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1.  Wilson & Domain-wall fermions as SPT



Wilson fermion : species-splitting mass fermion

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

◆ Domain-wall & Overlap fermions   → costs

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

January 9, 2012

1 Introduction

DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

εx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ε(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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Only one flavor is massless, 
while others have O(1/a) mass. 

Lattice fermion action with species-splitting term
X

n,µ

a5

2
 ̄n(2 n �  n+µ �  n�µ)

6

FIG. 1. Free Dirac spectrum of Wilson fermion (r = 1) with m = 0 on a 204 lattice. The degenerate

spectrum of 16 species for naive fermions are split into five branches with 1, 4, 6, 4 and 1 species.

transformations,

 n ! exp
h
i
X

X

⇣
✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
 n ,

 n !  n exp
h
i
X

X

⇣
�✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
, (2)

where �(+)

X and �(�)

X are site-dependent 4⇥ 4 matrices,

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)ňµ�µ , (�1)nµi�µ�5 , (�1)nµ,⌫

i [�µ , �⌫ ]

2

�
, (3)

�(�)

X 2

⇢
(�1)n1+...+n414 , �5 , (�1)nµ�µ , (�1)ňµi�µ�5 , (�1)ňµ,⌫

i [�µ , �⌫ ]

2

�
, (4)

with ňµ =
P

⇢ 6=µ n⇢, nµ,⌫ = nµ + n⌫ and ňµ,⌫ =
P

⇢ 6=µ,⌫ n⇢. It is notable that the onsite fermion

mass term  ̄n n breaks this U(4)⇥U(4) to the U(4) subgroup �(+)

X . In the presence of the Wilson

term the U(4)⇥ U(4) invariance is broken to the U(1) invariance under 14 in Eq. (3).

In Refs. [24, 61], it was shown that the Wilson fermion with the “central-branch" condition,

MW ⌘ m+ 4r = 0, (5)

has an extra U(1) symmetry, denoted as U(1)V . It becomes clear if one is reminded that the onsite

term (⇠  ̄n n) breaks all the invariance under the transformation �(�)

X in Eq.(4). Thus, dropping

onsite terms can restore some invariance under the group, and the action comes to have larger

symmetry.

The free Wilson fermion with this condition (5) gives six-flavor massless fermions in the con-

tinuum, which correspond to the central branch of the Wilson Dirac spectrum as shown in Fig. 2.

They are excitations around the Dirac zeros at p = (⇡,⇡, 0, 0), (⇡, 0,⇡, 0), (⇡, 0, 0,⇡), (0,⇡,⇡, 0),

1 4 46 1

m=0
m=2/a m=4/a m=6/a

m=8/a

Re-interpret it in terms of Symmetry-Protected-Topological(SPT) order



・G-Symmetry Protected Topological (SPT) order

All ’t Hooft anomalies are (expected to be) classified by SPTs.

Kapustin (14), Witten (15), Yonekura (16), Yonekura, Witten (19) 

Wen, et.al., (13)

Symmetry-Protected Topological (SPT) order

1. Partition function Z  characterized by certain topological charge
2. Unique ground state with trivial gap as long as G is unbroken
3. The Gap is closed when topological charge is changed
4. Gapless modes emerge at boundary btwn two different SPTs
5. ’t Hooft anomaly cancelled btwn bulk & boundary with gauged G



Symmetry-protected 
topological phase

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m > 0  (m → +∞)

Z = 1

m < 0

Z = e�2⇡i⌘

= e
i

4⇡

R
AdA(η: APS η-invariant                    )⌘

X

i

sgn[�i]

Zbndry2-dim chiral fermion



Symmetry-protected 
topological phase

Zbulke
i

4⇡

R
F · Zbndrye

� i
4⇡

R
F = ZtotalZtotal = Zbulk · Zbndry

’t Hooft anomaly is cancelled between bulk and boundary

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

Z = 1

Zbndry

Z = e�2⇡i⌘

= e
i

4⇡

R
AdAAPS index theorem

2-dim chiral fermion

m < 0 m > 0  (m → +∞)
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

m > 0 

ν = 0    (trivial SPT)

The topological charge is defined by Berry connection for free fermion

Topological # of SPT    ~   sum of chiral charges of species with m < 0 

Domain-wall, overlap, and topological insulators Taro Kimura

ν1 ν2

m(x)

x

m = 0

#modes = δν

Figure 1: Domain-wall configuration of the mass term at the topological phase boundary. The localized
zero mode on the domain-wall exhibits the gapless edge state of the topological system. The number of edge
states is equivalent to the difference of topological charges δν = ν1 −ν2.

