An Overview of Brillouin Fermions

// Giannis Koutsou

Computation-Based Science and Technology Research Centre (CaSToRC) The Cyprus Institute

> with Stephan Dürr //

NOVEL2023, MITP, Mainz, 6th – 10th March 2023

Outline

An overview of Brillouin fermions

- S. Durr & G. K., arXiv: 1012.3615
- S. Durr, G. K., & T. Lippert, arXiv:1208.6270
- S. Durr & G. K., arXiv:1701.00726

Outline

- Motivation
- Brillouin operator construction 2D case
- Eigenvalue spectra in 2D
- Proof-of-concept investigation in quenched QCD
- Overlap construction
- Summary, conclusions, outlook

Motivation

$$D(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu} (x,y) - \frac{1}{2} \Delta(x,y) + m_0 \delta(x,y)$$

Consider the first derivative and the laplacian term

- Perfect actions
 - Extended operators, O(100) times more expensive
- Truncation
 - Parameter tuning for each set of new action parameters
- Here:
 - Consider more "geometric improvements", e.g. rotational symmetry
 - Consider effect on eigenvalue spectrum

Construction – Laplacian

Consider linear combinations of the "standard" and "tilted" laplacian $\alpha \Delta_s + (1-\alpha) \Delta_t$

mtp

Construction – Laplacian

Two notable linear combinations of $\alpha \Delta_s + (1-\alpha) \Delta_t$

Construction – Derivative term

NOVEL2023, 6th – 10th March 2023, Mainz

mitp

Construction – Full operator

Here for U(1), 16×16, β =4.4, c_{SW} =1

mitp

Construction – Full operator

Here for U(1), 16×16, β =4.4, c_{SW} =1

Brillouin Laplacian, isotropic derivative

Here for U(1), 16×16, β =4.4, c_{SW} =1

mitp

Brillouin Laplacian, isotropic derivative

Expectations

mitp

B

- Smaller condition number
- Smaller additive mass renormalisation
- Smaller rotational symmetry violation

Free-field quark dispersion relation

Noticeable improvement in dispersion relation for Brillouin improved fermions compared to standard Wilson

More during Stephan's later today

Test case in quenched QCD

size	β	a (fm)	$a^{-1} (GeV)$
$10^{3} \times 20$	5.72	0.160	1.236
$12^{3} \times 24$	5.80	0.133	1.479
$16^{3} \times 32$	5.95	0.100	1.978
$20^{3} \times 40$	6.08	0.080	2.463
$24^{3} \times 48$	6.20	0.067	2.964

S. Durr & G. K., arXiv:1012.3615

- Constant $L \simeq 1.6$ fm
- 1 iteration APE, α =0.72
- c_{SW}=1

Compare to standard Wilson:

- Cut-off effects for pseudo-scalar decays
- Inversion iteration count (or condition number)
- Eigenvalue spectrum

Test case in quenched QCD

• Horizontal line: target κ for both Wilson and Brillouin:

 $(r_{_0}M_{_{PS}})^2 = 1.25^2$, $2.125^2 = 500^2$, $860^2 MeV^2$

Critical **k**

• Fits to rational ansatz

$$-am_{\rm crit} = \frac{c_1g_0^2 + c_2g_0^4}{1 + c_3g_0^2}$$

ritp

BiCGstab iteration count

• 1.7× less iterations for Brillouin compared to Wilson

Eigenvalues

• Comparing smallest to largest eigenvalue

Eigenvalues

- Comparing 10th smallest to largest eigenvalue
- May be more amenable to deflation

mitp

Meson decay constants

- Investigated scaling of pseudo scalar decay constants, f_{π} , $f_{s\bar{s}}$, $f_{c\bar{c}}$
- Five values of α at matched pseudo scalar masses

- Z_A available for Wilson only
- Similar approach to continuum (note vs $\alpha \alpha$)

mitp

B

Meson decay constants

- Charmed pseudo scalar meson decay
- Milder approach to continuum when using Brillouin fermions compared to standard Wilson

Meson decay constants

• Ratio – eliminate Z_A

- Fit including αa term: $f_{c\bar{c}}/f_{s\bar{s}} = d_0 + d_1 \alpha(a)a + d_2 a^2$
- Left: excluding coarsest α, right: all points included

Normality check

Normality "violation": $\|(DD^{\dagger} - D^{\dagger}D)\eta\|$ where η are Gaussian random vectors

- Clover term increases violation for both cases
- Considerably smaller violation for Brillouin

mitp

B

Ginsparg – Wilson "violation"

- Here for $\kappa = \kappa_{crit}$ (only known here for c_{SW} =1)
- Note the magnitude of the y-axes

mitp

Meson and baryon dispersion relations

S. Durr, G. K., & T. Lippert, arXiv:1208.6270

Using a QCDSF N_f=2, (L/ α)³=40³ ensemble, m $_{\pi}$ ≈ 280 MeV, α ≈ 0.073 fm

- Tuning of Wilson and Brillouin κ to same light and strange pseudo-scalar meson masses
- Target values (horizontal dashed lines) correspond to:

$$\mathcal{M}_{PS}^{\overline{l}l} \simeq 280 \,\mathrm{MeV} \qquad \qquad \mathcal{M}_{PS}^{\overline{s}s} \simeq 680 \,\mathrm{MeV}$$

