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Fermion-doubling and species

The lattice field theory has a serious problem.
It is called as "Fermion-doubling".

What is Fermion-doubling?
Multiple species appear when we take naive fermion formulations on a
lattice.

Why is fermion-doubling a serious problem?

The reconcilement of a desirable number of fermions and chiral
symmetry is difficult.
We cannot distinguish between these species because they are
degenerate.
Wilson fermion : species-splitting mass fermion∑

n,µ

ψ̄n (2ψn − ψn+µ̂ − ψn−µ̂)
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Fermion-doubling and species

As known results, the number of species on D-dim square lattice with
periodic boundary condition (PDC) is 2D.

e.g. Species on the 4-dim lattice with PDC.
Naive and free lattice action is

S =
1

2

∑
n,µ

ψ̄nγµ (ψn+µ̂ − ψn−µ̂)

=⇒ D(p) =
1

a

∑
µ

iγµ sin apµ

16 species appear such as

p = (0, 0, 0, 0), (π/a, 0, 0, 0), (0, π/a, 0, 0) (0, 0, π/a, 0), (0, 0, 0, π/a),

(π/a, π/a, 0, 0), (π/a, 0, π/a, 0) (π/a, 0, 0, π/a),

(0, π/a, π/a, 0), (0, π/a, 0, π/a), (0, 0, π/a, π/a),

(π/a, π/a, π/a, 0), (π/a, π/a, 0, π/a) (π/a, 0, π/a, π/a), (0, π/a, π/a, π/a),

(π/a, π/a, π/a, π/a)
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Motivation

We have found numerous evidences that the maximal # of species depend
on a certain topological invariant of the lattice.
The topological invariant is sum of the Betti number

∑
r βr.

Here, we define the number of species as the number of exact Dirac
zero-modes of free theory

Table: Topological invariant and maximal # of the species

lattice
∑

r βr maximal # of species d

4-d torus 1 + 4 + 6 + 4 + 1 16

Torus TD (1 + 1)
D

2D

Hyperball BD 1 + 0 + 0 + · · · 1

Sphere SD 1 + 0 + 0 + · · ·+ 1 2

TD ×Bd 2D + 0 2D
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Motivation and our work

Why does the maximal # of species depend on the topological invariant
of the lattice?

−→ This question is a motivation of our work.

How do you mathematically explain or prove that?

−→ Spectral graph theory and topology.

Our work
# of species =⇒ Nullity of spectral matrix.
[J.Y, T.Misumi, JHEP 02, 104 (2022)]

New conjecture on species doubling of lattice fermions!
[J.Y, T.Misumi, arXiv: 2301.09805]
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Lattice fermions as spectral graph theory
Spectral graph theory
Lattice fermions as spectral graphs
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Spectral graph theory

We introduce basic concepts in spectral graph theory.

Definition (graph)

A graph G is a pair G = (V,E). V is a set of vertices and E is a set of edges.

e.g. Two graph G = (V,E) with V = {1, 2, 3, 4} and E = {e12, e13, e14, e34}.

Note that we can commutate two vertices in a edge, so e12 = e21.
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Spectral graph theory

Definition (directed graph)

A directed graph is a pair (V,E) of sets of vertices and edges together with
two maps init : E → V and ter : E → V . The two maps are assigned to
every edge eij with an initial vertex init(eij) = vi ∈ V and a terminal vertex
ter(eij) = vj ∈ V . If init(eij) = ter(eij), the edge eij is called a loop.
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Spectral graph theory

e.g. Two directed graph G = (V,E) with V = {1, 2, 3, 4} and
E = {e12, e13, e14, e34}.

Unlike previous graphs, we cannot commutate two vertices in a directed
edge, so e12 ̸= e21.
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Spectral graph theory

Definition (directed graph)

A directed graph is a pair (V,E) of sets of vertices and edges together with
two maps init : E → V and ter : E → V . The two maps are assigned to
every edge eij with an initial vertex init(eij) = vi ∈ V and a terminal vertex
ter(eij) = vj ∈ V . If init(eij) = ter(eij), the edge eij is called a loop.

e.g. A loop graph G = (V,E) with V = {1, 2} and E = {e11, e12, e22}.
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Spectral graph theory

Definition (weighted graph)

A weighted graph has a value (weight) for each edge in a graph.

e.g. A weighted graph with V = {1, 2, 3, 4} and
E = {e12, e23, e41, e14, e21, e43}.