Since it is a lattice system, the topological charge is then defined as an integral over the Brillouin
zone [8],

ν4D =−
1

16π2

∫

BZ
d4p TrF ∗F =



































0 (0 <m & m<−8r)
1 (−2r <m< 0)
−3 (−4r <m<−2r)
3 (−6r <m<−4r)
−1 (−8r <m<−6r)

. (2.10)

In this case, the topological number itself takes an integral value, and its change δν4D = +1,
−4, +6, −4, +1 at m = 0, −2r, −4r, −6r, −8r, corresponds to the number of massless modes
appearing in the Wilson fermion formalism, and the sign of δν4D indeed reflects the chirality of
each mode. This is in contrast to the continuum theory, directly associated with the anomaly,
leading to the half-integer topological charge.

3. Topological phase, domain-wall, and overlap

3.1 Domain-wall fermion at the topological insulator boundary

As discussed in Sec. 2, the topology associated with the band structure is well-defined for
massive theory, and the topology change occurs at the critical point which is massless m= 0. This
means that, according to the band theory, the band topology is only well-defined with an insulator
since the mass term plays a role of the band gap. Nowadays an insulator involving non-trivial
topology is called the topological insulator, in general, and the quantum Hall effect is known as
the most fundamental example.

Typically the topological charge depends only on the sign of the mass term, e.g. (2.3) and (2.8),
which directly implies that the boundary of the topological insulator, where the topology change
must occur, realizes the domain-wall configuration of the mass term. See Fig. 1. This can be
thought as the origin of the gapless surface (edge) state of the topological insulator. The number of

4
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

-2/a < m < 0 

ν = 1    

Domain-wall fermion : gapless mode emerging at boundary 
between ν=0 and ν=1 SPTs, where ’t Hooft anomaly cancels.

Wilson fermion as U(1) SPT phases

Topological # of SPT    ~   sum of chiral charges of species with m < 0 
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑
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(
θ (+)

X Γ(+)
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X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
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CµCν , MA = ∑
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∑
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∏
ν
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3

m

ν = -3    

-4/a < m < -2/a 

Wilson fermion as U(1) SPT phases

Topological # of SPT    ~   sum of chiral charges of species with m < 0 
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.
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∏
µ=1

Cµ , (2.5)

3

m

ν = 3    

-6/a < m < -4/a 

Wilson fermion as U(1) SPT phases

Topological # of SPT    ~   sum of chiral charges of species with m < 0 
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

ν = -1    

-8/a < m < -6/a 

Wilson fermion as U(1) SPT phases

Topological # of SPT    ~   sum of chiral charges of species with m < 0 
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   sum of chiral charges of species with m < 0 

ν = 0    

m < -8/a 

Wilson fermion as U(1) SPT phases



Domain-wall fermion as boundary gapless mode

Domain-wall fermion 
= a single chiral fermion
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
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∑
sym.
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sym.
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sym.
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

-2/a < m < 0 

ν = 1    

5th dimension



2.  Lattice fermions & ’t Hooft anomaly
Tanizaki, TM (19)
TM, Yumoto (20)



What is ’t Hooft anomaly ?

G has ’t Hooft anomaly

Z[A+ d✓] = Z[A] · exp(iA[✓, A])

・D-dim QFT with global symmetry G

・Introduce non-dynamical background G-gauge field  A

・Partition function is sometimes ambiguous under G-gauge transf.



・D-dim QFT with global symmetry G

・Introduce non-dynamical background G-gauge field  A

・Partition function is sometimes ambiguous under G-gauge transf.

What is ’t Hooft anomaly ?

G has ’t Hooft anomaly

Z[A+ d✓] = Z[A] · exp(iA[✓, A])

ex.) Nf-flavor massless QCD with SU(Nf)L × SU(Nf)R

Z[AL +DL✓L, AR +DR✓R] = Z[AL, AR] exp
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 SU(Nf)A has ’t Hooft anomaly



’t Hooft anomaly matching

it gives constraints on IR strongly-coupled physics 

’t Hooft anomaly is RG-invariant ! AUV[✓, A] = AIR[✓, A]

・Let the gauge field A weakly coupled to spectator fermion ψ

・Set the anomaly canceled → A can be dynamical

・In RG flow, the anomaly from ψ is intact. G is also unbroken.



