Truncated perfect hypercube fermions

and overlap-hypercube fermions

Wolfgang Bietenholz, Universidad Nacional Autónoma de México

- Perfect lattice fermions
- Truncation to the hypercube fermion (HF)
- Chiral correction to the overlap-HF

Scaling, locality, approximate rotation symmetry, condition number

Applications to topology, Random Matrix Theory,
Low Energy Constants

Block Variable Renomalization Group Transformation (RGT)

Integrate out field variables on a fine lattice \rightarrow action on a coarser lattice represents identical physics (if the integration is carried out exactly).

Changes resolution, i.e. energy level, in particular correlation length ξ in lattice units

At $\xi=\infty$: iterations may lead to a Fixed Point Action (FPA)
Invariant under change of lattice spacing
Leave FPA by RGTs in a relevant direction: no irrelevant lattice artifacts come in \rightarrow yields continuum physics on the lattice, perfect lattice action

Left: Block factor 2 RGT: Average of the field values over the 2^{d} sites within a block (shaded) on the fine lattice (spacing a) \rightarrow field value at the block center on the coarse lattice (spacing $a^{\prime}=2 a$). Correlation length ξ unchanged in physical units, reduced by a factor of 2 in units of a^{\prime}.

Right: Critical surface $(\xi / a=\infty)$ in space of couplings. Iterated RGTs in critical surface may converge to a Fixed Point. A renormalized trajectory leaves the critical surface in a relevant direction: formulations free of any lattice artifacts, even at finite ξ / a - perfect lattice actions
[Figure from: WB/Wiese, "Quantum Field Theory and the Standard Model of Particle Physics:
From Fundamental Concepts to Dynamical Mechanisms", Cambridge University Press, 2023]

Perfect action: can be computed analytically for free fermions
$e^{-S^{\prime}[\bar{\Psi}, \Psi]}=\int D \bar{\psi} D \psi \exp \left[-S[\bar{\psi}, \psi]+\frac{\rho}{2}\left(\bar{\Psi}_{x}-\frac{\beta_{n}}{b^{d}} \sum_{y \in c_{x}} \bar{\psi}_{y}\right)\left(\Psi_{x}-\frac{\beta_{n}}{b^{d}} \sum_{y \in c_{x}} \psi_{y}\right)\right]$
x : sites on coarse lattice, y : sites on fine lattice
c_{x} : coarse unit hypercube associated with x
b : block size, $\beta_{n}=n^{(d-1) / 2}$ re-scaling factor
$\bar{\psi}, \psi$: fermion fields on the fine lattice
$\bar{\Psi}, \Psi$: fermion fields on the coarse lattice
RGT: $S \rightarrow S^{\prime} \rightarrow S^{\prime \prime} \rightarrow S^{\prime \prime \prime} \ldots$
ρ : RGT parameter
$\rho \rightarrow \infty$: δ-blocking, but any ρ works, even $\rho_{x, x^{\prime}}$, if ρ^{-1} is local

Size b of the blocking cell c_{x} can also be varied. Most efficient: $b \rightarrow \infty$, blocking from the continuum to the lattice. Leads directly to a perfect action for free fermions:

$$
\begin{aligned}
S_{\mathrm{perf}}[\bar{\Psi}, \Psi] & =\sum_{x, r} \bar{\Psi}_{x} D_{\mathrm{perf}}(r) \Psi_{x+r} \\
& =\frac{1}{(2 \pi)^{d}} \int_{B} d^{d} p \bar{\Psi}(-p) D_{\mathrm{perf}}(p) \Psi(p) \\
D_{\mathrm{perf}}^{-1}(p) & =\sum_{l \in \mathbb{Z}^{d}} \frac{\Pi(p+2 \pi l)^{2}}{\mathrm{i} \gamma_{\mu}\left(p_{\mu}+2 \pi l_{\mu}\right)+m}+\frac{2}{\rho}, \quad \Pi(p):=\prod_{\mu} \frac{\frac{2}{a} \sin \frac{a p_{\mu}}{2}}{p_{\mu}}
\end{aligned}
$$

