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Direct (reweighted) simulations at pg > 0

How far can we go in the chemical potential?

We compare in these plots for 140 MeV

m Taylor expansion from imaginary ug

m Fugacity expansion from imaginary ug
m Direct finite density simulations at 0 < ug < 380 MeV

Direct = reweigting from sign quenched
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The direct result has the smallest errors.
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Which action should we use?

What do we need?
m Two flavors with a chemical potential: up-+down
m What we do with strange? the strange barrier comes much later
m Broken symmetries should not distort chiral transition
m Low costs to fight off the sign+overlap problems
m No time-like multi-hops, reduced matrix with few space-like points
What choices do we have?

m Rooted staggered: square root of a complex determinant is
ambiguous. Is it analytic in ug?

m Wilson fermions: conceptually great, but the chiral transition
requires much finer lattices than on staggered.

m Overlap construction: do we really want to drive p through a step
function?
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Why the Karsten-Wilczek action?

What do we need?
m Two flavors with a chemical potential: up+down
m What we do with strange? the strange barrier comes much later
m Broken symmetries should not ditort chiral transition
m Low costs to fight off the sign+overlap problems
Pro Karsten-Wilczek:
m Two flavors
m Anisotropy is not a bug, it is a feature in thermodynamics
m Exact remnant chiral symmetry
m No nested inversion
Contra Karsten-Wilczek:
m Non-trivial tuning
m Are there O(a) corrections?

Borici-Creutz does not lend itself so naturally for finite T



Study of the dispersion relation

Dxw (k nyugsm ak, + (o Z (1 — cos ak;)

Jj=1

What is the discretization error on the pressure?

= ;Zbg(D(k)) = NfN Zlog(D(k))
k XK

This is divergent, but subtracting the vacuum you get

4+(p(T) — p(T =0))
lat N Nt €4

P
T4
In the continuum you get for one flavor (K-W gives this with factor 2):
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How do your lattices need to be so that a continuum extrapolation will give
you back this continuum number? [phd Thesis A Peikert, Bielefeld 2000]
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Pressure discretized / contniuum

Let's introduce an anisotropy of £ = 2.
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Pressure discretized / contniuum

Let's play with the Wilczek parameter ¢
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Tuning the counterterms

Dimension 4 and gauge counterterms are just the standard £, and &¢ for
anisotropic actions.

The only new term c: dimension 3.

J. Weber: Look at the oscillations in the parallel correlator of 1)7%.

A[cos(tw + ¢) exp(—mt) 4 cos((N; — t)w + @) exp(—m(N; — t))]

The correct ¢ es defined through w — 7 = 0.
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How accurately do we need this counterterm?

Take a relevant observable, here
bulk isospin fluctuations
and observe it as a function of the counterterm.
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The simulation code — Outline

Overview of the simulation code
Implementation of K-W action
Comparison of Scaling among Staggered, Wilson and K-W actions

Conclusion



Overview of the simulation code

m The simulation code is written in C, C++4-, HIP and CUDA

m Composed of different backends (corresponding to different
architectures or implementation details) , sharing modules in the
frontend

The frontend connects to the backend via an APl composed of
“kernel functions” (not GPU kernels) , which are the critical routines
provided by the backends

All local operations on each site are written as backend-independent
macros that are shared in the frontend

m NVSHMEM package is used to avoid most of host-device copying

m Under active development, currently supports Staggered, Wilson and
Karsten-Wilczek (K-W) actions, in C and CUDA backends.
C++/MPI and HIP/MPI backends are planned.

API




Implementation of K-W action

mD=2(m+D):

DY[s] = & cul(s) T Up(s) ¥ls +

—¢; M(s— p) T"TUS (s — p)els — p]]
+ (2m+ 2i(3¢ 4 c)v*)Y[s]

S b S N S
(1+d)’>ﬂu yH =

cu(s) = e mid(s),
®(s) = £1 according to b.c. ,
chemical potential pq being a complex number in general,
& = £9nt is the anisotropy, always understood in the Euclidean time
direction
d is absorbed by £, if v is t
® « is general but a compile-time decision
m Critical routines are combined into larger CUDA kernels for better
performance



Comparison of Scaling
among Staggered, Wilson and K-W actions

Test on A100 GPUs in JUWELS BOOSTER of
Juliech Supercomputing Center (JSC)
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Comparison of Scaling
among Staggered, Wilson and K-W actions
Test on A100 GPUs in JUWELS BOOSTER of
Juliech Supercomputing Center (JSC)

Weak Scaling (32%4)
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Comparison of Scaling
among Staggered, Wilson and K-W actions

Test on A100 GPUs in JUWELS BOOSTER of
Juliech Supercomputing Center (JSC)
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Comparison of Scaling
among Staggered, Wilson and K-W actions

m Test on A100 GPUs with a quenched 163 x 128 config with
approximately tuned parameter values :
B = 4.2095, g = 1.811336, ¢ = —0.49, m = 0.05, 2-stout with
p =0.15 (& or d left untuned)
m So far we have tried:
= CG on D'D(CGDdagD), 4°D(CGg5D), 4°D with e/o
preconditioning (CGg5Dhat),
m CR on v*D(CRg5D), CR on +°D with e/o
preconditioning(CRg5Dhat)
m Comparison: CG in staggered(stagCG) on the same config :
B = 4.2095, {; = 1.811336, {r = 1.84, m = 0.0463, 2-stout with
p=0.15
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Comparison of Scaling
among Staggered, Wilson and K-W actions
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benchmark (TFlops)

Comparison of Scaling
among Staggered, Wilson and K-W actions
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benchmark (s)

Comparison of Scaling
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spatial pion mass [MeV]

Towards physical pion mass
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Conclusion

We need to move away from Staggered; the K-W action is attractive

We plan to conduct dynamical simulations with the K-W action to
study 2-flavor QCD at finite real p

We are currently tuning the renormalization constants

The K-W action is implemented in C and CUDA and the fermionic
force routine will be implemented

We have tried different solvers at relevant parameter values and
configs. So far CR or CG on v°D with e/o preconditioning gives
best performance. There will be tests on other solvers e.g.
BiCGStab, CGNE.

It is observed that the cost of inversion for K-W action is about ~ 3
times that of staggered action

Dim-5 improvement terms may also be implemented and used

Improvement of the dispersion relation is considered
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