’t Hooft anomaly matching

◆ It is nothing but what occurs in Standard Model
QCD w/ gauged flavor sym. & weakly coupled leptons

・Gauge anomaly cancelled in both UV and IR

・The anomaly in QCD sector is RG-invariant (even though SSB)

Standard Model  =

・The anomaly from lepton sector is unchanged in RG

it gives constraints on IR strongly-coupled physics 

’t Hooft anomaly is RG-invariant ! AUV[✓, A] = AIR[✓, A]

・Let the gauge field A weakly coupled to spectator fermion ψ

・Set the anomaly canceled → A can be dynamical

・In RG flow, the anomaly from ψ is intact. G is also unbroken.



’t Hooft anomaly is RG-invariant !

Z[A] · exp(iSD+1[A])

�✓SD+1[A] = �A[✓, A]

・Regard the system as boundary of (D+1)d SPT

・There is cancellation of ’t Hooft anomaly  

・In RG flow the anomaly of bulk SPT system is intact

AUV[✓, A] = AIR[✓, A]

’t Hooft anomaly matching (D+1)-dim 

D-dim 

it gives constraints on IR strongly-coupled physics 



’t Hooft anomaly is RG-invariant !
it gives constraints on IR strongly-coupled physics 

AUV[✓, A] = AIR[✓, A]

 ex.) SU(Nf)A ’t Hooft anomaly in Nf-flavor massless QCD

・At UV it has ’t Hooft anomaly, thus it also does at IR 
・Trivially gapped phase (confined phase without SSB) is forbidden 
・It indicates spontaneous chiral symmetry breaking

Existence of ’t Hooft anomaly means absence of trivially gapped phase

’t Hooft anomaly matching (D+1)-dim 

D-dim 

Z[A] · exp(iSD+1[A])

�✓SD+1[A] = �A[✓, A]

・Regard the system as boundary of (D+1)d SPT

・There is cancellation of ’t Hooft anomaly  

・In RG flow the anomaly of bulk SPT system is intact



Mixed ’t Hooft anomaly

G1 and G2 have Mixed ’t Hooft anomaly

・Consider theory with global symmetries G1 and G2 

・Gauge one of them by background G1-gauge field A1

・It means the symmetry G2 can be broken



Mixed ’t Hooft anomaly

・Consider theory with global symmetries G1 and G2 

・Gauge one of them by background G1-gauge field A1

・It means the symmetry G2 can be broken

G1 and G2 have Mixed ’t Hooft anomaly

ex.) 3d free massless Dirac fermion with U(1) & T

chiral symmetries of gauge theories with massless fermions [3–5]. Recent development on
topological phases of matter pushes that notion further [6–10] and it is now applicable
also for systems with discrete symmetries, higher-form symmetries, and so forth, to derive
nontrivial consequences on vacuum structures [11–25].

Although anomaly matching is a powerful technique to study nonperturbative physics,
it cannot uncover details of dynamical aspects of QFTs and just provides us a consistency
condition. For example, SU(N) Yang–Mills theory is believed to exhibit confinement in
four-dimensional spacetime, and an ’t Hooft anomaly can tell us about some additional
information on vacuum assuming confinement, but it does not show how confinement can
happen. Analytic computation of confinement in four dimensions is currently impossible
because of its strong coupling nature. Still, it is found that the confinement of SU(N)

Yang-Mills theory is realizable on R3 ⇥ S1 by adding several massive adjoint fermions or
deformations of the action itself, and this confinement is calculable with reliable semiclassi-
cal computations [26–31]. What is more interesting is that this semiclassical confinement is
argued to be adiabatically connected to the confinement in the strongly-coupled regime by
decompactifying the circle S1 especially in the large-N limit. This finding motivated many
studies of various asymptotically-free field theories by compactifying one direction to a cir-
cle with an appropriate boundary condition, and it is expected to map the strongly-coupled
dynamics into the semiclassical regime without losing its essential information [32–53].

In this paper, we would like to make a connection between these two recent develop-
ments of nonperturbative QFTs; adiabatic circle compactification and ’t Hooft anomaly
matching. If the vacuum structures of the original and circle-compactified theories are re-
ally adiabatically connected, it is natural to think that both vacuum structures reproduce
the same ’t Hooft anomaly matching condition. However, there is the following difficulty
in this idea: Anomaly is renormalization group invariant, and it is matched by the vacuum
or its low-energy excitations. Since other high-energy states do not produce the anomaly,
the effect of anomaly would disappear once those high-energy states give dominant contri-
butions at finite temperature. How can this observation be consistent with the story about
adiabatic continuity? In order to understand the situation better, we consider two quick
examples.

