Topology awareness of undoubled and doubled lattice fermions

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center

work in collaboration with J. Weber

MITP workshop – 6 March 2023

Genealogy of lattice fermion actions

Classical lattice fermion actions:

- Naive fermions $(2^d \text{ species in } d \text{ space-time dimensions})$
- Wilson fermions ($N_c 4N_x N_y N_z N_t \times \text{ditto matrix in } d = 4 \text{ dimensions}$)
- Staggered fermions (reduction by $2^{d/2}$, hence size $N_c N_x N_y N_z N_t \times \text{ditto}$)
- Overlap/domain-wall fermions (unique unitary part of $aD_{\rm W} \rho$)

Novel lattice fermion actions:

- Minimally doubled fermions (Karsten-Wilczek, Borici-Creutz, twisted ordering)
- Ameliorated Wilson fermions (Brillouin, hypercube, ...)
- Staggered/naive fermions with lifting (Adams, Hoelbling, ...)

Issues to be considered:

- Nielsen-Ninomya theorem $(\leftarrow this talk)$
- suitability for heavy quark phyics (dispersion relation, ...)
- suitability for lattice perturbation theory (LPT)
- computational efficiency (MPI/PGAS, OpenMP/OpenACC/cuda, SIMD)

Introduction: Naive and Wilson fermions

• Naive fermions

$$D_{\text{nai}}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu} (x,y) + m \delta_{x,y}$$
$$D_{\text{nai}}(p) = \text{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(ap_{\mu}) + m$$
$$= \text{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + m \quad \text{with} \quad \bar{p}_{\mu} \equiv \frac{1}{a} \sin(ap_{\mu})$$

• Wilson fermions

$$D_{W}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu} (x,y) - \frac{ra}{2} \sum_{\mu} \Delta_{\mu} (x,y) + m \delta_{x,y}$$

$$D_{W}(p) = i \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(ap_{\mu}) + \frac{r}{a} \sum_{\mu} \left\{ 1 - \cos(ap_{\mu}) \right\} + m$$

$$= i \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + \frac{ra}{2} \sum_{\mu} \hat{p}_{\mu}^{2} + m \quad \text{with} \quad \hat{p}_{\mu} \equiv \frac{2}{a} \sin(\frac{ap_{\mu}}{2})$$

MITP workshop, 6.3.2023

Introduction: Karsten-Wilczek and Borici-Creutz fermions

• Karsten-Wilczek fermions

$$D_{\mathrm{KW}}(x,y) = \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) - \mathrm{i} \frac{ra}{2} \gamma_{4} \sum_{i=1:3} \triangle_{i}(x,y) + m \delta_{x,y}$$
$$D_{\mathrm{KW}}(p) = \mathrm{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin(ap_{\mu}) + \mathrm{i} \frac{r}{a} \gamma_{4} \sum_{i=1:3} \left\{ 1 - \cos(ap_{i}) \right\} + m$$
$$= \mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + \mathrm{i} \frac{ra}{2} \gamma_{4} \sum_{i=1:3} \hat{p}_{i}^{2} + m$$

• Borici-Creutz fermions

$$\begin{split} D_{\rm BC}(x,y) &= \sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x,y) - \mathrm{i} \frac{ra}{2} \sum_{\mu} \gamma'_{\mu} \triangle_{\mu}(x,y) + m \delta_{x,y} \\ D_{\rm BC}(p) &= \mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + \mathrm{i} \frac{r}{a} \sum_{\mu} \gamma'_{\mu} \left\{ 1 - \cos(ap_{\mu}) \right\} + m \\ &= \mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu} + \mathrm{i} \frac{ra}{2} \sum_{\mu} \gamma'_{\mu} \hat{p}_{\mu}^{2} + m \quad \text{with} \quad \gamma'_{\mu} \equiv \Gamma \gamma_{\mu} \Gamma, \Gamma \equiv \frac{1}{\sqrt{d}} \sum_{\mu} \gamma_{\mu} \end{split}$$

S. Dürr, BUW/JSC

MITP workshop, 6.3.2023

• Karsten-Wilczek free-field eigenvalues versus r in 4D

Spectrum at r = 0 is naive (i.e. 4-fold staggered) spectrum.

Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced). Spectrum at r = 1 covers range [-7, 7] on imaginary axis (worse CN than staggered). KW species chain is $16 \rightarrow 14 \rightarrow 8 \rightarrow 2$ with transistions at $r = \frac{1}{6}, \frac{1}{4}, \frac{1}{2}$ [SD, JW, 2020].

• Borici-Creutz free-field eigenvalues versus r in 4D

Spectrum at r = 0 is naive (i.e. 4-fold staggered) spectrum.

Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced). Spectrum at r = 1 covers range $[-4.8284, 2+2\sqrt{2}]$ on imaginary axis (worsened CN). BC species chain is $16 \rightarrow 10 \rightarrow 2$ with transitions at $r = \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}$ [SD, JW 2020].

Pole position drift for KW fermions in 2D (annihilate at r=0.5)

Pole position drift for BC fermions in 2D (merge at r=0.57735)

Myths and mysteries concerning topology

"topology: dark side of staggered fermions" (A. Hasenfratz, Lattice, 2003, Tsukuba)

Well known (for vector-like gauge theory):

- topology correctly seen by undoubled non-chiral action (Wilson, Bril./hypercube)
- topology correctly seen by undoubled chiral action (overlap, domain-wall)

To be shown (for vector-like gauge theory):

- topology correctly seen by staggered fermions (known for long, see *)
- topology correctly seen by Adams fermions (known for long)
- topology correctly seen by naive fermions
- topology correctly seen by Adams-like recipe applied to naive fermion
- topology correctly seen by central-branch fermions (Chowdhury, Misumi, ...)
- topology correctly seen by central-branch-squared (+flipped) fermions
- topology correctly seen by min. doubled fermions (KW and BC)
- topology correctly seen by KW/BC fermion plus lifting term
- (\ast) "figure of merit = chirality" in Hands Teper 1990 and Laursen Smit Vink 1990

Real mystery (to me):

How to put non-vector-like gauge theory on the lattice (S. Catterall on Tue)

Testbed: Schwinger Model (QED in 2D)

Schwinger Model at $N_f = 0$ simulated with Metropolis/overrelax/instanton-hit/P-hit: $\tau_{int}(Q_{top}) \simeq \tau_{int}(Q_{top}^2) = O(1)$ at any β [..., arXiv:1203.2560, ...].

All subsequent plots on one 16^2 configuration with $q_{top} = 1$ at $\beta = 3.2$. All fermion operators use 1 step of $\rho = 0.25$ stout smearing [Morningstar Peardon 2003].

S. Dürr, BUW/JSC

MITP workshop, 6.3.2023

Eigenvalues and topology with Wilson fermions

- |q| would-be zero-modes in physical branch (unchanged in 4D), additive mass shift
- L/R-eigenmode sandwich $\langle \psi | . | \psi \rangle \equiv \langle L | . | R \rangle$ for non-chiral D [Hip et al 2001]
- all subsequent plots taken from [arXiv:2203.15699] with J. Weber

Proposal: central-branch fermions realize 2 species in 2D (6 in 4D) with same chirality and without additive mass shift [Misumi Yumoto 2020].

• Spectral flow with Wilson fermions

- eigenvalues of $H_W(m) \equiv \gamma_5(D_W + m)$ at r = 1 versus am
- one species at $am \simeq 0$, two at $am \simeq -2$, one at $am \simeq -4$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)

Eigenvalues and topology with Brillouin fermions

 $D_{
m B} = \sum_{\mu} \gamma_{\mu}
abla_{\mu} - rac{r}{2} \triangle$ like Wilson but $abla_{\mu}$ and \triangle with hypercubic stencil (3^d-points)

- |q| would-be zero-modes in physical branch (unchanged in 4D), additive mass shift
- L/R-eigenmode sandwich $\langle \psi | . | \psi \rangle \equiv \langle L | . | R \rangle$ for non-chiral D (compare 1302.0773)

Proposal: use as overlap-kernel, already close to shifted-unitary [arXiv:1701.00726].