These weights are as follows:

w12 = 1, w23 = 2, w41 = 3, w14 = −1, w21 = −4, w43 = −2
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Spectral graph theory

Definition (adjacency matrix)

An adjacency matrix A of graph is the |V | × |V | matrix is given by

Aij ≡

{
wij if there is a edge from i to j
0 otherwise

where wij is the weight of an edge from i to j.
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Spectral graph theory

e.g. An adjacency matrix of a previous weighted and directed graph.

An adjacency matrix of this graph is

A =


0 1 0 −1
−4 0 2 0
0 0 0 0
3 0 −2 0


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Lattice fermions as spectral graphs

Naive fermion on 1-dim N lattice with PDC (T 1 or S1)

A weighted and directed graph like naive fermion on T 1 is depicted as

This graph schematically shows a circle S1.
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Lattice fermions as spectral graphs

Naive fermion on 1-dim N lattice with PDC (T 1 or S1)

An adjacency matrix A1d of the previous graph is

A1d = PN ⊗ γ1

where PN is N square matrix below,

PN =
1

2



0 1 0 0 0 −1
−1 0 1 · · · 0 0 0
0 −1 0 0 0 0

...
. . .

...
0 0 0 0 1 0
0 0 0 · · · −1 0 1
1 0 0 0 −1 0


.
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Lattice fermions as spectral graphs

Naive fermion on 1-dim N lattice with PDC (T 1 or S1)

We show that the bilinear form of the adjacency matrix A1d for the field
vector ψ is the Lagrangian about naive fermion with PDC.

ψ̄A1dψ =

N∑
n=1

ψ̄nγ1 (ψn+1 − ψn−1) =

N∑
n=1

ψ̄nγ1Dψn

Adjacency matrix of a graph
showing lattice

=⇒ Dirac operator on lattice
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Lattice fermions as spectral graphs

Naive fermion on 2-dim N2 lattice with PDC (T 2)

A graph corresponds the 2-dim lattice with PDC is a figure below.

This graph schematically shows T 2.
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Lattice fermions as spectral graphs

Naive fermion on 2-dim N2 lattice with PDC (T 2)

An adjacency matrix A2d of the graph like T 2 is below

A2d = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2.

1N is the identity matrix of order N .

It is topologically consistent since T 2 = S1 × S1

×2
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Lattice fermions as spectral graphs

Naive fermion on 4-dim N4 lattice with PDC (T 4)

Topologically, we construct a graph showing 4-dim naive fermion below,

×4

We obtain an adjacency matrix of this graph

A4d = 1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1

+1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+1N ⊗ pN ⊗ 1N ⊗ 1N ⊗ γ3

+PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4
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Lattice fermions as spectral graphs

Naive fermion on 4-dim N4 lattice with PDC (T 4) :

Diagonalization of the matrix PN

PNX =
∑
k

i sin

(
2π(k − 1)

N

)
|k⟩ ⟨k| ≡ ΛNX

From above diagonalization, we can diagonalize the adjacency matrix A4d

U†A4dU = 1N ⊗ 1N ⊗ 1N ⊗ ΛN ⊗ γ1

+ 1N ⊗ 1N ⊗ ΛN ⊗ 1N ⊗ γ2

+ 1N ⊗ ΛN ⊗ 1N ⊗ 1N ⊗ γ3

+ ΛN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

, U =

4⊗
µ=1

X ⊗ 14
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Lattice fermions as spectral graphs

Naive fermion on 4-dim N4 lattice with PDC (T 4) :

Due to obtaining species, we take an equation below

U†A4dU = 0 =⇒
4∑

µ=1

iγµ sin

(
2π(kµ − 1)

N

)
= 0

Linear independence of γ matrices

sin

(
2π(kµ − 1)

N

)
= 0 =⇒ kµ = 1 or

N

2
+ 1

We get 24 solutions when we take N the even number.
So, there are 16 species!

