Topology awareness of undoubled and doubled lattice fermions

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center
work in collaboration with J. Weber

MITP workshop - 6 March 2023

Genealogy of lattice fermion actions

Classical lattice fermion actions:

- Naive fermions (2^{d} species in d space-time dimensions)
- Wilson fermions ($N_{c} 4 N_{x} N_{y} N_{z} N_{t} \times$ ditto matrix in $d=4$ dimensions)
- Staggered fermions (reduction by $2^{d / 2}$, hence size $N_{c} N_{x} N_{y} N_{z} N_{t} \times$ ditto)
- Overlap/domain-wall fermions (unique unitary part of $a D_{\mathrm{W}}-\rho$)

Novel lattice fermion actions:

- Minimally doubled fermions (Karsten-Wilczek, Borici-Creutz, twisted ordering)
- Ameliorated Wilson fermions (Brillouin, hypercube, ...)
- Staggered/naive fermions with lifting (Adams, Hoelbling, ...)

Issues to be considered:

- Nielsen-Ninomya theorem $\quad(\leftarrow$ this talk)
- suitability for heavy quark phyics (dispersion relation, ...)
- suitability for lattice perturbation theory (LPT)
- computational efficiency (MPI/PGAS, OpenMP/OpenACC/cuda, SIMD)

Introduction: Naive and Wilson fermions

- Naive fermions

$$
\begin{aligned}
D_{\text {nai }}(x, y) & =\sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x, y)+m \delta_{x, y} \\
D_{\text {nai }}(p) & =\mathrm{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin \left(a p_{\mu}\right)+m \\
& =\mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu}+m \quad \text { with } \quad \bar{p}_{\mu} \equiv \frac{1}{a} \sin \left(a p_{\mu}\right)
\end{aligned}
$$

- Wilson fermions

$$
\begin{aligned}
D_{\mathrm{W}}(x, y) & =\sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x, y)-\frac{r a}{2} \sum_{\mu} \triangle_{\mu}(x, y)+m \delta_{x, y} \\
D_{\mathrm{W}}(p) & =\mathrm{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin \left(a p_{\mu}\right)+\frac{r}{a} \sum_{\mu}\left\{1-\cos \left(a p_{\mu}\right)\right\}+m \\
& =\mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu}+\frac{r a}{2} \sum_{\mu} \hat{p}_{\mu}^{2}+m \quad \text { with } \quad \hat{p}_{\mu} \equiv \frac{2}{a} \sin \left(\frac{a p_{\mu}}{2}\right)
\end{aligned}
$$

Introduction: Karsten-Wilczek and Borici-Creutz fermions

- Karsten-Wilczek fermions

$$
\begin{aligned}
D_{\mathrm{KW}}(x, y) & =\sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x, y)-\mathrm{i} \frac{r a}{2} \gamma_{4} \sum_{i=1: 3} \triangle_{i}(x, y)+m \delta_{x, y} \\
D_{\mathrm{KW}}(p) & =\mathrm{i} \sum_{\mu} \gamma_{\mu} \frac{1}{a} \sin \left(a p_{\mu}\right)+\mathrm{i} \frac{r}{a} \gamma_{4} \sum_{i=1: 3}\left\{1-\cos \left(a p_{i}\right)\right\}+m \\
& =\mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu}+\mathrm{i} \frac{r a}{2} \gamma_{4} \sum_{i=1: 3} \hat{p}_{i}^{2}+m
\end{aligned}
$$