• Spectral flow with Brillouin fermions

- eigenvalues of $H_{\rm B}(m) \equiv \gamma_5(D_{\rm B}+m)$ at r=1 versus am
- one species at $am \simeq 0$, three at $am \simeq -2$ (competing chiralities)
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- large-scale structure different (small-scale structure similar) to Wilson case

Eigenvalues and topology with staggered fermions

2|q| would-be zero-modes (changes to 4|q| in 4D), remnant chiral symmetry $U(1)_{\epsilon}$

 $\epsilon \equiv \gamma_5 \otimes \xi_5$ not sensitive to topology (see "backup pages" for meaning of $\gamma_\mu \otimes \xi_\nu$) $\Gamma_5 \simeq \gamma_5 \otimes 1$ crafted to "turn around" chirality of second mode (both point down) $\Xi_5 \simeq 1 \otimes \xi_5$ not sensitive to topology (Γ_5 and Ξ_5 depend on gauge-field U) $1 \equiv 1 \otimes 1$ not sensitive to topology (like ϵ not shown)

• Spectral flow with staggered fermions

- eigenvalues of $H_{\rm S} \equiv \epsilon (D_{\rm S} + m\Gamma_{05})$ versus am
- $\epsilon \Gamma_{05} = \Gamma_{50}$ and $\operatorname{spec}(iD_S) = \operatorname{spec}(\epsilon D_S)$ allow for reformulations
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- dull choice $\epsilon(D_{\rm S}+m)$ amounts to wrong chirality operator

Eigenvalues and topology with Adams fermions

|q| would-be zero-modes in physical branch (become 2|q| in 4D) [Adams 2009] $\Gamma_5 \simeq \gamma_5 \otimes 1$ produces downward pointing modes (1 physical, 1 doubler) $\epsilon \equiv \gamma_5 \otimes \gamma_5$ produces oppositely oriented modes (1 physical, 1 doubler) S. Dürr, BUW/JSC MITP workshop, 6.3.2023

• Spectral flow with Adams fermions

- eigenvalues of $H_A \equiv \epsilon (D_A + m)$ versus am
- one species at $am \simeq 0$, one at $am \simeq -2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- ingenuity of Adams construction allows $\epsilon(D_{\rm A}+m)$ with standard chirality operator

Eigenvalues and topology with naive fermions

- eigenvalue spectrum like staggered, but 2-fold extra degeneracy (4-fold in 4D)
- γ_5 -chiralities exactly zero (like ϵ -chiralities for staggered)
- suitable chirality operator is $X = C_{sym} \otimes \gamma_5$ (2 needles down)

• Spectral flow with naive fermions

- eigenvalues of $H_N \equiv \gamma_5 (D_N + mC_{sym} \otimes 1)$ versus am
- choice matches $X = C_{\rm sym} \otimes \gamma_5$ being a good chirality operator for $D_{
 m N}$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- dull choice $\gamma_5(D_{
 m N}+m)$ amounts to wrong chirality operator

Eigenvalues and topology with naive+lifting fermions

• 2|q| would-be zero-modes in physical branch (become 8|q| in 4D) $C_{\text{sym}} \otimes \gamma_5$ produces downward pointing modes (2 physical, 2 doubler) $1 \otimes \gamma_5$ produces oppositely oriented modes (2 physical, 2 doubler) S. Dürr, BUW/JSC MITP workshop, 6.3.2023

• Spectral flow with naive+lifting (Adams-like) fermions

- eigenvalues of $H_{A-like} \equiv \gamma_5(D_{A-like} + m)$ versus am
- two species at $am \simeq 0$, two at $am \simeq -2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- ingenuity of Adams construction allows $\gamma_5(D_{A-like}+m)$ with standard γ_5 -operator