Note that 16 species is the maximal number of species, here.

Appearing 16 species is consistence with fermion-doubling.
22 / 51
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Lattice fermions as spectral graphs

Lattice field theory and Spectral graph theory� �
Lattice field theory =⇒ Spectral graph theory

Lattice fermion =⇒ Directed and Weighted spectral graph

# of species =⇒ Nullity of spectral matrix

� �
We can use known theorems to study lattice field theory.
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New conjecture on species doubling
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New conjecture on species doubling

We have found numerous evidences that the maximal # of species is
equivalent to sum of the Betti number

∑
r βr.

Table: Betti numbers and Maximal numbers of species

manifold M sum of βr(M) maximal # of species
1-d torus 1 + 1 2
2-d torus 1 + 2 + 1 4
3-d torus 1 + 3 + 3 + 1 8
4-d torus 1 + 4 + 6 + 4 + 1 16

Torus TD (1 + 1)
D

2D

Hyperball BD 1 + 0 + 0 + · · · 1
Sphere SD 1 + 0 + 0 + · · ·+ 1 2
TD ×Bd 2D × 1 2D

Next some slides, briefly explain BD, SD, and TD ×Bd.
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New conjecture on species doubling

BD

Graphs of 1-dim ball B1 and 2-dim ball B2
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New conjecture on species doubling

The number of species on BD

Diagonalized adjacency matrix of D-dim hyperball BD with ND vertices

U†ABD

U =
∑
k

D∑
µ=1

iγµ cos

(
kµπ

N + 1

)
|k⟩ ⟨k|

=⇒ cos

(
kµπ

N + 1

)
= 0

=⇒ kµ =
N + 1

2

We get a solution when we take N the odd number.
When we take N the even number, the number of species is lower than 1.

So, there is a single species at maximum on BD.
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New conjecture on species doubling

SD

e.g. Two graphs of 2-dim sphere S2

Left graph has 4 + 2 vertices.
Right graph has 6 + 2 vertices.
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New conjecture on species doubling

The number of species on SD

Diagonalized adjacency matrix of 2-dim sphere S2 with M + 2 vertices

U†
A

S2
U =

M∑
k=1

γ1 sin

(
2π(k − 1)

M

)
|k⟩ ⟨k|

− i

√
M

2
γ2 |M + 1⟩ ⟨M + 1| + i

√
M

2
γ2 |M + 2⟩ ⟨M + 2|

=⇒ sin

(
2π(k − 1)

M

)
= 0

=⇒ k = 1 or
N

2
+ 1

We get two solutions when we take M the even number.
When we take M the odd number, the number of species is lower than 2.

So, there are 2 species at maximum on S2.
S.Kamata, S.Matsuura, T.Misumi, and K.Ohta (2016)

R.C.Brower, E.S.Weinberg, G.T.Fleming, A.D.Gasbarro, T.G.Raben, and C.-I.Tan (2017)
cf. S.Catterall, J.Laiho, and J.Unmuth-Yockey (2018)

N.Butt, S.Catterall, A.Pradhan, and G.C.Toga (2021)
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New conjecture on species doubling

TD ×Bd

A graph of T 1 ×B1

∼=

T 1

×

B1
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New conjecture on species doubling

The number of species on TD ×Bd

Diagonalized adjacency matrix of TD ×Bd

U†ATD×Bd
U = i


D∑

µ=1

γµ sin

(
2π(kµ − 1)

N

)
+

D+d∑
ν=D+1

γν cos

(
kνπ

N + 1

) |k⟩ ⟨k|

=⇒


sin

(
2π(kµ − 1)

N

)
= 0

cos

(
kνπ

N + 1

)
= 0

=⇒ kµ = 0 or
N

2
+ 1

We get 2D solutions when we take N the even number.
When we take N the odd number, the number of species is lower than 2D.

So, there are 2D species at maximum on TD ×Bd.

Note that Wilson fermion on T 4 ×B1 is equivalent to Domain-wall fermion
because # of species depends on mass parameter, with 16 being maximal.
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New conjecture on species doubling

We have found numerous evidences that the maximal # of species is
equivalent to sum of the Betti number

∑
r βr.

