Experiences with the Karsten-Wilczek solver

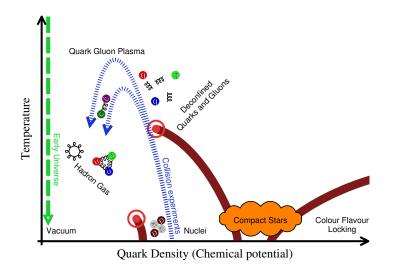
Szabolcs Borsanyi, Chik Him Wong

Attila Pásztor, Réka Víg

University of Wuppertal

Mainz, March 8, 2023 Novel Lattice Fermions and their Suitability for High-Performance Computing and Perturbation Theory

The QCD phase diagram

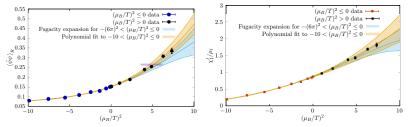


Direct (reweighted) simulations at $\mu_B > 0$

How far can we go in the chemical potential?

We compare in these plots for 140 MeV

- Taylor expansion from imaginary μ_B
- Fugacity expansion from imaginary μ_B
- Direct finite density simulations at 0 < µ_B ≤ 380 MeV Direct = reweigting from sign quenched



The direct result has the smallest errors.

[Wuppertal-Budapest 2108.09213]

Which action should we use?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

What do we need?

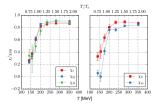
- Two flavors with a chemical potential: up+down
- What we do with strange? the strange barrier comes much later
- Broken symmetries should not distort chiral transition
- Low costs to fight off the sign+overlap problems
- No time-like multi-hops, reduced matrix with few space-like points

What choices do we have?

- Rooted staggered: square root of a complex determinant is ambiguous. Is it analytic in μ_B?
- Wilson fermions: conceptually great, but the chiral transition requires much finer lattices than on staggered.
- **Overlap construction**: do we really want to drive μ through a step function?

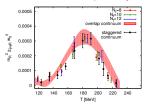
Non-staggered finite temperature results

Quark number susceptibilities anisotropic wilson $m_{\pi} = 392 \text{ MeV}$



[FASTSUM 1309.6253,1412.6411]

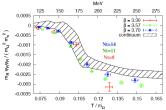
Chiral susceptibility



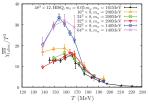
Overlap fermions ($m_{\pi}=350$ MeV)

[WB 1204.4089].

isotropic wilson in continuum 285 MeV.



[WB 1205.0440,1504.03676]



Domain wall $(m_{\pi} = 135 \text{ MeV})$

э

[HotQCD 1402.5175]

Why the Karsten-Wilczek action?

What do we need?

- Two flavors with a chemical potential: up+down
- What we do with strange? the strange barrier comes much later
- Broken symmetries should not ditort chiral transition
- Low costs to fight off the sign+overlap problems

Pro Karsten-Wilczek:

- Two flavors
- Anisotropy is not a bug, it is a feature in thermodynamics
- Exact remnant chiral symmetry
- No nested inversion

Contra Karsten-Wilczek:

- Non-trivial tuning
- Are there $\mathcal{O}(a)$ corrections?

Boriçi-Creutz does not lend itself so naturally for finite $\ensuremath{\mathcal{T}}$

Study of the dispersion relation

$$D_{\rm KW}(k) = \frac{i}{a} \left[\sum_{\mu=0}^{3} \gamma_{\mu} \xi \sin ak_{\mu} + \zeta \gamma_0 \sum_{j=1}^{3} (1 - \cos ak_j) \right]$$

What is the discretization error on the pressure?

$$\rho = \frac{T}{V} \sum_{k} \log(D(k)) = \frac{\xi}{N_x^3 N_t} \sum_{k} \log(D(k))$$

This is divergent, but subtracting the vacuum you get

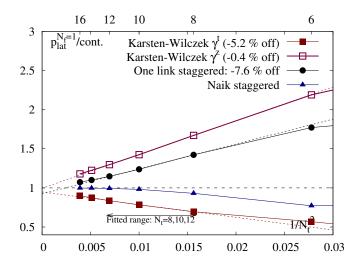
$$\frac{p}{T^4}\Big|_{\text{lat}} = N_t^4 \frac{(p(T) - p(T=0))}{\xi^4}$$