Eigenvalues and topology with cbs fermions

Aid to memory: "central branch squared" (only sum of $C_{\mu} = \frac{1}{2} \triangle_{\mu} + 1$ is squared)

- from central-branch perspective, left-doubler and right-doubler collapse
- 2|q| would-be zero-modes in physical branch (become 6|q| in 4D)

S. Dürr, BUW/JSC

• Spectral flow with cbs fermions

• eigenvalues of $\gamma_5(D_{cbs}+m)$ versus am

- two species at $am \simeq 0$, two at $am \simeq -2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle up/down)
- chiralities interchanged w.r.t. Wilson et al (no problem)
- additive mass shift significantly smaller than for Wilson/Brillouin fermions

Eigenvalues and topology with cbsf fermions

Aid to memory: "central branch squared and flipped" (only $C_{\mu} = \frac{1}{2} \triangle_{\mu} + 1$ is squared)

- same as central-branch, just left/right branches flipped
- 2|q| would-be zero-modes in physical branch (remain 2|q| in 4D)

S. Dürr, BUW/JSC

• Spectral flow with cbsf fermions

- eigenvalues of $\gamma_5(D_{cbsf} + m)$ versus am
- two species at $am \simeq 0$, two at $am \simeq -2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- chiralities back to Wilson et al
- additive mass shift comparable to Wilson/Brillouin fermions

Eigenvalues and topology with Karsten-Wilczek fermions

• 2|q| would-be zero-modes at r = 1 (unchanged in 4D), remnant chiral symmetry

• pertinent L/R-eigenmodes of $D_{\rm KW}$ not sensitive to γ_5

Operator X can be crafted to have $\langle L|X|R \rangle \neq 0$ with L/R-eigenmodes of $D_{\rm KW}$ Options are $X = \frac{1}{2}(C_1 + C_2)^2 \otimes \gamma_5$ and $X = C_{\rm sym} \otimes \gamma_5$ with $C_{\mu} \equiv \frac{1}{2} \triangle_{\mu} + 1$

Transition $D_{\text{naive}} \rightarrow D_{\text{KW}}$ as a function of r on |q| = 1 configuration

• Spectral flow with Karsten-Wilczek fermions

- eigenvalues of $H_{\rm KW} \equiv \gamma_5 (D_{\rm KW} + mC_{\rm sym} \otimes 1)$ versus am
- choice matches $X = C_{sym} \otimes \gamma_5$ being a good chirality operator for D_{KW}
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- near-degeneracy much better than for BC fermions (cf. below)
- dull choice $\gamma_5(D_{\rm KW} + m)$ amounts to wrong chirality operator

Eigenvalues and topology with Borici-Creutz fermions

• 2|q| would-be zero-modes at r = 1 (unchanged in 4D), remnant chiral symmetry

• pertinent L/R-eigenmodes of $D_{\rm BC}$ not sensitive to γ_5 (not shown)

Operator X can be crafted to have $\langle L|X|R \rangle \neq 0$ with L/R-eigenmodes of D_{BC} Options are $X = \frac{1}{2}(C_1 + C_2)^2 \otimes \gamma_5$ and $X = (2C_{sym} - 1) \otimes \gamma_5$ with $C_{\mu} \equiv \frac{1}{2} \triangle_{\mu} + 1$

• Transition $D_{\text{naive}} \rightarrow D_{\text{BC}}$ as a function of r on |q| = 1 configuration

• Spectral flow with Borici-Creutz fermions

- eigenvalues of $H_{\rm BC} \equiv \gamma_5 (D_{\rm BC} + m[2C_{\rm sym} 1] \otimes 1)$ versus am
- choice matches $X = [2C_{sym} 1] \otimes \gamma_5$ being a good chirality operator for D_{BC}
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- near-degeneracy much worse than for KW fermions (cf. above)
- dull choice $\gamma_5(D_{\rm BC}+m)$ amounts to wrong chirality operator

Eigenvalues and topology with KW fermions plus lifting-term

Eigenvalues and topology with BC fermions plus lifting-term

Summary (so far)