[Ginsparg/Wilson '82, WB/Wiese '95, '96] Relevant parameter: mass m $\rho \rightarrow \infty$: chirality as in the continuum, $\left\{D_{\text {perf }}(m=0), \gamma_{5}\right\}=0$, no doublers, how about Nielsen-Ninomiya Theorem?

$$
\text { Answer: }\left.D_{\text {perf }}(m=0)\right|_{\alpha=\infty}=\left.D_{\text {FPA }}(r)\right|_{\alpha=\infty} \sim|r|^{1-d} \quad \text { non-local }
$$

ρ finite:

$$
D_{\text {perf }}(r):=\rho_{\mu}(r) \gamma_{\mu}+\lambda(r)
$$

Local: vector term $\left|\rho_{\mu}(r)\right|$ and scalar term $|\lambda(r)|$ fall off exponentially
$\lambda(r) \neq 0$: lattice modified chiral symmetry, fulfills Ginsparg-Wilson relation (GW '82)

$$
\left\{D_{\mathrm{FPA}}, \gamma_{5}\right\}=\frac{1}{\rho} D_{\mathrm{FPA}} \gamma_{5} D_{\mathrm{FPA}}
$$

Conceptually okay, but application requires short-ranged truncation
Truncation scheme: periodic boundary conditions in the hypercube with $\left|r_{\mu}\right| \leq 1 \Rightarrow$ normalized hypercube-fermion (HF) (couplings to 3^{d} sites, structure like "Brillouin fermions")

r	$\rho_{1}(r)$	$\lambda(r)$
$(0,0,0,0)$	0	1.85272055
$(1,0,0,0)$	0.13684679	-0.06075787
$(1,1,0,0)$	0.03207728	-0.03003603
$(1,1,1,0)$	0.01105813	-0.015967620
$(1,1,1,1)$	0.00474899	-0.008426812
$(0,0)$	0	1.48954496
$(1,0)$	0.30938846	-0.24477248
$(1,1)$	0.09530577	-0.12761376

Couplings of the free, massless $H F$ in $d=4$ and $d=2: \rho_{\mu}(r)$ is odd in r_{μ} and even in all other r_{ν}, while $\lambda(r)$ is even in all directions.
$\rho=1$ (in lattice units): optimized locality
Fermion mass $m=0$ is the worst case. $m>0$ accelerates exponential decay, truncation less harmful, $\rho=m^{2} /\left(2\left(e^{m}-m-1\right)\right)$
[WB/Brower/Chandrasekharan/Wiese '97]

Left: Dispersion relation for free, massless 4d lattice fermions, for spatial momenta $\vec{p} \propto(1,1,0)$ (as an example). For perfect fermion: coincides with continuum dispersion; HF dispersion follows it closely. Wilson fermion deviates strongly; the Symanzik improved D234 [Alford/Klassen/Lepage '96] fermion behaves well up to $|\vec{p}| \approx 1$, before it hits a doubler coming down from higher energy.

Right: Dispersion relation for the free HF with mass $m=1$. Energy $E(\vec{p})$ for various directions of $\vec{p}(p=|\vec{p}|)$: they all follow closely the continuum dispersion over a large part of the Brillouin zone.

Pressure $P /(\text { temperature } T)^{4}$ for various types of free lattice fermions. Continuum: Stefan-Boltzmann law $P / T^{4}=7 \pi^{2} / 180$.

RGT improved actions converge much faster for decreasing temperature (increasing N_{t}) than the Wilson action or the D234 action.
(Here even the Fixed Point Action has (minor) artifacts, because it is constructed at $T=0$).

P / μ^{4} and n_{B} / μ^{3}, for pressure P, baryon density n_{B} and chemical potential μ, at zero temperature, for various types of free, massless lattice fermions.
For the HF both ratios converge rapidly to the continuum values as μ decreases, in contrast to the Wilson fermion and the D234 fermion.