- Borici-Creutz fermions

$$
\begin{aligned}
D_{\mathrm{BC}}(x, y) & =\sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x, y)-\mathrm{i} \frac{r a}{2} \sum_{\mu} \gamma_{\mu}^{\prime} \triangle_{\mu}(x, y)+m \delta_{x, y} \\
D_{\mathrm{BC}}(p) & =\mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu}+\mathrm{i} \frac{r}{a} \sum_{\mu} \gamma_{\mu}^{\prime}\left\{1-\cos \left(a p_{\mu}\right)\right\}+m \\
& =\mathrm{i} \sum_{\mu} \gamma_{\mu} \bar{p}_{\mu}+\mathrm{i} \frac{r a}{2} \sum_{\mu} \gamma_{\mu}^{\prime} \hat{p}_{\mu}^{2}+m \quad \text { with } \quad \gamma_{\mu}^{\prime} \equiv \Gamma \gamma_{\mu} \Gamma, \Gamma \equiv \frac{1}{\sqrt{d}} \sum_{\mu} \gamma_{\mu}
\end{aligned}
$$

- Karsten-Wilczek free-field eigenvalues versus rin 4D

Spectrum at $r=0$ is naive (i.e. 4 -fold staggered) spectrum.
Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced).
Spectrum at $r=1$ covers range $[-7,7]$ on imaginary axis (worse CN than staggered).
KW species chain is $16 \rightarrow 14 \rightarrow 8 \rightarrow 2$ with transistions at $r=\frac{1}{6}, \frac{1}{4}, \frac{1}{2}$ [SD, JW, 2020].

- Borici-Creutz free-field eigenvalues versus r in 4D

Spectrum at $r=0$ is naive (i.e. 4 -fold staggered) spectrum.
Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced).
Spectrum at $r=1$ covers range $[-4.8284,2+2 \sqrt{2}]$ on imaginary axis (worsened CN).
BC species chain is $16 \rightarrow 10 \rightarrow 2$ with transitions at $r=\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}$ [SD, JW 2020].

Pole position drift for KW fermions in 2D (annihilate at $\mathrm{r}=0.5$)

Contour plots of denominator $\sum_{i=1}^{d-1} \bar{p}_{i}^{2}+\left(\bar{p}_{d}+\frac{a r}{2} \sum_{i=1}^{d-1} \hat{p}_{i}^{2}\right)^{2} \quad$ [arXiv:2003.10803].

Pole position drift for BC fermions in 2D (merge at $\mathrm{r}=0.57735$)

Myths and mysteries concerning topology

"topology: dark side of staggered fermions" (A. Hasenfratz, Lattice,2003, Tsukuba)

Well known (for vector-like gauge theory):

- topology correctly seen by undoubled non-chiral action (Wilson, Bril./hypercube)
- topology correctly seen by undoubled chiral action (overlap, domain-wall)

To be shown (for vector-like gauge theory):

- topology correctly seen by staggered fermions (known for long, see *)
- topology correctly seen by Adams fermions (known for long)
- topology correctly seen by naive fermions
- topology correctly seen by Adams-like recipe applied to naive fermion
- topology correctly seen by central-branch fermions (Chowdhury, Misumi, ...)
- topology correctly seen by central-branch-squared (+flipped) fermions
- topology correctly seen by min. doubled fermions (KW and BC)
- topology correctly seen by KW/BC fermion plus lifting term
$(*)$ "figure of merit $=$ chirality" in Hands Teper 1990 and Laursen Smit Vink 1990

Real mystery (to me):
How to put non-vector-like gauge theory on the lattice (S. Catterall on Tue)

Testbed: Schwinger Model (QED in 2D)

Schwinger Model at $N_{f}=0$ simulated with Metropolis/overrelax/instanton-hit/P-hit: $\tau_{\text {int }}\left(Q_{\mathrm{top}}\right) \simeq \tau_{\mathrm{int}}\left(Q_{\mathrm{top}}^{2}\right)=O(1)$ at any $\beta[\ldots, \operatorname{arXiv}: 1203.2560, \ldots]$.