Mir wird von alledem so dumm, als ging mir ein Mühlrad im Kopf herum. [Goethe] I feel like a mill wheel is turning in my head. [unprofessional translation by SD]

Summary (so far)

KW and BC fermions have matrix size like Wilson fermions $(N_c 4N_x N_y N_z N_t \text{ in 4D})$. KW and BC fermions have exact chiral symmetry (eigenvalues on imaginary axis). KW and BC fermions have condition number less favorable than staggered fermions. They have 2|q| would-be zero-modes with *opposite chiralities* (as staggered) in 2D. This figure remains 2|q| in 4D (while staggered fermions have 4|q| in 4D).

With an appropriate chirality operator all lattice fermions perceive $q_{top}[U]$ correctly.

Topological charge via Wilson/Brillouin fermion

$$q_{\rm W}[U] = -m \operatorname{tr}[(D_{\rm W} + m)^{-1} I \otimes \gamma_5] \quad , \qquad q_{\rm B}[U] = -m \operatorname{tr}[(D_{\rm B} + m)^{-1} I \otimes \gamma_5]$$

• apparent pole structure plausible (see App. C of arXiv:2203.15699) from

$$q_{\rm W} \simeq m \frac{2(2r + m_{\rm crit})^2}{(m - m_{\rm crit})(2r + m_{\rm crit})(4r + 2m_{\rm crit})} = \frac{m}{m - m_{\rm crit}}$$

MITP workshop, 6.3.2023

Kenney-Laub version of Wilson/Brillouin overlap fermion

 $D_{\rm W}^{\rm KL11} = (D_{\rm W} - 1) \frac{A_{\rm W} + 3}{3A_{\rm W} + 1} + 1$ with $A_{\rm W} \equiv (D_{\rm W} - 1)^{\dagger} (D_{\rm W} - 1)$ approximate overlap $D_{\rm B}^{\rm KL11}$ defined accordingly with Brillouin kernel

- additive mass shift much reduced
- near-unitarity of $D_{\text{kernel}}^{\text{KL11}} 1$ particularly striking for $D_{\text{kernel}} = D_{\text{B}}$
- fixed-order rational approximation conceptually similar to domain-wall formulation

Topological charge via Wilson/Brillouin overlap fermion

 $q_{\rm W}^{\rm KL11}[U] = -m \operatorname{tr}[(D_{\rm W}^{\rm KL11} + m)^{-1} I \otimes \gamma_5], \quad q_{\rm B}^{\rm KL11}[U] = -m \operatorname{tr}[(D_{\rm B}^{\rm KL11} + m)^{-1} I \otimes \gamma_5]$

- "continuum-like" definition $q_{\text{fer}}[U] = -m \operatorname{tr}[D_m^{-1}\gamma_5]$ works for $m \neq m_{\text{crit}}$
- apparent pole structure with reduced additive mass and smaller amplitude
- no visble difference between W-kernel and B-kernel

Topological charge via staggered/Adams fermion

 $q_{\rm S}[U] = -\frac{m}{2} \operatorname{tr}[(D_{\rm S} + m)^{-1} \Gamma_{50}] \quad , \qquad q_{\rm A}[U] = -m \operatorname{tr}[(D_{\rm S} + 1 - \Gamma_{05} + m)^{-1} \Gamma_{55}]$

- two-species formulation requires factor $\frac{1}{2}$ [staggered]
- no additive mass shift with $q_{\rm S}[U]$ (chiral symmetry)
- additive mass shift of Adams comparable to Wilson case

Topological charge via naive/Adams-like fermion

$$q_{\rm N}[U] = -\frac{m}{4} \operatorname{tr}[(D_{\rm N} + m)^{-1} C_{\rm sym} \otimes \gamma_5], \ q_{\rm like}[U] = -\frac{m}{2} \operatorname{tr}[(D_{\rm N} + 1 - C_{\rm sym} + m)^{-1} I \otimes \gamma_5]$$

- four-species formulation requires factor $\frac{1}{4}$ [naive]
- two-species formulation requires factor $\frac{1}{2}$ [A-like]
- additive mass shift of A-like comparable to Wilson and Adams cases

