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Truncated perfect hypercube fermions

and overlap-hypercube fermions

Wolfgang Bietenholz, Universidad Nacional Autónoma de México

• Perfect lattice fermions

• Truncation to the hypercube fermion (HF)

• Chiral correction to the overlap-HF

Scaling, locality, approximate rotation symmetry,
condition number

Applications to topology, Random Matrix Theory,
Low Energy Constants
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Block Variable Renomalization Group Transformation (RGT)

Integrate out field variables on a fine lattice → action on a coarser lattice
represents identical physics (if the integration is carried out exactly).

Changes resolution, i.e. energy level, in particular correlation length ξ in
lattice units

At ξ = ∞: iterations may lead to a Fixed Point Action (FPA)

Invariant under change of lattice spacing

Leave FPA by RGTs in a relevant direction: no irrelevant lattice artifacts
come in → yields continuum physics on the lattice, perfect lattice action
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Left: Block factor 2 RGT: Average of the field values over the 2d sites within a block

(shaded) on the fine lattice (spacing a) → field value at the block center on the coarse

lattice (spacing a′ = 2a). Correlation length ξ unchanged in physical units, reduced by a

factor of 2 in units of a′.

Right: Critical surface (ξ/a = ∞) in space of couplings. Iterated RGTs in critical

surface may converge to a Fixed Point. A renormalized trajectory leaves the critical

surface in a relevant direction: formulations free of any lattice artifacts, even at finite ξ/a

— perfect lattice actions

[Figure from: WB/Wiese, “Quantum Field Theory and the Standard Model of Particle Physics:

From Fundamental Concepts to Dynamical Mechanisms”, Cambridge University Press, 2023]
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Perfect action: can be computed analytically for free fermions

e−S′[Ψ̄,Ψ] =

∫

Dψ̄Dψ exp



−S[ψ̄, ψ] + ρ

2

(

Ψ̄x −
βn
bd

∑

y∈cx

ψ̄y

)(

Ψx −
βn
bd

∑

y∈cx

ψy

)





x: sites on coarse lattice, y: sites on fine lattice
cx: coarse unit hypercube associated with x
b: block size, βn = n(d−1)/2 re-scaling factor

ψ̄, ψ: fermion fields on the fine lattice
Ψ̄, Ψ: fermion fields on the coarse lattice

RGT: S → S′ → S′′ → S′′′ . . .

ρ: RGT parameter

ρ→ ∞: δ-blocking, but any ρ works, even ρx,x′, if ρ−1 is local
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Size b of the blocking cell cx can also be varied. Most efficient: b→ ∞,
blocking from the continuum to the lattice.
Leads directly to a perfect action for free fermions:

Sperf[Ψ̄,Ψ] =
∑

x,r

Ψ̄xDperf(r)Ψx+r

=
1

(2π)d

∫

B

ddp Ψ̄(−p)Dperf(p)Ψ(p)

D−1
perf(p) =

∑

l∈Zd

Π(p+ 2πl)2

iγµ(pµ + 2πlµ) +m
+

2

ρ
, Π(p) :=

∏

µ

2
a sin

apµ
2

pµ

[Ginsparg/Wilson ’82, WB/Wiese ’95, ’96] Relevant parameter: mass m

ρ→ ∞: chirality as in the continuum, {Dperf(m = 0), γ5} = 0,
no doublers, how about Nielsen-Ninomiya Theorem?

Answer: Dperf(m = 0)|α=∞ = DFPA(r)|α=∞ ∼ |r|1−d non-local
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ρ finite:
Dperf(r) := ρµ(r)γµ + λ(r)

Local: vector term |ρµ(r)| and scalar term |λ(r)| fall off exponentially

λ(r) 6= 0: lattice modified chiral symmetry, fulfills
Ginsparg-Wilson relation (GW ’82)

{DFPA, γ5} =
1

ρ
DFPAγ5DFPA

Conceptually okay, but application requires short-ranged truncation

Truncation scheme: periodic boundary conditions in the hypercube with
|rµ| ≤ 1 ⇒ normalized hypercube-fermion (HF) (couplings to 3d sites,
structure like “Brillouin fermions”)
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r ρ1(r) λ(r)

(0, 0, 0, 0) 0 1.85272055
(1, 0, 0, 0) 0.13684679 −0.06075787
(1, 1, 0, 0) 0.03207728 −0.03003603
(1, 1, 1, 0) 0.01105813 −0.015967620
(1, 1, 1, 1) 0.00474899 −0.008426812

(0, 0) 0 1.48954496
(1, 0) 0.30938846 -0.24477248
(1, 1) 0.09530577 -0.12761376

Couplings of the free, massless HF in d = 4 and d = 2: ρµ(r) is odd in
rµ and even in all other rν, while λ(r) is even in all directions.