Table: Betti numbers and Maximal numbers of species

manifold M sum of βr(M) maximal # of species
1-d torus 1 + 1 2
2-d torus 1 + 2 + 1 4
3-d torus 1 + 3 + 3 + 1 8
4-d torus 1 + 4 + 6 + 4 + 1 16

Torus TD (1 + 1)
D

2D

Hyperball BD 1 + 0 + 0 + · · · 1
Sphere SD 1 + 0 + 0 + · · ·+ 1 2
TD ×Bd 2D × 1 2D

Is there a known theorem which informs us of maximal # of species?
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New conjecture on species doubling

Is there a known theorem which informs us of maximal # of species?

No!

As a well-known theorem, there is Nielsen-Ninomiya’s no-go theorem.

But, this theorem is just no-go theorem.

It never tells us how many fermion species emerge given a lattice fermion
formulation.

Our work
We propose a new conjecture on species doubling of lattice fermions!
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New conjecture on species doubling

Assumptions of our new conjecture

We firstly impose the following five conditions on the fermion action of the
lattice-discretized D-dimensional manifold M:

i. Central difference; anti-hermiticity of the Dirac matrix in the action holds due
to this condition.

ii. γ5 hermiticity; even the action with the mass term or the Wilson term satisfies
this condition.

iii. Four spinors; this condition assures the linear independence of the lattice
action for each direction.

iv. Locality; this condition leads to finite-hopping actions although it may be
unnecessary for our conjecture because non-locality usually decreases the
number of species.

v. Finite volume lattice; our conjecture claims that the fermion action on the
finite-volume lattice picks up the topology of the continuum manifold.
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New conjecture on species doubling

Our new conjecture

Our conjecture claims that, as long as these conditions hold, the maximal
number of fermion species on the lattice-discretized D-dimensional
manifold is equal to the summation of Betti numbers βr(M) over 0 ≤ r ≤ D
for the continuum manifold M. It is expressed as

max[N (∗M)] =

D∑
r=0

βr(M) , (1)

where N (∗M) is the number of fermion species on the lattice-discretized
manifold ∗M.

How can we prove it?
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Program of proof
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Program of proof

Program of the proof of new conjecture : Outline

Introduce r-th Laplacian operator from topology and Hodge theory.
Prove each of Betti numbers (β0 = 1 and β1 = 1) is equivalent to the nullity

of Laplacian operators L,L′ on 1-dim torus or 1-dim ball by regarding lattice
fermion.

∆r ≡ ∂r+1∂
∗
r+1 + ∂∗r∂r

↓
By use of Künneth theorem, elevate the above argument to higher

dimensional space such as 4-dim Torus and Hyperball.

Hr(C × C ′) ∼=
⊕

p+q=r

Hp(C)⊗Hq(C
′)

↓
Classify necessary conditions and complete proof
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Program of proof

Program of the proof of new conjecture : Laplacian

To prove its conjecture, we introduce r-th Laplacian operator from topology

∆r ≡ ∂r+1∂
∗
r+1 + ∂∗r∂r

where ∂r is a r-th boundary operator.

We now propose a program for proof of the conjecture in term spectral
graph theory and Hodge theory.� �

In Hodge theory, the number of zero-eigenvalues of a r-th Laplacian
defined on a complex chain coincides with the r-th Betti number.� �

W. Hodge,“ The Theory and Applications of Harmonic Integrals,”
B. Eckmann, (1945).

J. Dodziuk, (1976).
J. Dodziuk and V. Patodi, (1976)
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Program of proof

Program of the proof of new conjecture : Laplacian

In our program, we re-interpret Laplacian operator as spectral graphs.

We define a Laplacian operator L of a graph as

Lij ≡


di if i = j

−1 if i ̸= j and (i, j) are linked
0 if i ̸= j and (i, j) are not linked

,

where di is the number of edges sharing the site i.
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Program of proof

Program of the proof of new conjecture : 1-dim lattice

e.g. A graph of 1-dim lattice fermion like T 1 (S1)

The Laplacian matrix L1d of this graph

L1d =



4 2 0 0 0 −2
−2 4 2 · · · 0 0 0
0 −2 4 0 0 0

...
. . .