Wilson gauge action per site:
$s_{\text {wil }}(x)=1-\operatorname{Re}(U(x))=1-\cos (\theta(x))$
Plaquette at position $x=\left(x_{1}, x_{2}\right)$:
$U(x)=U_{1}(x) U_{2}\left(x+e_{1}\right) U_{1}^{\dagger}\left(x+e_{2}\right) U_{2}^{\dagger}(x)$
$U(x)=\exp (\mathrm{i} \theta(x))$
Two gluonic topological charges:
$q_{\text {nai }}^{(3)}=\sum \sin \left(\theta^{(3)}(x)\right) /(2 \pi) \in \mathbf{R}$ ("naive")
$q_{\text {geo }}^{(3)}=\sum \theta^{(3)}(x) /(2 \pi) \in \mathbf{Z}$ ("geometric") $\theta^{(3)}$ is plaquette angle after 3 smearings $q_{\text {opt }}(x)$ is clover-leaf version of $q_{\text {nai }}(x)$

All subsequent plots on one 16^{2} configuration with $q_{\text {top }}=1$ at $\beta=3.2$.
All fermion operators use 1 step of $\rho=0.25$ stout smearing [Morningstar Peardon 2003].

Eigenvalues and topology with Wilson fermions

- $|q|$ would-be zero-modes in physical branch (unchanged in 4D), additive mass shift
- L/R-eigenmode sandwich $\langle\psi| \cdot|\psi\rangle \equiv\langle L| \cdot|R\rangle$ for non-chiral D [Hip et al 2001]
- all subsequent plots taken from [arXiv:2203.15699] with J. Weber

Proposal: central-branch fermions realize 2 species in 2D (6 in 4D) with same chirality and without additive mass shift [Misumi Yumoto 2020].

- Spectral flow with Wilson fermions

- eigenvalues of $H_{\mathrm{W}}(m) \equiv \gamma_{5}\left(D_{\mathrm{W}}+m\right)$ at $r=1$ versus $a m$
- one species at $a m \simeq 0$, two at $a m \simeq-2$, one at $a m \simeq-4$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)

Eigenvalues and topology with Brillouin fermions

$D_{\mathrm{B}}=\sum_{\mu} \gamma_{\mu} \nabla_{\mu}-\frac{r}{2} \triangle$ like Wilson but ∇_{μ} and \triangle with hypercubic stencil (3 ${ }^{d}$-points)

- $|q|$ would-be zero-modes in physical branch (unchanged in 4D), additive mass shift
- L/R-eigenmode sandwich $\langle\psi| \cdot|\psi\rangle \equiv\langle L| .|R\rangle$ for non-chiral D (compare 1302.0773)

Proposal: use as overlap-kernel, already close to shifted-unitary [arXiv:1701.00726].

- Spectral flow with Brillouin fermions

- eigenvalues of $H_{\mathrm{B}}(m) \equiv \gamma_{5}\left(D_{\mathrm{B}}+m\right)$ at $r=1$ versus am
- one species at $a m \simeq 0$, three at $a m \simeq-2$ (competing chiralities)
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- large-scale structure different (small-scale structure similar) to Wilson case

Eigenvalues and topology with staggered fermions

$2|q|$ would-be zero-modes (changes to $4|q|$ in 4D), remnant chiral symmetry $U(1)_{\epsilon}$
$\epsilon \equiv \gamma_{5} \otimes \xi_{5}$ not sensitive to topology (see "backup pages" for meaning of $\gamma_{\mu} \otimes \xi_{\nu}$)
$\Gamma_{5} \simeq \gamma_{5} \otimes 1$ crafted to "turn around" chirality of second mode (both point down)
$\Xi_{5} \simeq 1 \otimes \xi_{5}$ not sensitive to topology
$1 \equiv 1 \otimes 1$ not sensitive to topology
(Γ_{5} and Ξ_{5} depend on gauge-field U)
(like ϵ not shown)

- Spectral flow with staggered fermions

- eigenvalues of $H_{\mathrm{S}} \equiv \epsilon\left(D_{\mathrm{S}}+m \Gamma_{05}\right)$ versus $a m$
- $\epsilon \Gamma_{05}=\Gamma_{50}$ and $\operatorname{spec}\left(i D_{\mathrm{S}}\right)=\operatorname{spec}\left(\epsilon D_{\mathrm{S}}\right)$ allow for reformulations
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- dull choice $\epsilon\left(D_{\mathrm{S}}+m\right)$ amounts to wrong chirality operator