ρ = 1 (in lattice units): optimized locality

Fermion mass m = 0 is the worst case. m > 0 accelerates exponential
decay, truncation less harmful, ρ = m2/(2(em −m− 1))

[WB/Brower/Chandrasekharan/Wiese ’97]
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Left: Dispersion relation for free, massless 4d lattice fermions, for spatial momenta

~p ∝ (1, 1, 0) (as an example). For perfect fermion: coincides with continuum dispersion;

HF dispersion follows it closely. Wilson fermion deviates strongly; the Symanzik improved

D234 [Alford/Klassen/Lepage ’96] fermion behaves well up to |~p | ≈ 1, before it hits a

doubler coming down from higher energy.

Right: Dispersion relation for the free HF with mass m = 1. Energy E(~p) for various

directions of ~p (p = |~p |): they all follow closely the continuum dispersion over a large

part of the Brillouin zone.
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Pressure P / (temperature T )4 for various types of free lattice fermions.
Continuum: Stefan-Boltzmann law P/T 4 = 7π2/180.

RGT improved actions converge much faster for decreasing temperature
(increasing Nt) than the Wilson action or the D234 action.

(Here even the Fixed Point Action has (minor) artifacts, because it is
constructed at T = 0).

9



continuum

3 4µ

W
ils

on

HF

2

0.1

0 1
0

0.02

0.04

0.06

0.08

0.12

0.14

D234

5

µ4
P/

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5

n
B / µ3

µ

continuum

D234 HF

W
ils

on

P/µ4 and nB/µ
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µ, at zero temperature, for various types of free, massless lattice fermions.

For the HF both ratios converge rapidly to the continuum values as µ
decreases, in contrast to the Wilson fermion and the D234 fermion.
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Schemes for blocking from the continuum

G(p)

1/(ip+m) Aµ J µ

Π (p)

Π (p)

Left: Matter fields are blocked by integrating the continuum field in
a lattice cell, with the convolution function Π. Perfect propagator G is
obtained by integrating all continuum propagators between points in the
corresponding lattice cells.

Center: Blocking for non-compact gauge fields: we integrate all
straight parallel transporters between continuum points, which have the
same relative position in adjacent lattice cells.

Right: Perfect current, obtained by integrating the continuum flux
through the face between adjacent lattice cells.

Consistently perfect lattice formulation reproduces the axial anomaly
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3d illustration of the HF gauging by means of hyperlinks

U (x)µ

U (x+ )ν µU (x)µ+ν

(2)

U (x)µ+ν+ρ

(3)

(1)

(1)

U (x+    )

ρ
µ+ν(1)

U
(2)
µ+ν(x) =

1

2

(

γµUµ(x)γνUν(x+ aµ̂) + γνUν(x)γµUµ(x+ aν̂)
)

U
(3)
µ+ν+ρ(x) =

1

6

(

γνUµ(x)γνUν(x+ aµ̂)γρUρ(x+ aµ̂+ aν̂) + . . .

· · ·+ γρUρ(x)γνUν(x+ aρ̂)γµUµ(x+ aρ̂+ aν̂)
)

“Rainbow preconditioning” for parallel fermion matrix inversion:
40 “colors” instead of just even/odd, successively includes more “colors”
Gain factor 3 . . . 4 [WB/Eicker/Frommer/Lippert/Medeke/Schilling/Weuffen ’98]
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Point-to-point pseudoscalar correlation function in the 2-flavor Schwinger
model for the Wilson fermion, a fixed point fermion [Lang/Pany, ’98,
with many terms] and two HF versions. We see in all cases but the Wilson
fermion a smooth short-range decay, i.e. approximate rotation symmetry.
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Dispersion relations for the “pion” and the “η-meson” in the 2-flavor
Schwinger model: green lines: continuum; Wilson fermions (diamonds);
FPA [Lang/Pany ’98] (filled circles); three types of HFs, in particular the
scaling optimized SO-HF (little empty boxes) performs at least as well as
the FPA [WB/Hip, ’00].
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“Pion” and “η-meson” dispersion relations in the 2-flavor Schwinger model
with dynamical staggered fermions: standard vs. truncated perfect (16×
16 lattice, m = 0) [WB/Dilger ’99], similar to HF.