...
0 0 0 4 2 0
0 0 0 · · · −2 4 2
2 0 0 0 −2 4


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Program of proof

Program of the proof of new conjecture : 1-dim lattice

The bilinear form of the Laplacian matrix L1d for the field vector ψ

ψ̄L1dψ = 2
∑
n

ψ̄n (2ψn − ψn+1 − ψn−1)

The Wilson term, species-splitting mass term, on 1-dim lattice

S1d
W =

1

2

∑
n

ψ̄n (2ψn − ψn+1 − ψn−1)

Comparing these, we show that this bilinear form results in the Wilson term

1

2
ψ̄L1dψ = S1d

W
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Program of proof

Program of the proof of new conjecture : 1-dim lattice

This fact means that the nullity of the Laplacian matrix corresponding to the
Wilson term on 1-dim lattice is equivalent to the 0-th Betti number
β0(T

1) = 1 for the continuum torus T 1

Specifically,
D1d

W = PN ⊗ γ1 +
1

2
L⊗ 1N = 0

=⇒ D1d
W (k) =

∑
k

[
iγ1 sin

(
2π(k − 1)

N

)
+ 14

{
1− cos

(
2π(k − 1)

N

)}]
|k⟩ ⟨k|

= 0

=⇒


sin

(
2π(k − 1)

N

)
= 0

1− cos

(
2π(k − 1)

N

)
= 0

=⇒ k = 1

Indeed, # of this solution and the 0-th Betti number β0(T 1) = 1 just match!
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Program of proof

Program of the proof of new conjecture : 1-dim lattice

Next, we introduce another Laplacian operator L′

L′
ij ≡


−di if i = j

−1 if i ̸= j and (i, j) are linked
0 if i ̸= j and (i, j) are not linked

e.g. The Laplacian matrix L′1d of 1-dim naive fermion

L′1d =



−4 2 0 0 0 −2
−2 −4 2 · · · 0 0 0
0 −2 −4 0 0 0

...
. . .

...
0 0 0 −4 2 0
0 0 0 · · · −2 −4 2
2 0 0 0 −2 −4


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Program of proof

Program of the proof of new conjecture : 1-dim lattice

The bilinear form of this operator results in the Wilson term adding a
negative mass

1

2
ψ̄L′1dψ = S1d

W − 2
∑
n

ψ̄nψn

This fact means that the nullity of the Laplacian matrix L′ corresponding to
the Wilson term on 1-dim lattice is equivalent to the 1st Betti number
β1(T

1) = 1 for the continuum torus T 1

D′1d
W = PN ⊗ γ1 +

1

2
L′ ⊗ 1N = 0

=⇒


sin

(
2π(k − 1)

N

)
= 0

1 + cos

(
2π(k − 1)

N

)
= 0

=⇒ k =
N

2
+ 1

Indeed, # of this solution and the 1st Betti number β1(T 1) = 1 just match!
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Program of proof

Program of the proof of new conjecture : 1-dim lattice

1-dim lattice fermion and the Laplacian operators

The Laplacian matrix L
=⇒ The Wilson term

Nullity of the Laplacian matrix L
=⇒ The 0-th Betti number β0 = 1

Another Laplacian matrix L′

=⇒ The Wilson term adding a negative mass

Nullity of another Laplacian matrix L′

=⇒ The 1st Betti number β1 = 1
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Program of proof

Program of the proof of new conjecture : higher dimensional lattice

For higher dimensional lattice, we utilize Künneth theorem.� �
Künneth theorem claims that the homology groups of two cellular chain
complexes C,C ′ and C × C ′ have the following relation:

Hr(C × C ′) ∼=
⊕

p+q=r

Hp(C)⊗Hq(C
′)

� �
This theorem means the homology group and its rank (Betti number) of a
certain two-dimensional product manifold is obtained from those of the
one-dimensional manifolds.
By repeating this, we can obtain the homology groups and Betti numbers for
any higher-dimensional manifolds.
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Program of proof