Eigenvalues and topology with Adams fermions

$\beta=\mathbf{3 . 2}, \mathbf{N x}=16, \mathbf{N y}=16, \mathbf{q}_{\mathbf{\prime}} \mathbf{g e o}=1, \mathbf{q}_{-}$opt $=\mathbf{0 . 9 9 0}$

$$
D_{\mathrm{Adams}}=\sum_{\mu} \eta_{\mu} \nabla_{\mu}+r\left[1 \otimes \xi_{5}+1 \otimes 1\right] \quad\binom{\text { respects } \epsilon \text {-hermiticity }}{\text { breaks chiral symmetry }}
$$

- $|q|$ would-be zero-modes in physical branch (become $2|q|$ in 4D) [Adams 2009]
$\Gamma_{5} \simeq \gamma_{5} \otimes 1$ produces downward pointing modes (1 physical, 1 doubler)
$\epsilon \equiv \gamma_{5} \otimes \gamma_{5}$ produces oppositely oriented modes (1 physical, 1 doubler)

- Spectral flow with Adams fermions

- eigenvalues of $H_{\mathrm{A}} \equiv \epsilon\left(D_{\mathrm{A}}+m\right)$ versus $a m$
- one species at $a m \simeq 0$, one at $a m \simeq-2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- ingenuity of Adams construction allows $\epsilon\left(D_{\mathrm{A}}+m\right)$ with standard chirality operator

Eigenvalues and topology with naive fermions

- eigenvalue spectrum like staggered, but 2-fold extra degeneracy (4-fold in 4D)
- γ_{5}-chiralities exactly zero (like ϵ-chiralities for staggered)
- suitable chirality operator is $X=C_{\text {sym }} \otimes \gamma_{5}$ (2 needles down)

- eigenvalues of $H_{\mathrm{N}} \equiv \gamma_{5}\left(D_{\mathrm{N}}+m C_{\text {sym }} \otimes 1\right)$ versus $a m$
- choice matches $X=C_{\text {sym }} \otimes \gamma_{5}$ being a good chirality operator for D_{N}
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- dull choice $\gamma_{5}\left(D_{\mathrm{N}}+m\right)$ amounts to wrong chirality operator

Eigenvalues and topology with naive+lifting fermions

- $2|q|$ would-be zero-modes in physical branch (become $8|q|$ in 4D)
$C_{\text {sym }} \otimes \gamma_{5}$ produces downward pointing modes (2 physical, 2 doubler)
$1 \otimes \gamma_{5} \quad$ produces oppositely oriented modes (2 physical, 2 doubler)

- Spectral flow with naive+lifting (Adams-like) fermions

- eigenvalues of $H_{\mathrm{A}-\text { like }} \equiv \gamma_{5}\left(D_{\mathrm{A}-\text { like }}+m\right)$ versus $a m$
- two species at $a m \simeq 0$, two at $a m \simeq-2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- ingenuity of Adams construction allows $\gamma_{5}\left(D_{\mathrm{A}-\text { like }}+m\right)$ with standard γ_{5}-operator

Eigenvalues and topology with cbs fermions

Aid to memory: "central branch squared" (only sum of $C_{\mu}=\frac{1}{2} \triangle_{\mu}+1$ is squared)

$$
D_{\mathrm{cbs}}(x, y)=\sum_{\mu} \gamma_{\mu} \nabla_{\mu}(x, y)+\frac{r}{a}\left[-\frac{a^{2}}{2} \sum_{\mu} \triangle_{\mu}-d I\right]_{x, y}^{2}
$$

- from central-branch perspective, left-doubler and right-doubler collapse
- $2|q|$ would-be zero-modes in physical branch (become $6|q|$ in 4D)

- Spectral flow with cbs fermions

- eigenvalues of $\gamma_{5}\left(D_{\mathrm{cbs}}+m\right)$ versus $a m$
- two species at $a m \simeq 0$, two at $a m \simeq-2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle up/down)
- chiralities interchanged w.r.t. Wilson et al (no problem)
- additive mass shift significantly smaller than for Wilson/Brillouin fermions