Topological charge via cbs/cbsf fermion

$$q_{\rm cbs}[U] = +\frac{m}{2} \operatorname{tr}[(D_{\rm cbs} + m)^{-1} I \otimes \gamma_5], \qquad q_{\rm cbsf}[U] = -\frac{m}{2} \operatorname{tr}[(D_{\rm cbsf} + m)^{-1} I \otimes \gamma_5]$$

- two-species formulation requires factor $\frac{1}{2}$ [cbs and cbsf]
- non-zero mass shifts in both cases, more virulent for $q_{
 m cbsf}$
- opposite sign for cbs, normal sign for cbsf (normal signs in 4D)

Topological charge via KW/BC fermion

$$q_{\rm KW}[U] = -\frac{m}{2} \operatorname{tr}[(D_{\rm KW} + m)^{-1} X_{\rm KW}], \quad q_{\rm BC}[U] = -\frac{m}{2} \operatorname{tr}[(D_{\rm BC} + m)^{-1} X_{\rm BC}]$$
$$X_{\rm KW} = \begin{cases} \frac{1}{2} (C_1 + C_2)^2 \otimes \gamma_5 \\ C_{\rm sym} \otimes \gamma_5 \end{cases}, \quad X_{\rm BC} = \begin{cases} \frac{1}{2} (C_1 + C_2)^2 \otimes \gamma_5 \\ (2C_{\rm sym} - 1) \otimes \gamma_5 \end{cases}$$

- two-species formulation requires factor $\frac{1}{2}$ [KW and BC]
- no additive mass shift for both KW an BC (chiral symmetry)

BACKUP PAGES

Flavored mass/lifting terms

$$C_{\mu}(x,y) = \frac{1}{2} [U_{\mu}(x)\delta_{x+\hat{\mu},y} + U_{\mu}^{\dagger}(x-\hat{\mu})\delta_{x-\hat{\mu},y}] = \frac{1}{2}a^{2} \triangle_{\mu}(x,y) + \delta_{x,y}$$

- $$\begin{split} M_S &= 1 & \text{Scalar} \quad (0\text{-link}) \quad 1 \\ M_V &= \sum_{\text{sym}} C_{\mu} & \text{Vector} \quad (1\text{-link}) \quad \frac{1}{4} [C_1 + C_2 + C_3 + C_4] \\ M_T &= \sum_{\text{sym}} \sum_{\text{per}} C_{\mu} C_{\nu} & \text{Tensor} \quad (2\text{-link}) \quad \text{see detail} \\ M_A &= \sum_{\text{sym}} \sum_{\text{per}} C_{\mu} C_{\nu} C_{\rho} & \text{Axial} \quad (3\text{-link}) \quad \text{see detail} \\ M_P &= \sum_{\text{per}} C_{\mu} C_{\nu} C_{\rho} C_{\sigma} & \text{Pseudo} \quad (4\text{-link}) \quad \frac{1}{24} [C_1 C_2 C_3 C_4 + \text{perms}] = C_{\text{sym}} \end{split}$$
 - detail T: $\frac{1}{12}[C_1C_2 + \text{perm}] + ... + \frac{1}{12}[C_3C_4 + \text{perm}]$ 6 square brackets [...] each of which contains 2 terms deatil A: $\frac{1}{24}[C_2C_3C_4 + \text{perms}] + ...$ 4 square brackets [...] each of which contains 6 terms

Brillouin fermion: dim=5 term (Laplacian) is $M_V + M_T + M_A + M_P$ Brillouin fermion: dim=4 term is $\sum_{\mu} \gamma_{\mu} \nabla^{\text{iso}}_{\mu}$ instead of $\sum_{\mu} \gamma_{\mu} \nabla^{\text{std}}_{\mu}$

Creutz, Kimura, Misumi (10, 11)