15



1 / 

standard

quais-perfect,  from  p

quasi-perfect,  from  p

β

= 0
1

/ 8π= 
1

1 / β

standard

= π/ 8
quasi-perfect,  from   p =  0

1
 p

continuum
1

quasi-perfect,  from

“Meson” masses in the Schwinger model with dynamical staggered
fermions, at lattice spacings a ∝ 1/

√
β. The results for the truncated

perfect staggered fermion are much closer to the continuum values; in
particular they provide much lighter “pions”.
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Charmonium spectrum, measured in quenched simulations with the
HF and a truncated perfect quark gluon vertex function (rather
complicated) [Orginos et al. ’98].

Experimental values are dashed; the ηc ground state sets the scale.
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Spectral function σPS, depending on the frequencies ω, at critical
temperature Tc = ∞ (free, left) and finite Tc (right) [Wissel, Laermann,
Shcheredin, Datta, Karsch ’06].

Results with the Maximum Entropy Method [Nakahara/Asakawa/Hatsuda ’99].
The free HF result (left) follows the continuum up to high ω.

In both cases, the Wilson fermion result collapses at moderate ω.

GΓ(x) = 〈J(x)J†(0)〉, J(x) = q̄(x)Γq(x)

GΓ(t, ~p) =
∫ ∞
0

dω σΓ(ω, ~p)K(ω, t), K(ω, t) = cosh[ω(t−T/2)]/ sinh(ω/2T )
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Ginsparg-Wilson Relation (GWR) and Overlap formula

Lattice modified chirality circumvents the Nielsen-Ninomiya Theorem
(Lüscher, ’98).

Set ρ = 1 in lattice units; local transformation

Ψ̄DΨ → Ψ̄
(

1− ε(1− 1

2
D)γ5

)

D
(

1 + εγ5(1−
1

2
D)

)

Ψ+O(ε2)

= Ψ̄DΨ+ εΨ̄
[

{D, γ5} −Dγ5D
︸ ︷︷ ︸

=0, GWR

]

+O(ε2)

For finite ε mysterious, but not needed.

Satisfied by Dperf(m = 0) (Ginsparg/Wilson ’83, Hasenfratz ’97),
but hard to construct and apply.
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Overlap formula (Neuberger ’98)

D0: some massless lattice Dirac operator, γ5-Hermitian: D†
0 = γ5D0γ5

A := D0 − 1 (generally D0 − ρ) is unitary, iff D0 is a GW operator,

A†A = γ5

[

D0γ5D0 − {D, γ5}
︸ ︷︷ ︸

0

+γ5

]

= 1

Usually not fulfilled, e.g. forD0 = DW, but we can enforce it by substituting

A→ Aov = A/
√
A†A ⇒ A†

ovAov = 1

Dov = 1 +Aov = 1 + (D0 − 1)/

√

(D†
0 − 1)(D0 − 1)

= 1 + γ5H/
√
H2 , H := γ5A = H†
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Overlap-Hypercube Fermion

Neuberger inserts DW, but D0 can also be e.g. DHF (WB ’98, Niedermayer
’99, DeGrand ’00), which is already approx. chiral, in contrast to DW.

⇒ √
. . . ≈ 1, minor chiral correction

More couplings in the kernel, but

• better locality → valid up to stronger gauge coupling

• preserves good scaling and approx. rotation invariance

• small condition number of A†A→ convergence with modest polynomial
for 1/

√
. . .
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Approximate chirality of the HF
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Spectrum of the free 4d HF (in infinite volume): close to GW circle with
center 1 and radius 1 (ρ = 1): approximates chirality very well [WB ’98].
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Spectra of the Wilson operator (left, without and with a clover term) and
of the HF operator (right) for a typical conf. in the 2-flavor Schwinger
model at β = 6. [WB/Hip ’00]

The Wilson spectrum deviates strongly from the GW circle, whereas the
HF spectrum approximates it well. For the HF we add a correction where
the overlap formula is approximated by a 1st order polynomial, which is
sufficient to put the eigenvalues quite exactly onto the GW circle.
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Spectra of the HF operator for typical configurations in the Schwinger
model at β = 4 and at β = 2.