Eigenvalues and topology with cbsf fermions

Aid to memory: "central branch squared and flipped" (only $C_{\mu}=\frac{1}{2} \triangle_{\mu}+1$ is squared)

- same as central-branch, just left/right branches flipped
- $2|q|$ would-be zero-modes in physical branch (remain $2|q|$ in 4D)

- eigenvalues of $\gamma_{5}\left(D_{\text {cbsf }}+m\right)$ versus $a m$
- two species at $a m \simeq 0$, two at $a m \simeq-2$
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down/up)
- chiralities back to Wilson et al
- additive mass shift comparable to Wilson/Brillouin fermions

Eigenvalues and topology with Karsten-Wilczek fermions

- $2|q|$ would-be zero-modes at $r=1$ (unchanged in 4D), remnant chiral symmetry
- pertinent L/R-eigenmodes of D_{KW} not sensitive to γ_{5}

Operator X can be crafted to have $\langle L| X|R\rangle \neq 0$ with L / R-eigenmodes of D_{KW} Options are $X=\frac{1}{2}\left(C_{1}+C_{2}\right)^{2} \otimes \gamma_{5}$ and $X=C_{\text {sym }} \otimes \gamma_{5}$ with $C_{\mu} \equiv \frac{1}{2} \triangle_{\mu}+1$

- Transition $D_{\text {naive }} \rightarrow D_{\mathrm{KW}}$ as a function of r on $|q|=1$ configuration

Findings in [2203.15699]:
$\operatorname{Im}\left(\lambda_{\mathrm{KW}}(r)\right)$ nearly saturates KW free-field bound KW species chain in 2D is $4 \rightarrow 2$ (transition at $r=0.5$) number of would-be zero-modes evolves as $4|q| \rightarrow 2|q|$

- Spectral flow with Karsten-Wilczek fermions

- eigenvalues of $H_{\mathrm{KW}} \equiv \gamma_{5}\left(D_{\mathrm{KW}}+m C_{\text {sym }} \otimes 1\right)$ versus $a m$
- choice matches $X=C_{\text {sym }} \otimes \gamma_{5}$ being a good chirality operator for D_{KW}
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- near-degeneracy much better than for BC fermions (cf. below)
- dull choice $\gamma_{5}\left(D_{\mathrm{KW}}+m\right)$ amounts to wrong chirality operator

Eigenvalues and topology with Borici-Creutz fermions

- $2|q|$ would-be zero-modes at $r=1$ (unchanged in 4D), remnant chiral symmetry
- pertinent L/R-eigenmodes of D_{BC} not sensitive to γ_{5} (not shown)

Operator X can be crafted to have $\langle L| X|R\rangle \neq 0$ with L / R-eigenmodes of D_{BC} Options are $X=\frac{1}{2}\left(C_{1}+C_{2}\right)^{2} \otimes \gamma_{5}$ and $X=\left(2 C_{\text {sym }}-1\right) \otimes \gamma_{5}$ with $C_{\mu} \equiv \frac{1}{2} \triangle_{\mu}+1$

- Transition $D_{\text {naive }} \rightarrow D_{\mathrm{BC}}$ as a function of r on $|q|=1$ configuration

Findings in [2203.15699]:
$\operatorname{Im}\left(\lambda_{\mathrm{KW}}(r)\right)$ nearly saturatess BC free-field bound KW species chain in 2D is $4 \rightarrow 2$ (transition at $r=\frac{1}{\sqrt{3}}$) number of would-be zero-modes evolves as $4|q| \rightarrow 2|q|$