Let us consider a three-dimensional free Dirac fermion, which has a U(1) symmetry
and time-reversal symmetry T. Consider the partition function Z[A] under the U(1) gauge
field A, then

Z[A] = |Z[A]| exp(i⌘[A]/2). (1.1)

Here, ⌘[A] is the eta invariant [11], which is roughly the U(1) level-1 Chern–Simons action
but is gauge-invariant modulo 4⇡, and U(1) itself has no ’t Hooft anomaly. With the
background U(1) gauge field, the time-reversal symmetry is broken because

Z[T ·A] = Z[A] exp

✓
� i

4⇡

Z
AdA

◆
. (1.2)

That is, U(1) and T has a mixed ’t Hooft anomaly and it is characterized by the Chern-
Simons action. Now, we consider the three-dimensional manifold of the form M3 = M2⇥S1,
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topological phases of matter pushes that notion further [6–10] and it is now applicable
also for systems with discrete symmetries, higher-form symmetries, and so forth, to derive
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it cannot uncover details of dynamical aspects of QFTs and just provides us a consistency
condition. For example, SU(N) Yang–Mills theory is believed to exhibit confinement in
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information on vacuum assuming confinement, but it does not show how confinement can
happen. Analytic computation of confinement in four dimensions is currently impossible
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argued to be adiabatically connected to the confinement in the strongly-coupled regime by
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studies of various asymptotically-free field theories by compactifying one direction to a cir-
cle with an appropriate boundary condition, and it is expected to map the strongly-coupled
dynamics into the semiclassical regime without losing its essential information [32–53].

In this paper, we would like to make a connection between these two recent develop-
ments of nonperturbative QFTs; adiabatic circle compactification and ’t Hooft anomaly
matching. If the vacuum structures of the original and circle-compactified theories are re-
ally adiabatically connected, it is natural to think that both vacuum structures reproduce
the same ’t Hooft anomaly matching condition. However, there is the following difficulty
in this idea: Anomaly is renormalization group invariant, and it is matched by the vacuum
or its low-energy excitations. Since other high-energy states do not produce the anomaly,
the effect of anomaly would disappear once those high-energy states give dominant contri-
butions at finite temperature. How can this observation be consistent with the story about
adiabatic continuity? In order to understand the situation better, we consider two quick
examples.

Let us consider a three-dimensional free Dirac fermion, which has a U(1) symmetry
and time-reversal symmetry T. Consider the partition function Z[A] under the U(1) gauge
field A, then

Z[A] = |Z[A]| exp(i⌘[A]/2). (1.1)

Here, ⌘[A] is the eta invariant [11], which is roughly the U(1) level-1 Chern–Simons action
but is gauge-invariant modulo 4⇡, and U(1) itself has no ’t Hooft anomaly. With the
background U(1) gauge field, the time-reversal symmetry is broken because
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That is, U(1) and T has a mixed ’t Hooft anomaly and it is characterized by the Chern-
Simons action. Now, we consider the three-dimensional manifold of the form M3 = M2⇥S1,
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gauged U(1) partition function

under T transformation

U(1) & T has mixed ’t Hooft anomaly : 3d boundary of 4d U(1) × T SPT



Recent progress in ’t Hooft anomaly
• Generalization to systems without fermions
• Generalization to higher-form symmetries
• Generalization to compactified theories

• SU(N) YM with θ=π 

• Bifundamental gauge theories with θ=π 

• CPN-1 models on R2 and R×S1 

• RW-symmetric QCD and QCD(adj.) 

• QCD with θ=π and Dashen phase 

• N-flavor QCD on R3×S1 

• Extension of Lieb-Schultz-Mattis theorem 

• SU(N) spin system & Flag sigma model 

• Charge-q Schwinger model 

• Lattice Wilson fermion & Aoki phase
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Mixed ’t Hooft anomaly indicates SSB of CP or ZN 1-form symmetry 
even at finite-temperature : trivially gapped phase forbidden!

θ

T

θ=π

ZN

ZN

CP broken line
θ

T

θ=π

ZN

ZN

CP broken line

Tc Tc

SU(N) Yang-Mills theory with θ=π on R3 × S1
Gaiotto, Kapustin, Komargodski, Seiberg (17)
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Central-branch Wilson Kimura, Komatsu,TM, Noumi, Torii, Aoki (11) 
Creutz, Kimura, TM (11)

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

S =
1
2

�

x,µ

�̄x[�µ(Ux,µ�x+µ � Ux,�µ�x�µ) � (Ux,µ�x+µ + Ux,�µ�x�µ)]

�x � ei�(�1)x1+x2+x3+x4
�x, �̄x � �̄xei�(�1)x1+x2+x3+x4
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by
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Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:
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In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by
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1
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∑
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ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑
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ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp
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i
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θ(+)
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ψn , (2)
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n = ψ̄n exp
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Here, Γ(+)
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, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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X to be real [1]. In other words, only if θ(±)
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commute with the following anti-linear operation Θ:
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The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large

subgroup as
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.