The GW circle is still approximated well. We include a polynomial correction
with the Taylor expanded overlap formula to the 1st and 2nd order.
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Spectrum of the optimized HF operator for a typical configuration in
quenched QCD at β = 6 (standard gluon action) on lattices of the size
44 (crosses, full spectrum) and 84 (squares, physical part of the spectrum)
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Condition numbers ck of A†A = H2, where A = D0 − α, for D0 = DW and

D0 = DHF, in QCD on a 124 lattice at β = 6. The k − 1 lowest modes which

are projected out. ck := (largest eigenvalue of A†A)/(kth eigenvalue of A†A) is

≈ 25 times lower for the HF [WB ’02] ⇒ gain factor ≈ 5 in the (polynomial degree for

1/
√
A†A) ∝ computational effort.

Gain factor ≈ same at β = 5.85 on a 123 × 24 lattice [WB/Shcheredin ’06].
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Locality of overlap fermions
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Locality of the overlap-HF vs. the Neuberger operator in d = 2.

Left: Decay of the free couplings of the vector term ρµ and scalar term
λ in the Euclidean distance |x|. The exponential of the overlap-HF is much
faster → higher level of locality.

Couplings in the Neuberger operator are much more spread out → better
approximate rotation symmetry for the overlap-HF.

Right: Schwinger model at β = 6, locality measured by the largest
coupling at fixed taxi driver distance [method by Hernández/Jansen/Lüscher ’99]
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Left: Decay in the taxi driver metrics at β = 6, the gain factor in the
exponent is almost 2 in the exponent of the decay [WB ’02].

Right: β = 5.85 in Euclidean metrics, which also compares the quality
of rotation symmetry
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Locality of the overlap-HF (with link amplification factor u and α = 1)
vs. DN, in QCD at strong coupling (taxi driver metrics).

At β = 5.7, DN (with optimized α = 1.8) is still local, but at β = 5.6 its
locality — and therefore its validity as a lattice Dirac operator — collapses.
The overlap-HF is local in both cases.

Measurements on a 123 × 24 lattice, anisotropy → bending down at
large r.
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Scaling of overlap fermions
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Dispersion relation of the free, massless 2d (scaling optimized) overlap-
HF, compared to the continuum and to DN.

The dispersions end when the argument of the square root becomes negative.

For an overview, we include the dispersion for the kernels DHF and DW.
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The hierarchy of the scaling behavior is confirmed in all respects.
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“Mesonic” dispersion relations in the Schwinger model with two types of
overlap-HFs (open circles and squares).

Both the “pion” (left) and the “η-meson” (right) display a scaling which is
far improved for the overlap-HFs compared to DN (diamonds).
[WB/Hip ’00]
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For DovHF (left) we find ZA ≈ 1 [WB/Shcheredin ’06], in contrast to
the result with the Neuberger operator DN (right) [WB et al. ’04].
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Topological charge: sound definition through the Index Theorem, but
still depends on the choice of the Ginsparg-Wilson Dirac operator.
[Hasenfratz/Laliena/Niedermayer ’98]
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Index histories for DovHF and for DN (at ρ = 1.6) for the same QCD confs
(generated quenched at β = 5.85)
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Histograms of DovHF indices (left) and of DN indices (right),
on a 123 × 24 lattice in QCD at β = 5.85 (1013 configurations)
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The topological susceptibility measured by indices of DovHF and of DN,
in a volume V = (1.48 fm)3 × 2.96 fm, with two lattice spacings a.

Our data [WB/Shcheredin ’06] are consistent with the continuum
extrapolation by Del Debbio/Giusti/Pica ’05.

Roughly in agreement with Witten-Veneziano formula for Mη′.
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Dirac spectrum and Random Matrix Theory (RMT)
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Cumulative density of the unfolded level spacing distribution.
RMT prediction for the orthogonal, unitary and symplectic ensemble.

Data from dynamical overlap-HF simulations in the Schwinger model at
fermion mass m = 0.01: clear agreement with the unitary ensemble.
(For L = 16, slight deviation for level spacings >∼ 1.5. At L = 32, even that
deviation disappears.) [WB/Hip/Shcheredin/Volkholz ’12].
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Left: RMT predictions for the leading non-zero Dirac eigenvalue in
the topological sectors with charge |ν| = 0, 1 and 2 (z := ΣV λ1).

