momentum modes: $C_{\mu}P_{s} = \hat{c}^{s}_{\mu}P_{s}$ with $\hat{c}^{s}_{\mu} = (-1)^{s_{\mu}}\cos(p_{\mu})$ $P_{s}(x) = (-1)^{s_{\mu}x_{\mu}}e^{ip_{\mu}x_{\mu}}$
- simplest guess: $f_i = 0$ and $f_4 = \zeta(1 \hat{c}_1\hat{c}_2)$
- would give: $\hat{p}'_{\mu}\hat{p}'_{\mu} = 0 \rightarrow \hat{p}_i = 0$ $\hat{p}_4 + \zeta(1 \hat{c}_1\hat{c}_2) = 0$ note: $\hat{p}_i = 0 \rightarrow \hat{c}_i = (-1)^{s_i}$
 - solutions for $|p_{\mu}| < \pi/2$: $p_i = 0$ $\sin(ap_4) = \zeta((-1)^{s_1+s_2} 1)$ for $\zeta > 1$ only even $s_1 + s_2 \checkmark$
- full operator: $D = D_{st} + i\eta_4 \zeta (1 (C_1 C_2)_{sym})(-1)^{s_4}$
- candidate: $D = D_{st} + i\eta_4 \zeta (1 (C_1 C_2)_{sym})C_4$

Candidate operator

- candidate: $D = D_{st} + i\eta_4 \zeta (1 (C_1 C_2)_{sym})C_4$
- free case: $D = i\eta_{\mu}\hat{p}_{\mu}(-1)^{s_{\mu}} + i\eta_{4}\zeta(1 \hat{c}_{1}\hat{c}_{2})\hat{c}_{4}$
 - \rightarrow pole conditions: $\hat{p}_i = 0$ $\hat{p}_4 + \zeta(1 \hat{c}_1\hat{c}_2)\hat{c}_4 = 0$

16 solutions for arbitrary ζ !

note: actual p_{4} of doubler poles need not be realized exactly on the lattice

note: $\hat{p}_i = 0 \rightarrow \hat{c}_i = (-1)^{s_i}$

 \rightarrow solutions for $|p_u| < \pi/2$: $p_i = 0$ $\hat{p}_4/\hat{c}_4 = \tan(ap_4) = \zeta((-1)^{s_1+s_2} - 1)$