- Spectral flow with Borici-Creutz fermions

- eigenvalues of $H_{\mathrm{BC}} \equiv \gamma_{5}\left(D_{\mathrm{BC}}+m\left[2 C_{\text {sym }}-1\right] \otimes 1\right)$ versus $a m$
- choice matches $X=\left[2 C_{\text {sym }}-1\right] \otimes \gamma_{5}$ being a good chirality operator for D_{BC}
- sign of slope for $|\lambda| \ll 1$ reflects chirality (cf. needle down)
- near-degeneracy much worse than for KW fermions (cf. above)
- dull choice $\gamma_{5}\left(D_{\mathrm{BC}}+m\right)$ amounts to wrong chirality operator

Eigenvalues and topology with KW fermions plus lifting-term

Eigenvalues and topology with BC fermions plus lifting-term

Summary (so far)

Mir wird von alledem so dumm, als ging mir ein Mühlrad im Kopf herum. [Goethe] I feel like a mill wheel is turning in my head. [unprofessional translation by SD]

Summary (so far)

KW and BC fermions have matrix size like Wilson fermions ($N_{c} 4 N_{x} N_{y} N_{z} N_{t}$ in 4D). KW and BC fermions have exact chiral symmetry (eigenvalues on imaginary axis). KW and BC fermions have condition number less favorable than staggered fermions.

They have $2|q|$ would-be zero-modes with opposite chiralities (as staggered) in 2D. This figure remains $2|q|$ in 4D (while staggered fermions have $4|q|$ in 4D).

With an appropriate chirality operator all lattice fermions perceive $q_{\text {top }}[U]$ correctly.

Topological charge via Wilson/Brillouin fermion

$$
q_{\mathrm{W}}[U]=-m \operatorname{tr}\left[\left(D_{\mathrm{W}}+m\right)^{-1} I \otimes \gamma_{5}\right] \quad, \quad q_{\mathrm{B}}[U]=-m \operatorname{tr}\left[\left(D_{\mathrm{B}}+m\right)^{-1} I \otimes \gamma_{5}\right]
$$

- apparent pole structure plausible (see App. C of arXiv:2203.15699) from

$$
q_{\mathrm{W}} \simeq m \frac{2\left(2 r+m_{\mathrm{crit}}\right)^{2}}{\left(m-m_{\mathrm{crit}}\right)\left(2 r+m_{\mathrm{crit}}\right)\left(4 r+2 m_{\mathrm{crit}}\right)}=\frac{m}{m-m_{\mathrm{crit}}}
$$

Kenney-Laub version of Wilson/Brillouin overlap fermion

$D_{\mathrm{W}}^{\mathrm{KL11}}=\left(D_{\mathrm{W}}-1\right) \frac{A_{\mathrm{W}}+3}{3 A_{\mathrm{W}}+1}+1$ with $A_{\mathrm{W}} \equiv\left(D_{\mathrm{W}}-1\right)^{\dagger}\left(D_{\mathrm{W}}-1\right)$ approximate overlap
$D_{\mathrm{B}}^{\mathrm{KL11}}$ defined accordingly with Brillouin kernel

- additive mass shift much reduced
- near-unitarity of $D_{\text {kernel }}^{\mathrm{KL11}}-1$ particularly striking for $D_{\text {kernel }}=D_{\mathrm{B}}$
- fixed-order rational approximation conceptually similar to domain-wall formulation

Topological charge via Wilson/Brillouin overlap fermion

- "continuum-like" definition $q_{\text {fer }}[U]=-m \operatorname{tr}\left[D_{m}^{-1} \gamma_{5}\right]$ works for $m \neq m_{\text {crit }}$
- apparent pole structure with reduced additive mass and smaller amplitude
- no visble difference between W-kernel and B-kernel

Topological charge via staggered/Adams fermion

- two-species formulation requires factor $\frac{1}{2}$ [staggered]
- no additive mass shift with $q_{S}[U]$ (chiral symmetry)
- additive mass shift of Adams comparable to Wilson case

Topological charge via naive/Adams-like fermion

- four-species formulation requires factor $\frac{1}{4}$ [naive]
- two-species formulation requires factor $\frac{1}{2}$ [A-like]
- additive mass shift of A-like comparable to Wilson and Adams cases