4 8 4

23

with j = 1, 2, 3. A coefficient of the former operator is renormalized differently from that of

the other dimension-4 operators  ̄�j@j , while a coefficient of the latter operator is renormalized

differently from that of F 2

ij with i, j = 1, 2, 3. In other words, the speed of light is renormalized in

a unphysical manner in this system both for quark and gauge fields. Thus, we have to tune the

two marginal parameters to restore the Euclidean Lorentz symmetry. However, it is worth noting

that the tuning procedure for these two parameters is well investigated in the QCD simulation on

anisotropic lattices [88, 89] and it may be applied to the present case.

As a summary of this section, we make several comments. The two-flavor central-branch fermion

requires three-parameter tuning for the practical use in lattice QCD. Its advantages such as U(1)V

symmetry, minimal-doubling and ultra-locality seems to be completely beaten by the drawback.

However, this disadvantage rather sets off the original central-branch Wilson fermion since it has

no necessity of parameter-tuning in six-flavor lattice QCD. As we have discussed, this difference

originates in the existence of full hypercubic symmetry. The study of the two-flavor central-branch

fermion gives a good lesson that we have to take care of not only lattice flavor-chiral symmetries

but also hypercubic symmetry in the central-branch fermions.

IV. OTHER CENTRAL-BRANCH WILSON FERMIONS

In this section, we consider other varieties of central-branch fermions. For instance, we obtain

an eight-flavor central-branch fermion by modification of hopping terms in the Wilson term as

4X

µ=1

Cµ ! C12 + C34, (80)

with

Cµ⌫ ⌘
CµC⌫ + C⌫Cµ

2
. (81)

With this modification the action of central-branch fermion is given by

S8fCB =
X

n,µ

 ̄n�µDµ n � r
X

n

 n(C12 + C34) n. (82)

This setup corresponds to the central branch of one of the flavored-mass fermions, called the tensor-

type fermion [34]. In a free theory, the Dirac operator in the momentum space is expressed as

D(p) =
4X

µ=1

i�µ sin pµ � r(cos p1 cos p2 + cos p3 cos p4) . (83)
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FIG. 8. Free Dirac spectrum of the four-dimensional eight-flavor central branch fermion (r = 1) on a 204

lattice, whose Wilson hopping term is C1C2+C3C4. 4, 8 and 4 species live at the three branches respectively.

The Dirac spectrum for a free theory with r = 1 is depicted in Fig. 8. The 16 species are split into

three branches in which 4, 8 and 4 species live. The eight species at the central branch correspond

to the eight zeros of the Dirac operator p = (0, 0, 0,⇡), (0, 0,⇡, 0), (0,⇡, 0, 0), (⇡, 0, 0, 0), (⇡,⇡,⇡, 0),

(⇡,⇡, 0,⇡), (⇡, 0,⇡,⇡), (0,⇡,⇡,⇡) in the momentum space.

Among the flavor-chiral symmetries of the naive fermion, this setup keeps a relatively large
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of

Euclidean Lorentz symmetry in the continuum, we need parameter-tuning in the gauge-boson part,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
. We

also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.
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It also shares the symmetries and properties including lattice translation, �5-hermiticity, C, P and

reflection positivity with the original central-branch fermion. The breaking of hypercubic symmetry

is much less severe than that of the two-flavor central-branch fermion. Regarding restoration of
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also note that the sign problem on the central branch is absent in this case too.

Since the onsite mass term is not invariant under the above flavor-chiral transformations, the

renormalization of the onsite mass term is prohibited. Furthermore, the absence of additive mass

renormalization for each of the eight species is expected since all the possible mass terms for the

species seem to be prohibited by the residual hypercubic symmetry and the flavor-chiral symmetry.

It should be verified in future study.
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We can also construct another eight-flavor version of central-branch fermions by the modification

of the Wilson term
P

4

µ=1
Cµ ! C123 + C4 with Cµ⌫⇢ ⌘

1

6

P
perm.CµC⌫C⇢. Although the 16 species

are again split into three branches with 4, 8 and 4 species, the breaking of hypercubic symmetry is

severer than the previous version, thus we speculate that the tuning procedure is required for more

parameters.

We consider that there are lots of varieties of central-branch fermions and future works will

be devoted to their full classification. The two-flavor central-branch fermion in five dimensions is

briefly addressed in Appendix. A.