Schemes for blocking from the continuum

Left: Matter fields are blocked by integrating the continuum field in a lattice cell, with the convolution function Π. Perfect propagator G is obtained by integrating all continuum propagators between points in the corresponding lattice cells.

Center: Blocking for non-compact gauge fields: we integrate all straight parallel transporters between continuum points, which have the same relative position in adjacent lattice cells.

Right: Perfect current, obtained by integrating the continuum flux through the face between adjacent lattice cells.

Consistently perfect lattice formulation reproduces the axial anomaly

3d illustration of the HF gauging by means of hyperlinks

$$
\begin{aligned}
U_{\mu+\nu}^{(2)}(x)= & \frac{1}{2}\left(\gamma_{\mu} U_{\mu}(x) \gamma_{\nu} U_{\nu}(x+a \hat{\mu})+\gamma_{\nu} U_{\nu}(x) \gamma_{\mu} U_{\mu}(x+a \hat{\nu})\right) \\
U_{\mu+\nu+\rho}^{(3)}(x)= & \frac{1}{6}\left(\gamma_{\nu} U_{\mu}(x) \gamma_{\nu} U_{\nu}(x+a \hat{\mu}) \gamma_{\rho} U_{\rho}(x+a \hat{\mu}+a \hat{\nu})+\ldots\right. \\
& \left.\cdots+\gamma_{\rho} U_{\rho}(x) \gamma_{\nu} U_{\nu}(x+a \hat{\rho}) \gamma_{\mu} U_{\mu}(x+a \hat{\rho}+a \hat{\nu})\right)
\end{aligned}
$$

"Rainbow preconditioning" for parallel fermion matrix inversion:
40 "colors" instead of just even/odd, successively includes more "colors" Gain factor 3...4 [WB/Eicker/Frommer/Lippert/Medeke/Schilling/Weuffen '98]

Point-to-point pseudoscalar correlation function in the 2-flavor Schwinger model for the Wilson fermion, a fixed point fermion [Lang/Pany, '98, with many terms] and two HF versions. We see in all cases but the Wilson fermion a smooth short-range decay, i.e. approximate rotation symmetry.

Dispersion relations for the "pion" and the " η-meson" in the 2-flavor Schwinger model: green lines: continuum; Wilson fermions (diamonds); FPA [Lang/Pany '98] (filled circles); three types of HFs, in particular the scaling optimized SO-HF (little empty boxes) performs at least as well as the FPA [WB/Hip, '00].

"Pion" and " η-meson" dispersion relations in the 2 -flavor Schwinger model with dynamical staggered fermions: standard vs. truncated perfect ($16 \times$ 16 lattice, $m=0$) [WB/Dilger '99], similar to HF.

"Meson" masses in the Schwinger model with dynamical staggered fermions, at lattice spacings $a \propto 1 / \sqrt{\beta}$. The results for the truncated perfect staggered fermion are much closer to the continuum values; in particular they provide much lighter "pions".

Charmonium spectrum, measured in quenched simulations with the HF and a truncated perfect quark gluon vertex function (rather complicated) [Orginos et al. '98].
Experimental values are dashed; the η_{c} ground state sets the scale.

Spectral function σ_{PS}, depending on the frequencies ω, at critical temperature $T_{\mathrm{c}}=\infty$ (free, left) and finite T_{c} (right) [Wissel, Laermann, Shcheredin, Datta, Karsch '06].

Results with the Maximum Entropy Method [Nakahara/Asakawa/Hatsuda '99]. The free HF result (left) follows the continuum up to high ω.