Topological charge via cbs/cbsf fermion

- two-species formulation requires factor $\frac{1}{2}$ [cbs and cbsf]
- non-zero mass shifts in both cases, more virulent for $q_{\text {cbsf }}$
- opposite sign for cbs, normal sign for cbsf (normal signs in 4D)

Topological charge via KW/BC fermion

$$
\begin{gathered}
q_{\mathrm{KW}}[U]=-\frac{m}{2} \operatorname{tr}\left[\left(D_{\mathrm{KW}}+m\right)^{-1} X_{\mathrm{KW}}\right], \quad q_{\mathrm{BC}}[U]=-\frac{m}{2} \operatorname{tr}\left[\left(D_{\mathrm{BC}}+m\right)^{-1} X_{\mathrm{BC}}\right] \\
X_{\mathrm{KW}}=\left\{\begin{array}{l}
\frac{1}{2}\left(C_{1}+C_{2}\right)^{2} \otimes \gamma_{5} \\
C_{\mathrm{sym}} \otimes \gamma_{5}
\end{array}, \quad X_{\mathrm{BC}}=\left\{\begin{array}{l}
\frac{1}{2}\left(C_{1}+C_{2}\right)^{2} \otimes \gamma_{5} \\
\left(2 C_{\mathrm{sym}}-1\right) \otimes \gamma_{5}
\end{array}\right.\right.
\end{gathered}
$$

- two-species formulation requires factor $\frac{1}{2}[\mathrm{KW}$ and BC$]$
- no additive mass shift for both KW an BC (chiral symmetry)

BACKUP PAGES

Flavored mass/lifting terms

$$
C_{\mu}(x, y)=\frac{1}{2}\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}+U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}\right]=\frac{1}{2} a^{2} \triangle_{\mu}(x, y)+\delta_{x, y}
$$

$$
\begin{aligned}
& M_{S}=1 \\
& \text { Scalar (0-link) } 1 \\
& M_{V}=\sum_{\text {sym }} C_{\mu} \quad \text { Vector } \quad \text { (1-link) } \quad \frac{1}{4}\left[C_{1}+C_{2}+C_{3}+C_{4}\right] \\
& M_{T}=\sum_{\text {sym per }} \sum_{\mu} C_{\nu} \quad \text { Tensor (2-link) see detail } \\
& M_{A}=\sum_{\text {sym }} \sum_{\text {per }} C_{\mu} C_{\nu} C_{\rho} \quad \text { Axial } \quad \text { (3-link) see detail } \\
& M_{P}=\sum_{\text {per }}^{\text {sym }} C_{\mu} C_{\nu} C_{\rho} C_{\sigma} \quad \text { Pseudo } \quad \text { (4-link) } \quad \frac{1}{24}\left[C_{1} C_{2} C_{3} C_{4}+\text { perms }\right]=C_{\text {sym }} \\
& \text { detail } \mathrm{T}: \quad \frac{1}{12}\left[C_{1} C_{2}+\text { perm }\right]+\ldots+\frac{1}{12}\left[C_{3} C_{4}+\text { perm }\right] \\
& 6 \text { square brackets [...] each of which contains } 2 \text { terms } \\
& \text { deatil } \mathrm{A}: \quad \frac{1}{24}\left[C_{2} C_{3} C_{4}+\text { perms }\right]+\ldots \\
& 4 \text { square brackets [...] each of which contains } 6 \text { terms }
\end{aligned}
$$

Brillouin fermion: dim $=5$ term (Laplacian) is $M_{V}+M_{T}+M_{A}+M_{P}$ Brillouin fermion: $\operatorname{dim}=4$ term is $\sum_{\mu} \gamma_{\mu} \nabla_{\mu}^{\text {iso }}$ instead of $\sum_{\mu} \gamma_{\mu} \nabla_{\mu}^{\text {std }}$
Creutz, Kimura, Misumi $(10,11)$