V. CENTRAL BRANCH OF STAGGERED-WILSON FERMIONS

In this section we focus on the staggered fermion [13, 14] and its flavored-mass terms. The

argument in this section is in part presented in the proceedings of the lattice conference [29] by one

of the present author.

Let me start with the action of the staggered fermion,

S =
X

xy

�̄x[⌘µDµ +m]xy�y , (86)

where �x is an one-component fermion field, and we define (⌘µ)xy ⌘ (�1)x1+...+xµ�1�x,y and Dµ ⌘

1

2
(Tµ � T�µ) with (T±µ)xy = Ux,±µ�x±µ,y. m = m�x,y is a mass parameter. This action is obtained

from the naive fermion action via the procedure called “spin diagonalization" and contains four

species called “tastes". For simplicity we denote four-dimensional lattice sites as x or y for staggered

fermions. The relevant symmetry of staggered fermion [17–19] is

{C0, ⌅µ, Is, Rµ⌫} ⇥ {U ✏(1)}m=0, (87)

where C0 is staggered charge conjugation, ⌅µ is shift transformation, Is is spatial inversion, Rµ⌫ is

hypercubic rotation, and U ✏(1) is the residual chiral symmetry �x ! ei✓✏x�x with ✏x = (�1)
P

µ xµ ,

which is expressed as �5⌦⇠5 in the spin-taste representation (⇠5 stands for �5 in the taste space). The

combinations of these symmetries give physical symmetries, including charge conjugation, parity

and spacetime hypercubic symmetry. The details of symmetries are summarized in App. B.

A. Staggered-Wilson fermion

The species-splitting mass term, namely the flavored-mass term, is also introduced into staggered

fermions [17, 20–22]. They split four degenerate tastes into multiple branches with satisfying other

28

However, the Dirac spectrum has no central branch for this case.

On the other hand, the two-hopping staggered-Wilson fermion in (98) with the condition m +

2r = 0 has the central branch in the Dirac spectrum. The action with this condition is given by

Scb

H =
X

xy

�̄x(D
cb

H )xy�y =
X

xy

�̄x[⌘µDµ + rMH)]xy�y . (98)

The symmetry [28, 29, 91] is summarized as

{CT , C 0
T , ⌅0

µ, R12, R34, R24R31}. (99)

The extra symmetry is the special charge conjugation C 0
T . Since the two-flavor central branch exists

in the setup, this enhancement of the symmetry is meaningful. First of all, the two other mass

terms

�̄x�x , �̄x(MA)xy�y , (100)

are not invariant under the enhanced C 0
T invariance, thus their generation by the loop effects is

prohibited. Furthermore, the residual rotational symmetry prohibits unequal renormalization of

coefficients of C12 and C34 in �̄x(MH)xy�y. These facts mean that this two-flavor central-branch

fermion is stable in a sense that the additive mass renormalization for each of the two tastes at

the central branch is prohibited and the central branch cannot be split by quantum effects. It is

clear difference from the two-flavor central-branch Wilson fermion in Sec. III, but is consistent with

the property of the eight-flavor central-branch fermion in Sec. IV, which is reduced to the central-

branch staggered-Wilson fermion by spin diagonalization. Indeed, the numerical calculation for this

case in [27] indicates the absence of additive mass renormalization for the two tastes at the central

branch. We can rephrase this property that the mixed ’t Hooft anomaly of the symmetries of the

central-branch staggered-Wilson fermion prohibits a trivially gapped phase.

It is notable that the absence of sign problem is also proved in this formulation, where we have

C 0
T instead of the Z2 part of U(1)V in the central-branch Wilson fermion and this C 0

T leads to the

pairing of nonzero eigenvalues in the spectrum of H ⌘ ✏xDcb

H
. As long as the number of lattice

sites is even, the determinant of Dirac operator is positive semi-definite. When we introduce a mass

shift, we can bypass the sign problem easily by quenching the sign of the determinant as proposed

in [27].

Although this two-flavor formulation is free from the necessity of the mass parameter fine-tuning,

we need the one-parameter tuning for restoration of Euclidean Lorentz symmetry. However, this

situation is better than those in the known classes of minimally doubled fermions, where the two-
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basic properties including �5 hermiticity (precisely speaking, ✏x ⇠ �5 ⌦ ⇠5 hermiticity). In spin-

taste representation there are only two types of flavored-mass terms satisfying the �5 hermiticity,

corresponding to 1 ⌦ ⇠5 and 1 ⌦ �µ⌫ . These terms are realized as four- and two-hopping terms in

the one-component staggered action up to O(a) errors.