Right: RMT predictions (lines) and simulation results for the
corresponding cumulative densities. QCD data with DN on a 104 lattice
at β = 5.85 roughly follow the RMT predictions
[WB/Jansen/Shcheredin ’03].
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RMT prediction

Cumulative density of the (Möbius projected) lowest Dirac eigenvalue λ1
of the overlap-HF operator, in the topological sectors |ν| = 0, 1, 2.

RMT predictions vs. data for z = ΣV λ1 with Σ1/3 = 298 MeV (optimal
value in sector ν = 0).

This value works well up to z <∼ 3 in all topological sectors, well beyond
the Thouless value zThouless<∼ 1, which is often considered a theoretical
bound for the applicability of these predictions.
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Mean values of the first non-zero Dirac eigenvalue (in physical units) in
the charge sectors |ν| = 0 . . . 5.

All data are compatible with chiral RMT, if we choose
Σ1/3 = 290(6) MeV [WB/Shcheredin ’06]
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Cumulative density of λ1 of DovHF(m = 0.1) in the 2-flavor Schwinger
model, at topological charge ν = 0, on square lattices of size L = 16, 20
and 32, β = 5.

Excellent agreement with a prediction by T. Kovács’ of a decoupled — and
therefore Poisson distributed — leading eigenvalue, due to Σ(m = 0) = 0
(Σ ∝ m1/δ, δ = (Nf + 1)/(Nf − 1)) [Landa-Marbán/WB/Hip ’13]
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Schwinger model in the “δ-regime”: Lt ≫ L

Left: “Pion” mass Mπ with dynamical Wilson fermions. For small
fermion mass m (determined by the PCAC relation) and small spatial extent
L: significant errors. Still, the full range enables sensible extrapolations to
the residual “pion” mass MR

π in the chiral limit.

Right: Residual “pion” masses MR
π , extrapolated to m = 0, at L =

6 . . . 12. The data follow a fit ∝ 1/L.

Assuming MR
π = 1/(2F 2

πL) yields Fπ := 0.3923(6) (dim’less in d = 2)
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Left: Like previous figure, but Mπ measured with the overlap-HF, using
quenched, re-weighted confs. Smooth chiral extrapolations for all spatial
sizes L = 4 . . . 12.

Right: Again the fit MR
π ∝ 1/L works for L < 12, and leads to

Fπ = 0.3988(1).

Well compatible with further results that we obtained for Fπ by
employing different methods, and in perfect agreement with Fπ =
1/
√
2π ≃ 0.3989 . . .
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Residual “pion” masses MR
π in the δ-regime (Lt = 32) for a variety of

spatial sizes L≪ Lt, and Nf = 2 . . . 6 flavors.

Chiral extrapolations of quenched, re-weighted results with the overlap-
HFs at β = 4. (Fits in the range where they are successful).

Consistent values for Fπ with the effective formula

MR
π =

Nπ

2F 2
πL

, Nπ =
2(Nf − 1)

Nf
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The value Fπ(m = 0) = 1/
√
2π = 0.3989 . . .

is consistent with the 2d Gell-Mann–Oakes–Renner Relation

Σ = −〈ψ̄ψ〉 = M2
π

4πm
(Smilga ′92, Hetrick/Hosotani/Iso ′95)

F 2
π(m) =

2mΣ

M2
π

⇒ Fπ =
1√
2π

,

and with the Witten-Veneziano Formula

M2
η =

Nf g
2

π

!
=
2Nfχ

q
t

F 2
η

and Fπ = Fη ,

where χq = g2/4π2 (Seiler/Stamatescu ’87) is the quenched, topological
susceptibility. [Nieto Castellanos/Hip/WB, in prep.]

Matches light-come study of 〈0|∂µJ
5
µ(0)|π(p)〉 = M2

πFπ → Fπ ≃ 0.3945

[Harada et al. ’94], but not 〈0|J5
µ(0)|π(p)〉 = ip2

πFπ = 0 [Dürr]
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Overview

• Truncated perfect hypercube fermion (HF)

Ultralocal, good scaling, approx. rotation symmetry

• Overlap-Hypercube fermion (Overlap-HF)

High degree of locality, valid up to strong gauge coupling
low condition number of A†A
good scaling and approx. rotation symmetry inherited from HF

In both cases:

Some additional effort to implement and simulate, but feasible.

Variety of favorable properties, somewhat forgotten in recent years
(even by myself), deserves more attention.
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