In both cases, the Wilson fermion result collapses at moderate ω.
$G_{\Gamma}(x)=\left\langle J(x) J^{\dagger}(0)\right\rangle, \quad J(x)=\bar{q}(x) \Gamma q(x)$
$G_{\Gamma}(t, \vec{p})=\int_{0}^{\infty} d \omega \sigma_{\Gamma}(\omega, \vec{p}) K(\omega, t), \quad K(\omega, t)=\cosh [\omega(t-T / 2)] / \sinh (\omega / 2 T)$

Ginsparg-Wilson Relation (GWR) and Overlap formula

Lattice modified chirality circumvents the Nielsen-Ninomiya Theorem (Lüscher, '98).

Set $\rho=1$ in lattice units; local transformation

$$
\begin{aligned}
\bar{\Psi} D \Psi & \rightarrow \bar{\Psi}\left(1-\varepsilon\left(1-\frac{1}{2} D\right) \gamma_{5}\right) D\left(1+\varepsilon \gamma_{5}\left(1-\frac{1}{2} D\right)\right) \Psi+\mathcal{O}\left(\varepsilon^{2}\right) \\
& =\bar{\Psi} D \Psi+\varepsilon \bar{\Psi}[\underbrace{\left\{D, \gamma_{5}\right\}-D \gamma_{5} D}_{=0, \text { GWR }}]+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

For finite ε mysterious, but not needed.

> Satisfied by $D_{\text {perf }}(m=0)$ (Ginsparg/Wilson '83, Hasenfratz '97), but hard to construct and apply.

Overlap formula (Neuberger '98)

D_{0} : some massless lattice Dirac operator, γ_{5}-Hermitian: $D_{0}^{\dagger}=\gamma_{5} D_{0} \gamma_{5}$ $A:=D_{0}-1$ (generally $D_{0}-\rho$) is unitary, iff D_{0} is a GW operator,

$$
A^{\dagger} A=\gamma_{5}[\underbrace{D_{0} \gamma_{5} D_{0}-\left\{D, \gamma_{5}\right\}}_{0}+\gamma_{5}]=1
$$

Usually not fulfilled, e.g. for $D_{0}=D_{\mathrm{W}}$, but we can enforce it by substituting

$$
\begin{aligned}
A \rightarrow A_{\mathrm{ov}} & =A / \sqrt{A^{\dagger} A} \Rightarrow A_{\mathrm{ov}}^{\dagger} A_{\mathrm{ov}}=1 \\
D_{\mathrm{ov}} & =1+A_{\mathrm{ov}}=1+\left(D_{0}-1\right) / \sqrt{\left(D_{0}^{\dagger}-1\right)\left(D_{0}-1\right)} \\
& =1+\gamma_{5} H / \sqrt{H^{2}}, \quad H:=\gamma_{5} A=H^{\dagger}
\end{aligned}
$$

Overlap-Hypercube Fermion

Neuberger inserts D_{W}, but D_{0} can also be e.g. D_{HF} (WB '98, Niedermayer '99, DeGrand '00), which is already approx. chiral, in contrast to D_{W}.
$\Rightarrow \sqrt{\cdots} \approx 1$, minor chiral correction
More couplings in the kernel, but

- better locality \rightarrow valid up to stronger gauge coupling
- preserves good scaling and approx. rotation invariance
- small condition number of $A^{\dagger} A \rightarrow$ convergence with modest polynomial for $1 / \sqrt{\cdots}$

Approximate chirality of the HF

Spectrum of the free 4d HF (in infinite volume): close to GW circle with center 1 and radius $1(\rho=1)$: approximates chirality very well [WB '98].

Spectra of the Wilson operator (left, without and with a clover term) and of the HF operator (right) for a typical conf. in the 2-flavor Schwinger model at $\beta=6$. [WB/Hip '00]

The Wilson spectrum deviates strongly from the GW circle, whereas the HF spectrum approximates it well. For the HF we add a correction where the overlap formula is approximated by a $1^{\text {st }}$ order polynomial, which is sufficient to put the eigenvalues quite exactly onto the GW circle.