The four-hopping flavored-mass term [17, 20] is given by

MA = ✏
X

sym

⌘1⌘2⌘3⌘4C1C2C3C4 = (1⌦ ⇠5) +O(a) , (88)

with (✏)xy = (�1)x1+...+x4�x,y and Cµ = (Tµ + T †
�µ)/2. Here we hide the factor 1/24 in the

symmetric sum
P

sym.. With this flavored-mass term, the four tastes (species) fall into the ⇠5 = +1

two-taste subspace and the ⇠5 = �1 two-taste subspace. As a consequence, the corresponding Dirac

spectrum has two branches [21, 23]. By introducing a mass parameter m = m�x,y and a Wilson

parameter r = r�x,y as with the Wilson fermion, the four-hopping staggered-Wilson fermion is

expressed as

SA =
X

xy

�̄x(DA)xy�y =
X

xy

�̄x[⌘µDµ + r(1 +MA) +m]xy�y . (89)

We note that (88) is derived from the four-hopping flavored-mass term for naive fermions which

split sixteen species into two eight-species branches [24, 28, 29, 90]. It is schematically expressed as

 ̄x[C1C2C3C4]xy y ! ±�̄x[✏⌘1⌘2⌘3⌘4C1C2C3C4]xy�y . (90)

The two-hopping flavored-mass term [22] is given by

MH = i(⌘12C12 + ⌘34C34) = [1⌦ (�12 + �34)] +O(a) , (91)

with (⌘µ⌫)xy = ✏µ⌫⌘µ⌘⌫�x,y, (✏µ⌫)xy = (�1)xµ+x⌫�x,y, Cµ⌫ = (CµC⌫ + C⌫Cµ)/2. This flavored

mass splits four tastes into three branches, including one-flavor, two-flavor and the other one-flavor

branches. By introducing a mass parameter and a Wilson parameter, the two-hopping staggered-

Wilson fermion is

SH =
X

xy

�̄x(DH)xy�y =
X

xy

�̄x[⌘µDµ + r(2 +MH) +m]xy�y . (92)

Eq. (91) is derived from the two-hopping flavored-mass term in Eq. (82) for naive fermions which

split sixteen species into three branches, including four-species, eight-species and the other four-

species branches [24, 28, 29, 90]. It is expressed as

 ̄x[C12 + C34]xy y ! ±�̄x[i(⌘12C12 + ⌘34C34)]xy�y. (93)
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The properties of these staggered-Wilson fermions have been studied in terms of index theo-

rem [20], overlap kernel [21, 23], symmetries [28, 29, 91], numerical costs [23, 27], parity phase

structure [24, 25, 28], taste-breaking and hadron spectrum [28, 29, 91]. We here concentrate on

their symmetries in order to study the central-branch staggered-Wilson fermions. The four-hopping

flavored-mass in Eq. (88) breaks the staggered symmetry in Eq. (87) to

{C0,⌅
0
µ, Rµ⌫} , (94)

where we define ⌅0
µ ⌘ ⌅µIµ. Since the action is invariant under the transformation ⌅4Is ⇠ (�4⌦1),

the physical parity invariance P remains. Furthermore, C0 is also unbroken in this case, therefore

the physical charge conjugation C at the two-flavor branch can be formed in a similar way to

the staggered fermions. Regarding Euclidean Lorentz symmetry, a combination of the staggered

rotation Rµ⌫ and the shifted-axis reversal ⌅0
µ forms the hypercubic group as with the staggered

fermion. These facts indicate that the four-hopping staggered-Wilson action (89) possesses enough

discrete symmetries for a correct continuum limit.

On the other hand, the symmetry of the two-hopping staggered fermion in (98) is smaller than

that of the four-hopping one, which is given by

{CT ,⌅
0
µ, R12, R34, R24R31} . (95)

Although C0 is broken in this action, it is invariant under another special charge conjugation CT ⌘

R21R2

13
C0 [28, 29]. Due to CT and ⌅0

µ, the invariances under physical parity and physical charge

conjugation are guaranteed at each of the three branches. However, the breaking of the staggered

rotation symmetry leads to the necessity of one-parameter tuning to restore Lorentz symmetry,

where the coefficient of F 2

12
+F 2

34
is renormalized differently from that of F 2

13
+F 2

23
+F 2

14
+F 2

24
[91].

It is a consequence of the fact that the two-hopping staggered-Wilson fermion is derived from the

flavored-mass term with the breaking of hypercubic symmetry in (82) via the spin diagonalization.

