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Talk

Motivation
1 Folklore: anomalies cannot be realized on lattice... Wrong ! –

counterexample: Kähler–Dirac fermions.
2 Folklore: Hard (impossible ?) to put chiral gauge theories on

lattice. Kähler–Dirac fermions may offer new path ...

Plan
Kähler–Dirac and relation to Dirac. Discretization on curved
space.
New gravitational anomalies – survive discretization. Place
constraints on IR behavior - in particular whether models can be
trivially gapped.
Embed chiral fermions in Kähler–Dirac fields. Build mirror
models. Simplest anomaly free model → Pati-Salam GUT. Lattice
realization ?
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Kähler–Dirac equation

An alternative solution to the problem of square rooting the Laplacian:

Kähler-Dirac equation
(K − m)Φ = 0 K = d − d†

where K 2 = −dd† − d†d = □

Kähler-Dirac field Φ = (ϕ, ϕµ, ϕµν , . . . ).

Ex. 2d

∂µϕµ − mϕ = 0
∂µϕ+ ∂νϕνµ − mϕµ = 0
∂µϕν − ∂νϕµ − mϕµν = 0
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Connection to Dirac

Form matrix

Ψ =
D∑

p=0

∑
ni

ϕn1...np(x)γ
n1
1 γ

n2
2 · · · γnp

p

eg in 2d:

Ψ = ϕI + ϕiσi + ϕ12σ1σ2

In flat space can show

(γµ∂µ − m)Ψ = 0

Kähler–Dirac field describes 2D/2 degenerate Dirac fermions !
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Kähler–Dirac in curved space...

Curved space
(d − d† − m)Φ = 0 unchanged

Kähler–Dirac fermions can be formulated on any smooth manifold.
No need for spin structure

No need for spin connection/vielbein formalism
quite different from Dirac

Locally Kähler–Dirac decompose into 2D/2 Dirac.
Global properties K differ from /∂ eg. K has zero modes on SD

Expect corrections ∼ wavelength
radius of curvature
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A U(1) symmetry for Kähler–Dirac fermions
Kähler–Dirac Action:∫

ΦKΦ ≡
∫

dDx
√

g
D∑

p=0

Φp[(K − m)Φ]p

Operator Γ : ϕµ1...µp → (−1)p ϕµ1...µp

Key property {Γ,K}+ = 0

Generates exact U(1) symmetry of massless action

Φ → eiαΓΦ

Φ → ΦeiαΓ

Matrix rep Ψ
Γ→ γ5Ψγ5 twisted chiral symmetry
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Reduced Kähler–Dirac (RKD) fermions
Define: Φ± = 1

2 (1 ± Γ)Φ
if m = 0:

SKD =

∫
Φ+KΦ− +Φ−KΦ+ → SRKD =

∫
Φ+KΦ−

Analogous to decomposition of massless Dirac field into 2 Weyl fields

Introducing Ψ =

(
Φ

T
+

Φ−

)

SRKD =

∫
ΨTKΨ K =

(
0 K

−K T 0

)

Reduced fields naturally massless

Φ−Φ+ = Φ−Φ− = Φ+Φ− = 0
Flat space continuum limit: 2D/2−1 Dirac or 2D/2 Majorana
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Discrete curved space → triangulation

p-simplex Cp = [a0, . . . ,ap]

Boundary operator δ: δ[a0 . . . ap] =
∑p

i=0 (−1)i [a0 . . . âi . . . ap]
where âi indicates that vertex is omitted.

eg

δ([142] + [123]) = [42]− [12] + [14] + [23]− [13] + [12]
= [42] + [23] + [31] + [14]

Note:
δ2([142] + [123]) = [2]− [4] + [4]− [1] + [3]− [2]− [3] + [1] = 0!
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Lattice p-forms

Continuum p-forms → each p-simplex Cp ≡ [a0, . . .ap] carries a
lattice field ϕ(CP):

δϕ(Cp) =
∑
Cp−1

I(Cp,Cp−1)ϕ(Cp−1)

where I(Cp,Cp−1) is zero unless Cp−1 lies in boundary of Cp
when it is ±1 according to orientation

Similarly co-boundary operator δ:

δϕ(Cp) =
∑
Cp+1

I(Cp+1,Cp)
Tϕ(Cp+1)

Note δ2 = δ
2
= 0
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Lattice Kähler–Dirac equation

ϕp(x) → ϕ(Cp)

δ → d†

δ → d

(δ − δ̄ − m)Φ = 0 with Φ = (ϕ(C0), ϕ(C1), . . .Φ(CD)