Spectra of the HF operator for typical configurations in the Schwinger model at $\beta=4$ and at $\beta=2$.

The GW circle is still approximated well. We include a polynomial correction with the Taylor expanded overlap formula to the $1^{\text {st }}$ and $2^{\text {nd }}$ order.

Spectrum of the optimized HF operator for a typical configuration in quenched QCD at $\beta=6$ (standard gluon action) on lattices of the size 4^{4} (crosses, full spectrum) and 8^{4} (squares, physical part of the spectrum)

Condition numbers c_{2} to c_{20} of $\mathrm{A}^{+} \mathrm{A}$

Condition numbers c_{k} of $A^{\dagger} A=H^{2}$, where $A=D_{0}-\alpha$, for $D_{0}=D_{\mathrm{W}}$ and $D_{0}=D_{\mathrm{HF}}$, in QCD on a 12^{4} lattice at $\beta=6$. The $k-1$ lowest modes which are projected out. $c_{k}:=\left(\right.$ largest eigenvalue of $\left.A^{\dagger} A\right) /\left(k^{\text {th }}\right.$ eigenvalue of $\left.A^{\dagger} A\right)$ is ≈ 25 times lower for the $\mathrm{HF}\left[\mathrm{WB}{ }^{\prime} 02\right] \Rightarrow$ gain factor ≈ 5 in the (polynomial degree for $\left.1 / \sqrt{A^{\dagger} A}\right) \propto$ computational effort.

Gain factor \approx same at $\beta=5.85$ on a $12^{3} \times 24$ lattice [WB/Shcheredin '06].

Locality of overlap fermions

Locality of the overlap-HF vs. the Neuberger operator in $d=2$.
Left: Decay of the free couplings of the vector term ρ_{μ} and scalar term λ in the Euclidean distance $|x|$. The exponential of the overlap-HF is much faster \rightarrow higher level of locality.

Couplings in the Neuberger operator are much more spread out \rightarrow better approximate rotation symmetry for the overlap-HF.

Right: Schwinger model at $\beta=6$, locality measured by the largest coupling at fixed taxi driver distance [method by Hernández/Jansen/Lüscher '99]

Locality of the overlap-HF vs. Neuberger operator in quenched QCD
Left: Decay in the taxi driver metrics at $\beta=6$, the gain factor in the exponent is almost 2 in the exponent of the decay [WB '02].

Right: $\beta=5.85$ in Euclidean metrics, which also compares the quality of rotation symmetry

Locality of the overlap-HF (with link amplification factor u and $\alpha=1$) vs. D_{N}, in $Q C D$ at strong coupling (taxi driver metrics).

At $\beta=5.7, D_{\mathrm{N}}$ (with optimized $\alpha=1.8$) is still local, but at $\beta=5.6$ its locality - and therefore its validity as a lattice Dirac operator - collapses. The overlap-HF is local in both cases.

Measurements on a $12^{3} \times 24$ lattice, anisotropy \rightarrow bending down at large r.

Scaling of overlap fermions

Dispersion relation of the free, massless $2 d$ (scaling optimized) overlap$H F$, compared to the continuum and to D_{N}.
The dispersions end when the argument of the square root becomes negative. For an overview, we include the dispersion for the kernels D_{HF} and D_{W}.

Thermodynamic scaling ratios pressure/(temperature) ${ }^{2}$ (left) and pressure/(chemical potential) $)^{2}$ (right) for free 2d overlap fermions.

The hierarchy of the scaling behavior is confirmed in all respects.

"Mesonic" dispersion relations in the Schwinger model with two types of overlap-HFs (open circles and squares).

Both the "pion" (left) and the " η-meson" (right) display a scaling which is far improved for the overlap-HFs compared to D_{N} (diamonds). [WB/Hip '00]

The pion mass evaluated from overlap-HFs in the p-regime of $Q C D$ in three different ways.

Follows the generic behavior $m_{\pi}^{2} \propto m_{q} \quad\left(m_{q}\right.$: light quark mass).