In the continuum you get for one flavor (K-W gives this with factor 2):

$$\left.\frac{p}{T^4}\right|_{\rm cont} = \frac{7\pi^2}{180}$$

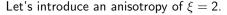
How do your lattices need to be so that a continuum extrapolation will give you back this continuum number? [Phd Thesis A Peikert, Bielefeld 2000], A Peikert, Bielefeld 2

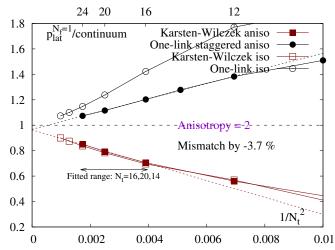
Pressure discretized / contniuum



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

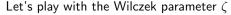
Pressure discretized / contniuum

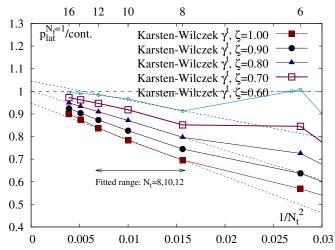




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pressure discretized / contniuum





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Tuning the counterterms

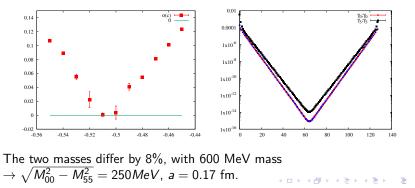
Dimension 4 and gauge counterterms are just the standard ξ_g and ξ_f for anisotropic actions.

The only new term c: dimension 3.

J. Weber: Look at the oscillations in the parallel correlator of $\bar{\psi}\gamma^{0}\psi$.

$$A\left[\cos(t\omega+\phi)\exp(-mt)+\cos((N_t-t)\omega+\phi)\exp(-m(N_t-t))\right]$$

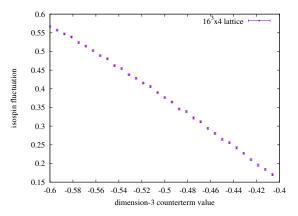
The correct *c* es defined through $\omega - \pi = 0$.



How accurately do we need this counterterm?

イロト イヨト イヨト

Take a relevant observable, here bulk isospin fluctuations and observe it as a function of the counterterm.



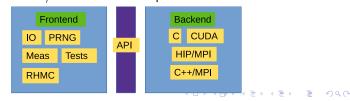
The simulation code – Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Overview of the simulation code
- Implementation of K-W action
- Comparison of Scaling among Staggered, Wilson and K-W actions
- Conclusion

Overview of the simulation code

- The simulation code is written in C, C++, HIP and CUDA
- Composed of different backends (corresponding to different architectures or implementation details), sharing modules in the frontend
- The frontend connects to the backend via an API composed of "kernel functions" (not GPU kernels), which are the critical routines provided by the backends
- All local operations on each site are written as backend-independent macros that are shared in the frontend
- NVSHMEM package is used to avoid most of host-device copying
- Under active development, currently supports Staggered, Wilson and Karsten-Wilczek (K-W) actions, in C and CUDA backends.
 C++/MPI and HIP/MPI backends are planned.



Implementation of K-W action

•
$$D \equiv 2(m + D)$$
:

$$\begin{aligned} \mathcal{D}\psi[s] &\equiv \sum_{\mu} \xi_{\mu} \left[c_{\mu}(s) \ \Gamma^{\mu} \ U_{\mu}(s) \ \psi[s+\mu] \right] \\ &- c_{\mu}^{-1}(s-\mu) \ \Gamma^{\mu\dagger} U_{\mu}^{\dagger}(s-\mu)\psi[s-\mu] \right] \\ &+ (2m+2i(3\zeta+c)\gamma^{\alpha})\psi[s] \\ \Gamma^{\mu} &\equiv \begin{cases} \gamma^{\mu} - i\zeta\gamma^{\alpha} &, \mu \neq \alpha \\ (1+d)\gamma^{\mu} &, \mu = \alpha \end{cases} \end{aligned}$$

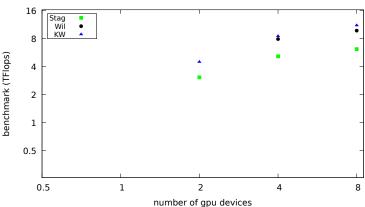
 $c_\mu(s)=e^{rac{\mu_q}{N_t}~\delta_{\mu,t}}\Phi(s)$, $\Phi(s)=\pm 1$ according to b.c. ,

chemical potential μ_q being a complex number in general, $\xi_\mu=\xi^{\delta_{\mu t}}$ is the anisotropy, always understood in the Euclidean time direction

d is absorbed by ξ_{μ} if α is t

- $\blacksquare \ \alpha$ is general but a compile-time decision
- Critical routines are combined into larger CUDA kernels for better performance