Program of the proof of new conjecture : higher dimensional lattice

Künneth theorem
e.g. T 4 = S1 × S1 × S1 × S1

H0(T
4) ∼= H0(S

1)⊗H0(S
1)⊗H0(S

1)⊗H0(S
1)

=⇒ β0(T
4) = β0(S

1)× β0(S
1)× β0(S

1)× β0(S
1) = 1

H1(T
4) ∼=

⊕
p+q+r+s=1

Hp(S
1)⊗Hq(S

1)⊗Hr(S
1)⊗Hs(S

1)

=⇒
β1(T

4) =
∑

p+q+r+s=1

βp(S
1)× βq(S

1)× βr(S
1)× βs(S

1)

= 4

where β0(S1) = 1 and β1(S1) = 1.
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Program of proof

Program of the proof of new conjecture : higher dimensional lattice

Based on the Künneth theorem, the Laplacian operators giving Betti
numbers βr are expressed as the sum of tensor products of the Laplacians
L,L′.

e.g. 4-dim lattice fermion like T 4 = S1 × S1 × S1 × S1

A Laplacian operator giving β0(T 4) = 1

L4d
r=0 =

(
L ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L
)
⊗ 14

# of nullity of Dirac matrix adding this matrix is 1!
A Laplacian operator giving β4(T 4) = 1

L4d
r=4 =

(
L

′ ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L
′ ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L
′ ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L

′
)
⊗ 14

# of nullity of Dirac matrix adding this matrix is 1!
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Program of proof

Program of the proof of new conjecture : higher dimensional lattice

e.g. 4-dim lattice fermion like T 4 = S1 × S1 × S1 × S1

4 Laplacian operators giving β1(T 4) = 4

L4d
r=4,1 =

(
L

′ ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L
)
⊗ 14

L4d
r=4,2 =

(
L ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L

′ ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L
)
⊗ 14

L4d
r=4,3 =

(
L ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L
′ ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L

)
⊗ 14

L4d
r=4,4 =

(
L ⊗ 1N ⊗ 1N ⊗ 1N + 1N ⊗ L ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ L ⊗ 1N + 1N ⊗ 1N ⊗ 1N ⊗ L
′
)
⊗ 14

Sum of # of the nullity of these Laplacians just is 4!
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Program of proof

Program of the proof of new conjecture : higher dimensional lattice

At least for the higher dimensional torus TD, hyperball BD, and a product
space TD ×BD, we believe it is possible to prove our new conjecture.

For the manifold such as SD, we have to develop a more generic way of
generalization to higher-dimensions.

We comment on another avenue toward proof of the conjecture.

Squaring the free naive Dirac matrix leads to another Laplacian operator.

If we can prove that the number of zero-modes of this Laplacian is the sum
of the Betti numbers of the continuum manifold, we can easily give a
generic proof for any kind of manifolds including SD
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Summary
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Summary

Lattice field theory and Spectral graph theory� �
Lattice field theory =⇒ Spectral graph theory

Lattice fermion =⇒ Directed and Weighted spectral graph

# of species =⇒ Nullity of spectral matrix

� �
We can use known theorems to study lattice field theory.
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Summary

New conjecture on species doubling of lattice fermions

Our conjecture claims that the maximal number of fermion species on the
lattice-discretized D-dimensional manifold is equal to the summation of
Betti numbers βr(M) over 0 ≤ r ≤ D for the continuum manifold M. It is
expressed as

max[N (∗M)] =

D∑
r=0

βr(M) , (2)

where N (∗M) is the number of fermion species on the lattice-discretized
manifold ∗M.
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Summary

Program of the proof of new conjecture

Introduce r-th Laplacian operator from topology and Hodge theory.
Prove each of Betti numbers (β0 = 1 and β1 = 1) is equivalent to the nullity

of Laplacian operators L,L′ on 1-dim torus or 1-dim ball by regarding lattice
fermion.

∆r ≡ ∂r+1∂
∗
r+1 + ∂∗r∂r

↓
By use of Künneth theorem, elevate the above argument to higher

dimensional space such as 4-dim Torus and Hyperball.

Hr(C × C ′) ∼=
⊕

p+q=r

Hp(C)⊗Hq(C
′)

↓
Classify necessary conditions and complete proof
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