Meson and baryon dispersion relations

Sea: Wilson N_f=2, (L/ α)³=40³, m π ≈ 280 MeV, α ≈ 0.073 fm (by QCDSF)

- Left: pseudo scalar meson, Right: vector meson
- Solid line: continuum dispersion relation

mitp

B

Meson and baryon dispersion relations

Sea: Wilson N_f=2, (L/ α)³=40³, m $_{\pi}$ ≈ 280 MeV, α ≈ 0.073 fm (by QCDSF)

- Left: strange Omega, Right: charm Omega
- Solid line: continuum dispersion relation

mitp

B

S. Durr & G. K., arXiv:1701.00726

• The massless Overlap operator:

$$aD_0^{o\nu} = \left[aD_{-\rho/a}(a^2D_{-\rho/a}^{\dagger}D_{-\rho/a})^{-1/2} + 1\right] = \left[\gamma_5\operatorname{sign}(\gamma_5aD_{-\rho/a}) + 1\right]$$

where there is a choice of the kernel operator $D_{-\rho/\alpha}$

• Approximate the sign function via Kenney-Laub iterates*:

$$X_{k+1} = X_k \frac{p_{mn}(I - X_k^2)}{q_{mn}(I - X_k^2)} \equiv f_{mn}(X_k)$$

$$r_{mn}(t) = \frac{p_{mn}(t)}{q_{mn}(t)} \text{ the } (m, n) \text{ Padé}$$
approximant to: $h(t) = (1-t)^{1/2}$

$$n = 0$$
 $n = 1$ $n = 2$ $m = 0$ $\frac{2x}{1+x^2}$ $\frac{8x}{3+6x^2-x^4}$ $m = 1$ $\frac{x(3-x^2)}{2}$ $\frac{x(3+x^2)}{1+3x^2}$ $\frac{4x(1+x^2)}{1+6x^2+x^4}$ $m = 2$ $\frac{x(15-10x^2+3x^4)}{8}$ $\frac{x(15+10x^2-x^4)}{4(1+5x^2)}$ $\frac{x(5+10x^2+x^4)}{1+10x^2+5x^4}$

ntp

*C.S. Kenney and A.J. Laub, SIAM J. Matrix Anal. Appl. 12, 273 (1991) 26

Kenney-Laub iterates

- Fast convergence to the unit circle
- For what follows: restrict to diagonal, n = m

Kenney-Laub iterates

• Nesting, e.g. $f_{11}^{(3)}(x) \equiv f_{11}(f_{11}(f_{11}(x))) = f_{13,13}(x)$

- In a more practical setting, consider a "zero-mode" λ = 0.2
 - Via overlap prescription, shift by -1
 - Take the sign (here, apply KL)
 - Shift back by +1

- Same five quenched ensembles as prior analysis
- Ginsparg-Wilson "violation"
- Single iteration of f_{1,1}

- Fall-off of overlap operator $\psi = D^{o\nu}\eta\;$ with η Gaussian noise
- Single iteration of f_{1,1}
- Right: averaged over equal directions; $(L/\alpha)^3 = 24^3$

mitp

- Fall-off of overlap operator $\psi = D^{o\nu}\eta\;$ with η Gaussian noise
- Single iteration of f_{1,1}
- Fitted to $e^{-\delta|x|}$

- Practical tests for massive overlap operator
- Used a QCDSF N_f=2 ensemble, $m_{\pi} \approx 280$ MeV, $a \approx 0.073$ fm

• Near-zero additive mass with just two recursions of f₁₁

Codes and performance

- Single-node, OpenMP:
 - → S. Durr, Comput. Phys. Commun. 282 (2023) 108555 <u>arXiv:2112.14640</u>
- Inversion of a 24³×48 quenched lattice

- MPI/OpenMP code [undocumented!]
 - <u>https://github.com/g-koutsou/qpb</u>

Summary & Outlook

Brillouin improvement

- Modified laplacian and derivative operators in Wilson action
- No parameters tuning needed
- Motivated by symmetry and value at Brillouin zone

Practical tests reveal:

- Reduced condition number
- Better dispersion relation verified for hadrons which include heavy quarks
- Smaller additive mass renormalisation compared to standard Wilson

Suitability of Brillouin operator as a kernel to Overlap

- More circular-like spectrum motivates its investigation as an Overlap kernel
- Here, tests carried out using Kenney-Laub iterates as approximations to the sign function – fixed coefficients in ratio
- Nice features of Brillouin include: smaller violation of Ginsparg-Wilson relation, increased locality of operator, few KL-iterates for reaching near-zero additive mass

Acknowledgements

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Projects: EXCELLENCE/0421/0195, COMPLEMENTARY/0916/0048)