Review of staggered mass/lifting terms

The $\left(\gamma_{\mu} \otimes 1\right)$ and $\left(\gamma_{5} \otimes 1\right)$ "taste singlet" operators are defined by

$$
\begin{aligned}
\Gamma_{\mu}(x, y) & \equiv \Gamma_{\mu 0}(x, y) \\
\Gamma_{5}(x, y) & \equiv \Gamma_{50}(x, y)
\end{aligned}=\frac{1}{2} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}+U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}\right] \quad \sum_{\text {perm }} \epsilon_{\mathrm{perm}} \Gamma_{1} \Gamma_{2} \Gamma_{3} \Gamma_{4}, ~ l
$$

and the $\left(1 \otimes \xi_{\mu}\right)$ and $\left(1 \otimes \xi_{5}\right)$ "spinor singlet" operators are defined by

$$
\begin{aligned}
& \Xi_{\mu}(x, y) \equiv \Gamma_{0 \mu}(x, y)=\frac{1}{2} \zeta_{\mu}(x)\left[U_{\mu}(x) \delta_{x+\hat{\mu}, y}+U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}\right] \\
& \Xi_{5}(x, y) \equiv \Gamma_{05}(x, y)=\frac{1}{4!} \sum_{\text {perm }} \epsilon_{\text {perm }} \Xi_{1} \Xi_{2} \Xi_{3} \Xi_{4}
\end{aligned}
$$

with the consequence that both Γ_{50} and Γ_{05} are 4-hop operators. Furthermore, the latter two operators relate to each other by a simple Γ_{55} operation (from left or right). Acceptable mass terms are proportional to $(1 \otimes 1)$ or $\left(1 \otimes \xi_{5}\right)$ or possibly $\left(1 \otimes \xi_{\mu} \xi_{\nu}\right)$.

Adams species lifting

In practice it is advantageous to introduce the commutators in spinor and taste space

$$
\begin{array}{rlll}
\Gamma_{\mu \nu}(x, y) & \equiv \frac{\mathrm{i}}{2}\left(\Gamma_{\mu} \Gamma_{\nu}-\Gamma_{\nu} \Gamma_{\mu}\right) & \longleftrightarrow & \gamma_{\mu \nu} \otimes 1 \\
\Xi_{\mu \nu}(x, y) & \equiv \frac{\mathrm{i}}{2}\left(\Xi_{\mu} \Xi_{\nu}-\Xi_{\nu} \Xi_{\mu}\right) \quad \longleftrightarrow & 1 \otimes \xi_{\mu \nu}
\end{array}
$$

respectively, with $\gamma_{\mu \nu} \equiv \frac{\mathrm{i}}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$ a.k.a. $\sigma_{\mu \nu}$ and $\xi_{\mu \nu} \equiv \frac{\mathrm{i}}{2}\left[\xi_{\mu}, \xi_{\nu}\right]$, which yields

$$
\begin{aligned}
\Gamma_{50}(x, y) & \simeq-\frac{1}{6}\left(\Gamma_{12} \Gamma_{34}-\Gamma_{13} \Gamma_{24}+\Gamma_{14} \Gamma_{23}+\Gamma_{23} \Gamma_{14}-\Gamma_{24} \Gamma_{13}+\Gamma_{34} \Gamma_{12}\right) \\
\Gamma_{05}(x, y) & \simeq-\frac{1}{6}\left(\Xi_{12} \Xi_{34}-\Xi_{13} \Xi_{24}+\Xi_{14} \Xi_{23}+\Xi_{23} \Xi_{14}-\Xi_{24} \Xi_{13}+\Xi_{34} \Xi_{12}\right)
\end{aligned}
$$

Adams: Promote 2 of the 4 tastes of $D_{\text {stag }}$ to doublers by $\Gamma_{05}=\Xi_{5} \simeq\left(1 \otimes \xi_{5}\right)$. Key observation is that the remaining 2 species share one chirality.

Corollary: It makes sense to apply overlap construction to shifted kernel $X=D_{\mathrm{A}}-\rho$. The resulting operator will be doubled, but the two species will be chiral.