Axial current renormalization constant Z_{A} evaluated from PCAC relation, in $Q C D$ at $\beta=5.85$.

For $D_{\text {ovHF }}$ (left) we find $Z_{A} \approx 1$ [WB/Shcheredin '06], in contrast to the result with the Neuberger operator D_{N} (right) [WB et al. '04].

Topological charge: sound definition through the Index Theorem, but still depends on the choice of the Ginsparg-Wilson Dirac operator. [Hasenfratz/Laliena/Niedermayer '98]

Index histories for $D_{\text {ovHF }}$ and for D_{N} (at $\rho=1.6$) for the same QCD confs (generated quenched at $\beta=5.85$)

Histograms of D_{ovHF} indices (left) and of D_{N} indices (right), on a $12^{3} \times 24$ lattice in $Q C D$ at $\beta=5.85$ (1013 configurations)

The topological susceptibility measured by indices of D_{ovHF} and of D_{N}, in a volume $V=(1.48 \mathrm{fm})^{3} \times 2.96 \mathrm{fm}$, with two lattice spacings a.

Our data [WB/Shcheredin '06] are consistent with the continuum extrapolation by Del Debbio/Giusti/Pica '05.

Roughly in agreement with Witten-Veneziano formula for $M_{\eta^{\prime}}$.

Dirac spectrum and Random Matrix Theory (RMT)

Cumulative density of the unfolded level spacing distribution.
RMT prediction for the orthogonal, unitary and symplectic ensemble.
Data from dynamical overlap-HF simulations in the Schwinger model at fermion mass $m=0.01$: clear agreement with the unitary ensemble. (For $L=16$, slight deviation for level spacings $\gtrsim 1.5$. At $L=32$, even that deviation disappears.) [WB/Hip/Shcheredin/Volkholz '12].

Left: RMT predictions for the leading non-zero Dirac eigenvalue in the topological sectors with charge $|\nu|=0,1$ and $2\left(z:=\Sigma V \lambda_{1}\right)$.

Right: RMT predictions (lines) and simulation results for the corresponding cumulative densities. QCD data with D_{N} on a 10^{4} lattice at $\beta=5.85$ roughly follow the RMT predictions [WB/Jansen/Shcheredin '03].

Cumulative density of the (Möbius projected) lowest Dirac eigenvalue λ_{1} of the overlap-HF operator, in the topological sectors $|\nu|=0,1,2$.

RMT predictions vs. data for $z=\Sigma V \lambda_{1}$ with $\Sigma^{1 / 3}=298 \mathrm{MeV}$ (optimal value in sector $\nu=0$).

This value works well up to $z \lesssim 3$ in all topological sectors, well beyond the Thouless value $z_{\text {Thouless }} \lesssim 1$, which is often considered a theoretical bound for the applicability of these predictions.

Mean values of the first non-zero Dirac eigenvalue (in physical units) in the charge sectors $|\nu|=0 \ldots 5$.

All data are compatible with chiral RMT, if we choose $\Sigma^{1 / 3}=290(6) \mathrm{MeV} \quad[\mathrm{WB} /$ Shcheredin '06]

Cumulative density of λ_{1} of $D_{\text {ovHF }}(m=0.1)$ in the 2-flavor Schwinger model, at topological charge $\nu=0$, on square lattices of size $L=16,20$ and $32, \beta=5$.
Excellent agreement with a prediction by T. Kovács' of a decoupled — and therefore Poisson distributed - leading eigenvalue, due to $\Sigma(m=0)=0$ $\left(\Sigma \propto m^{1 / \delta}, \delta=\left(N_{\mathrm{f}}+1\right) /\left(N_{\mathrm{f}}-1\right)\right)$ [Landa-Marbán/WB/Hip '13]

Schwinger model in the " δ-regime": $L_{t} \gg L$

Left: "Pion" mass M_{π} with dynamical Wilson fermions. For small fermion mass m (determined by the PCAC relation) and small spatial extent L : significant errors. Still, the full range enables sensible extrapolations to the residual "pion" mass M_{π}^{R} in the chiral limit.