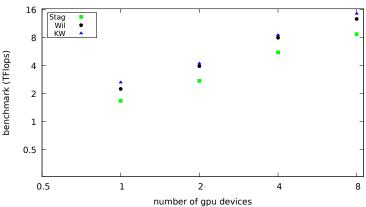
Test on A100 GPUs in JUWELS BOOSTER of Juliech Supercomputing Center (JSC)



Strong Scaling (32³ x 128)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

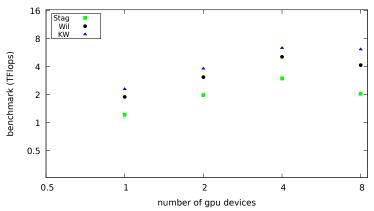
Test on A100 GPUs in JUWELS BOOSTER of Juliech Supercomputing Center (JSC)



Weak Scaling (32⁴)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Test on A100 GPUs in JUWELS BOOSTER of Juliech Supercomputing Center (JSC)



16³ x 128

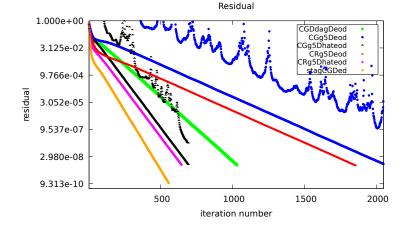
◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

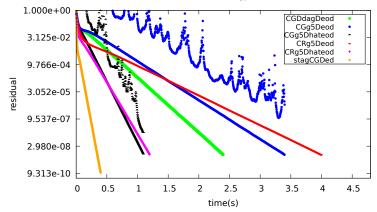
■ Test on A100 GPUs with a quenched 16³ × 128 config with approximately tuned parameter values :

 $\beta =$ 4.2095, $\xi_g =$ 1.811336, c = -0.49, m = 0.05, 2-stout with

 $\rho = 0.15$ (ξ_f or d left untuned)

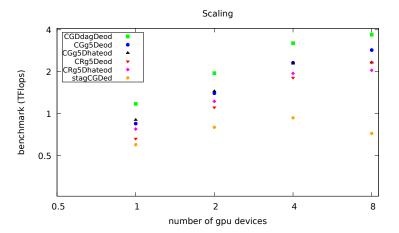
- So far we have tried:
 - CG on D[†]D(CGDdagD), γ⁵D(CGg5D), γ⁵D with e/o preconditioning (CGg5Dhat),
 - CR on γ⁵D(CRg5D), CR on γ⁵D with e/o preconditioning(CRg5Dhat)
- Comparison: CG in staggered(stagCG) on the same config : $\beta = 4.2095$, $\xi_g = 1.811336$, $\xi_f = 1.84$, m = 0.0463, 2-stout with $\rho = 0.15$



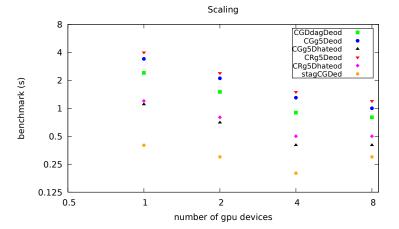


Residual (1 gpu)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

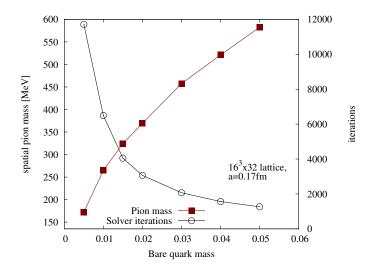


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Towards physical pion mass



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Conclusion

- We need to move away from Staggered; the K-W action is attractive
- \blacksquare We plan to conduct dynamical simulations with the K-W action to study 2-flavor QCD at finite real μ
- We are currently tuning the renormalization constants
- The K-W action is implemented in C and CUDA and the fermionic force routine will be implemented
- We have tried different solvers at relevant parameter values and configs. So far CR or CG on γ⁵D with e/o preconditioning gives best performance. There will be tests on other solvers e.g. BiCGStab, CGNE.
- \blacksquare It is observed that the cost of inversion for K-W action is about ~ 3 times that of staggered action
- Dim-5 improvement terms may also be implemented and used
- Improvement of the dispersion relation is considered