Discrete Laplacian δδ̄ + δ̄δ.
Exact zero modes of δ − δ̄ match those of d − d†. Given by ranks
of homology groups.
No fermion doubling ! Continuum limit describes 2D/2 Dirac
fermions just like continuum theory.
UΓ(1) remains exact symmetry of lattice theory
Can include arbitrary random triangulations with any topology and
even non-orientable triangulations
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Special case - staggered fermions
Decompose on p-cells of regular hypercubic lattice
Introduce second lattice with 1/2 lattice spacing

χ(x + µ̂1 + µ̂2 + . . .+ µ̂p) = ϕ[µ1...µp](x)

Form discrete Kähler–Dirac matrix field using

Ψ(x) =
∑

χ(x + µ̂1 + . . .+ µ̂p)γ
µ1 · · · γµD

=
∑

bi=0,1 in hyp cube

χ(x + b)γx+b γx = γx1
1 γ

x2
2 . . . γxD

D

Plug into
∑

Tr(Ψ /∆Ψ) and do trace →

S =
∑
x ,µ

ηµ(x)χ(x)∆µχ(x) with ηµ(x) = (−1)
∑µ−1

i xi

Discrete Kähler–Dirac on regular lattice = staggered action !
Γ → ϵ(x1 + . . . xD)− site parity
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Gravitational anomaly for Kähler–Dirac fermions
Work on lattice in d dims

Under (Φ,Φ) → eiαΓ(Φ,Φ)

δSKD(Φ,Φ) = 0

But measure not invariant

DΦDΦ =
∏

p dϕpdϕp → e2iN0αe−2iN1α..e2i(−1)d Ndα
∏

p dϕpdϕp

= e2iχαDΦDΦ χ ≡ Euler

Anomaly in even dimensions

Compactify R2n → S2n. Breaks U(1) → Z4.

Note
Example of QM anomaly for finite number dof ...

Index(K ) = n+ − n− = χ =
∫

Pf (R ∧ . . . ∧ R)
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Consequences

Global U(1) symmetry of Kähler–Dirac field broken to Z4. Prohibits
mass terms but allows for eg. four fermion ops. in Seff.

Theories of reduced Kähler–Dirac fermions with U(1) symmetries
cannot be consistently coupled to gravity – breakdown in gauge

invariance
Analog: ABJ anomaly for Dirac implies cannot couple single Weyl

fields to U(1) gauge field

Can think of anomaly as ’t Hooft anomaly for lattice fermions in flat
space that arises when I try to couple them to gravity
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’t Hooft anomalies

Represent an obstruction to gauging a global symmetry.
Can be seen by coupling to classical background field
Non-zero anomaly coeff in U.V RG invariant→ physics of I.R non-
trivial:

Massless (composite) fermions (CFT)
Goldstone bosons from SSB
TQFT

In particular:
Cannot gap all states in I.R (symmetric mass generation) unless all ’t

Hooft anomalies cancel

Are there any (more) ’t Hooft anomalies for Kähler–Dirac ?
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Try to gauge Z4 ...

Typical term in action:

ϕ(Cp)I(Cp,Cp−1)ϕ(Cp−1)

Under local Z4:

ϕ(Cp) → ei π2 Γn(Cp)ϕ(Cp) n(Cp) = 0,1,2,3

To keep invariant need to promote I(Cp,Cp−1) to Z4 gauge field
U(Cp,Cp−1) transforming as

e−i π2 Γn(Cp)U(Cp,Cp−1)e−i π2 Γn(Cp−1)

Measure ?
∫

dϕ(Cp)dϕ(Cp) NOT invariant → ’t Hooft anomaly !

Cancels for multiples of 2 flavors
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Consequences

’t Hooft anomalies for Kähler–Dirac fields cancelled for Nf = 2k
2 Kähler–Dirac ≡ 4 reduced fields

Yield 2D/2+1 Dirac or 2D/2+2 Majorana fermions in continuum limit

Agrees with results for gapping boundary fermions in topological
superconductors and cancellation of discrete anomalies of

Weyl/Majorana fermions in variety dims

D=1 Time reversal T 2 = 1 8 Majorana 4 RKD
D=2 Chiral fermion parity 8 Majorana/Weyl 4 RKD
D=3 Time reversal T 2 = −1 16 Majorana 4 RKD
D=4 Spin-Z4 symmetry 16 Majorana/Weyl 4 RKD

Explains observations of SMG for certain interacting staggered
fermions in 4d
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Massive symmetric phase for 2 staggered fermions

Higgs-Yukawa model: S =
∑
χ(η.∆)χ+ 1

2σ
2 − κσ□σ + Gσχχ
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Evidence for direct, continuous phase transition between massless
and massive phases with no symmetry breaking (S.C et al. PRD98

(2018) 114514)
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Summary so far

Kähler–Dirac fermions admit gravitational anomalies which
survive discretization. Break U(1) → Z4 in even dims → Cannot
couple reduced Kähler–Dirac field to gravity.