Right: Residual "pion" masses M_{π}^{R}, extrapolated to $m=0$, at $L=$ 6...12. The data follow a fit $\propto 1 / L$.

Assuming $M_{\pi}^{\mathrm{R}}=1 /\left(2 F_{\pi}^{2} L\right)$ yields $F_{\pi}:=0.3923(6)$ (dim'less in $d=2$)

Left: Like previous figure, but M_{π} measured with the overlap-HF, using quenched, re-weighted confs. Smooth chiral extrapolations for all spatial sizes $L=4 \ldots 12$.

Right: Again the fit $M_{\pi}^{R} \propto 1 / L$ works for $L<12$, and leads to $F_{\pi}=0.3988(1)$.

Well compatible with further results that we obtained for F_{π} by employing different methods, and in perfect agreement with $F_{\pi}=$ $1 / \sqrt{2 \pi} \simeq 0.3989 \ldots$

Residual "pion" masses M_{π}^{R} in the δ-regime ($L_{t}=32$) for a variety of spatial sizes $L \ll L_{t}$, and $N_{\mathrm{f}}=2 \ldots 6$ flavors.

Chiral extrapolations of quenched, re-weighted results with the overlapHFs at $\beta=4$. (Fits in the range where they are successful).

Consistent values for F_{π} with the effective formula

$$
M_{\pi}^{\mathrm{R}}=\frac{N_{\pi}}{2 F_{\pi}^{2} L}, \quad N_{\pi}=\frac{2\left(N_{\mathrm{f}}-1\right)}{N_{\mathrm{f}}}
$$

$$
\text { The value } F_{\pi}(m=0)=1 / \sqrt{2 \pi}=0.3989 \ldots
$$

is consistent with the 2d Gell-Mann-Oakes-Renner Relation

$$
\begin{aligned}
\Sigma & =-\langle\bar{\psi} \psi\rangle=\frac{M_{\pi}^{2}}{4 \pi m} \quad(\text { Smilga '92, Hetrick/Hosotani/Iso '95) } \\
F_{\pi}^{2}(m) & =\frac{2 m \Sigma}{M_{\pi}^{2}} \Rightarrow F_{\pi}=\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

and with the Witten-Veneziano Formula

$$
M_{\eta}^{2}=\frac{N_{\mathrm{f}} g^{2}}{\pi} \stackrel{!}{=} \frac{2 N_{\mathrm{f}} \chi_{\mathrm{t}}^{\mathrm{q}}}{F_{\eta}^{2}} \quad \text { and } \quad F_{\pi}=F_{\eta}
$$

where $\chi^{q}=g^{2} / 4 \pi^{2}$ (Seiler/Stamatescu '87) is the quenched, topological susceptibility. [Nieto Castellanos/Hip/WB, in prep.]
Matches light-come study of $\langle 0| \partial_{\mu} J_{\mu}^{5}(0)|\pi(p)\rangle=M_{\pi}^{2} F_{\pi} \rightarrow F_{\pi} \simeq 0.3945$
[Harada et al. '94], but not $\langle 0| J_{\mu}^{5}(0)|\pi(p)\rangle=\mathrm{i} p_{\pi}^{2} F_{\pi}=0$ [Dürr]

Overview

- Truncated perfect hypercube fermion (HF)

Ultralocal, good scaling, approx. rotation symmetry

- Overlap-Hypercube fermion (Overlap-HF)

High degree of locality, valid up to strong gauge coupling
low condition number of $A^{\dagger} A$
good scaling and approx. rotation symmetry inherited from HF

In both cases:
Some additional effort to implement and simulate, but feasible.
Variety of favorable properties, somewhat forgotten in recent years (even by myself), deserves more attention.