Review of staggered mass/lifting terms

The $(\gamma_\mu \otimes 1)$ and $(\gamma_5 \otimes 1)$ "taste singlet" operators are defined by

$$\Gamma_{\mu}(x,y) \equiv \Gamma_{\mu0}(x,y) = \frac{1}{2}\eta_{\mu}(x) \Big[U_{\mu}(x)\delta_{x+\hat{\mu},y} + U_{\mu}^{\dagger}(x-\hat{\mu})\delta_{x-\hat{\mu},y} \Big]$$

$$\Gamma_{5}(x,y) \equiv \Gamma_{50}(x,y) = \frac{1}{4!} \sum_{\text{perm}} \epsilon_{\text{perm}} \Gamma_{1}\Gamma_{2}\Gamma_{3}\Gamma_{4}$$

and the $(1 \otimes \xi_{\mu})$ and $(1 \otimes \xi_{5})$ "spinor singlet" operators are defined by

$$\Xi_{\mu}(x,y) \equiv \Gamma_{0\mu}(x,y) = \frac{1}{2}\zeta_{\mu}(x) \Big[U_{\mu}(x)\delta_{x+\hat{\mu},y} + U_{\mu}^{\dagger}(x-\hat{\mu})\delta_{x-\hat{\mu},y} \Big]$$

$$\Xi_{5}(x,y) \equiv \Gamma_{05}(x,y) = \frac{1}{4!} \sum_{\text{perm}} \epsilon_{\text{perm}} \Xi_{1} \Xi_{2} \Xi_{3} \Xi_{4}$$

with the consequence that both Γ_{50} and Γ_{05} are 4-hop operators. Furthermore, the latter two operators relate to each other by a simple Γ_{55} operation (from left or right). Acceptable mass terms are proportional to $(1 \otimes 1)$ or $(1 \otimes \xi_5)$ or possibly $(1 \otimes \xi_\mu \xi_\nu)$.

S. Dürr, BUW/JSC

Adams species lifting

In practice it is advantageous to introduce the commutators in spinor and taste space

$$\Gamma_{\mu\nu}(x,y) \equiv \frac{i}{2} \Big(\Gamma_{\mu}\Gamma_{\nu} - \Gamma_{\nu}\Gamma_{\mu} \Big) \quad \longleftrightarrow \quad \gamma_{\mu\nu} \otimes 1$$

$$\Xi_{\mu\nu}(x,y) \equiv \frac{i}{2} \Big(\Xi_{\mu}\Xi_{\nu} - \Xi_{\nu}\Xi_{\mu} \Big) \quad \longleftrightarrow \quad 1 \otimes \xi_{\mu\nu}$$

respectively, with $\gamma_{\mu\nu} \equiv \frac{i}{2}[\gamma_{\mu}, \gamma_{\nu}]$ a.k.a. $\sigma_{\mu\nu}$ and $\xi_{\mu\nu} \equiv \frac{i}{2}[\xi_{\mu}, \xi_{\nu}]$, which yields

$$\Gamma_{50}(x,y) \simeq -\frac{1}{6} \Big(\Gamma_{12}\Gamma_{34} - \Gamma_{13}\Gamma_{24} + \Gamma_{14}\Gamma_{23} + \Gamma_{23}\Gamma_{14} - \Gamma_{24}\Gamma_{13} + \Gamma_{34}\Gamma_{12} \Big)$$

$$\Gamma_{05}(x,y) \simeq -\frac{1}{6} \Big(\Xi_{12}\Xi_{34} - \Xi_{13}\Xi_{24} + \Xi_{14}\Xi_{23} + \Xi_{23}\Xi_{14} - \Xi_{24}\Xi_{13} + \Xi_{34}\Xi_{12} \Big)$$

Adams: Promote 2 of the 4 tastes of D_{stag} to doublers by $\Gamma_{05} = \Xi_5 \simeq (1 \otimes \xi_5)$. Key observation is that the remaining 2 species share *one chirality*.

Corollary: It makes sense to apply overlap construction to shifted kernel $X = D_A - \rho$. The resulting operator will be doubled, but the two species will be chiral.

S. Dürr, BUW/JSC