Notice - Kähler–Dirac have no γ5 anomalies.
’t Hooft anomalies for Z4 and mixed Z4 × R cancel for multiples of
2 Kähler–Dirac /staggered fields. ≡ 16 Majorana in 4d.
Cancellation of all ’t Hooft anomalies necessary condition for
symmetric mass generation (SMG)
Explains phase diagram of certain staggered fermion models.

What is SMG good for ?
Use SMG to gap mirrors in lattice models targeting chiral gauge

theories ..?
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Chiral lattice fermions

Lack a non-perturbative definition of a chiral gauge theory
(Weyl fields in complex representation of gauge group)

Naive lattice approach fails because of fermion doubling:
Nielsen-Ninomiya theorem always leads to equal numbers of left ψL

and right ψR fields.

Mirror models Try to give mass to say ψR using multifermion
interactions without touching ψL.

New idea:
Embed Weyl fermions in Kähler–Dirac fields.
Mirrors defined by Γ not γ5. Use SMG to gap.

Arrange low energy theory flow to (anomaly free) chiral theory
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Minimal model - continuum

Start: theory of full Kähler–Dirac fields with exact Z4 symmetry.
Decompose into reduced fields (Ψ−,Ψ+). Treat Ψ+ as mirror.
Need at least 4 copies for SMG

Consider “light" fields Ψ− in (Euclidean) chiral basis γµ =

(
0 σµ
σµ 0

)
where σµ = (I, σi). Continuum matrix form in flat space

Ψ− =

(
0 ψR
ψL 0

)
L and R handed doublet of Weyl fields transforming as (1,2) and (2,1)
under an SU(2)× SU(2) flavor symmetry.

4 copies – additional SU(4) symmetry.

Replace ψR = iσ2ψ
∗
L.

Get reps (4,2,1)⊕ (4,1,2) - Pati-Salam reps !
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Pati-Salam - quick summary

leptons (e,ν) as fourth color
left-right symmetric weak interaction

Symmetry: SU(4)⊗ SUL(2)⊗ SUR(2)

One generation:(
ur ub us ν
dr db dg e

)
L

⊕
(

uc
r uc

b uc
s νc

dc
r dc

b dc
g ec

)
L

Subsequently SU(4) → SU(3) and SUL(2)⊗ SUR(2) → SUL(2)
(4,2,1) → (3,2) 1

6
⊕ (1,2)− 1

2
qL and lL

(4,1,2) → (3,1) 1
3
⊕ (3,1)− 2

3
⊕ (1,1)1 ⊕ (1,1)0 dc ,uc , ec and νc

1 family of SM !

need eg GUT scale Higgs in (4,1,2) rep. to do this
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Gapping mirrors

Add Z4 symmetric four fermion interactions in mirror sector. No effect
on Pati-Salam fields

G2

2

∫
d4x ϵabcd

[
tr (Ψ

a
−Ψ

b
−)tr (Ψ

c
−Ψ

d
−) + tr (Ψa

+Ψ
b
+)tr (Ψ

c
+Ψ

d
+)
]

Better: gauge SU(4) of mirror sector and use confinement to
generate four fermion condensate + massive hadrons

Notice: mirror sector fields do not couple to Pati-Salam except
gravitationally. Composite dark matter ?
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Lattice chiral gauge theory
Replace continuum Kähler–Dirac field by staggered field χ.

S =
∑
x ,µ

ηµ(x)
[
χ+∆µχ− + χ−∆

c
µχ+

]
+

G
∑

x

ϕ̂ab

[
χa
−χ

b
− + χa

+χ
b
+

]
+

1
2

∑
x

ϕ̂2
ab

with

ϕ̂ab =
1
2

(
ϕab +

1
2
ϵabcdϕcd

)
and

∆c
µχ+(x) = Uµ(x)χ+(x + µ)− U†(x − µ)χ+(x − µ)

Continuum limit
Sixteen free Weyl fermions in PS rep. Gapped mirror sector with
SU(4) invariant four fermion condensate + heavy SU(4) hadrons
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Conclusions

Possible to build mirror models using (lattice) Kähler–Dirac fields
and Γ. Anomaly cancellation conditions allow for SMG in mirror
sector.
Simplest model: remaining light fields → Pati-Salam. Mirror sector
as composite dark matter ?
For lattice chiral gauge theory: need to understand how to gauge
SU(2)× SU(2) sector in lattice ?
Sign problems for (gauged) reduced Kähler–Dirac fermions

Thanks !
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