B. Central-branch staggered-Wilson fermion

The symmetry of the four-hopping staggered-Wilson fermion in (89) is enhanced with the con-

dition m+ r = 0. The symmetry of SA in (89) with this condition is

{C0, C 0
T⌅µ, C 0

T Is, Rµ⌫} , (96)

where C 0
T is given as the other special charge conjugation [28, 29, 91]

C 0
T : �x ! �̄T

x , �̄x ! �T
x , Ux,µ ! U⇤

x,µ. (97)

Adams (09)
Hoebling(10)
de Forcrand et.al. (10)

Sharpe (12)
TM, Kimura, Nakano, Ohnishi (12)
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Dirac eigenvalue distributionFigure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q

sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.

– 5 –

2 Central-branch Wilson fermion

In this section, we first give a brief review on Wilson fermion and central-branch Wilson
fermion. We begin with looking into flavor-chiral symmetry of naive fermions by following
Ref. [51]. After that, using this knowledge, we discuss the symmetry of the Dirac spectrum for
the central-branch Wilson fermion. Using this symmetry, we prove that the Dirac determinant
of the central-branch Wilson fermion is positive definite on even-sites lattice. This shows that
the numerical Monte Carlo simulation is possible.

2.1 Wilson fermion and central branch

The 2d Wilson fermion action is

SW =
X

n

X

µ=1,2

 n�µDµ n

| {z }
naive kinetic term

+
X

n

m n n

| {z }
mass term

+ r
X

n

X

µ=1,2

 n(1� Cµ) n

| {z }
Wilson term

, (2.1)

where Dµ ⌘ (T+µ � T�µ)/2, Cµ ⌘ (T+µ + T�µ)/2 with T±µ n = Un,±µ n±µ, respectively.
The sum,

P
n, stands for the summation over spacetime lattice sites, n = (x, y) 2 Z ⇥ Z.

Because of the Wilson term, the degeneracy of four species in naive fermion is lifted into three
branches, where one, two and one flavors lives.

The 2d massless naive action possesses U(2) ⇥ U(2) flavor-chiral symmetries, which is a
remnant of the whole flavor-chiral symmetry of 4 species. (See [51] for the symmetries in 4d.)
The symmetries are invariances under

 n ! exp
h
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✓(+)
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where �(+)
X and �(�)

X are site-dependent 2⇥ 2 matrices:

�(+)
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�
12 , (�1)n1+n2�3 , (�1)ňµ�µ

 
, (2.3)

�(�)
X 2

�
(�1)n1+n212 , �3 , (�1)nµ�µ

 
, (2.4)

with ňµ = n⌫ 6=µ. The on-site mass term  ̄n n breaks this U(2)⇥U(2) symmetries to the U(2)

subgroup, generated by �(+)
X . In the presence of the Wilson term the U(2)⇥ U(2) invariance

is broken to the U(1) invariance under 12 in Eq. (2.3). This generator is vector-type, which
means that the Wilson fermion loses all the axial symmetry.

As discussed above, the 2d Wilson term lifts four species into three branches in the Dirac
spectrum in Fig. 1, and we shall discuss its details in Sec. 2.2. In Ref. [50, 51], it has been
shown that the Wilson fermion with the condition,

MW ⌘ m+ 2r = 0, (2.5)
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has an extra U(1) symmetry besides the usual U(1) vector symmetry. The Wilson fermion
with this condition gives the two-flavor massless fermions, which correspond to the central
branch of the Wilson Dirac spectrum as shown in Fig. 1. The fermion lattice action for this
case is given by

SCB =
X

n,µ

�
 ̄n�µDµ n � r ̄nCµ n

�
. (2.6)

This action is invariant under the ordinary U(1)V transformation generated by �(+) = 12,

U(1)V :  n 7! ei↵ n,  n 7!  ne
�i↵, (2.7)

and furthermore there is the extra U(1) symmetry generated by �(�) = (�)n1+n212,

U(1)V :  n 7! ei(�1)n1+n2� n,  n 7!  ne
i(�1)n1+n2� . (2.8)

The usual Wilson fermion has only the vector symmetry (2.7). The invariance under (2.8)
is restored only with the central-branch condition1 m + 2r = 0. It is notable that this
extra symmetry prohibits the on-site mass term  ̄n n, and eventually prohibits additive mass
renormalization as the chiral symmetry in staggered fermion does [50–52]. This formulation is
regarded as another realization of lattice fermions with the remnant of chiral symmetry, which
means we do not need fine-tuning of the mass parameter. It is also notable that such symmetry
enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
symmetries of this central-branch fermion are common with those of the usual Wilson fermion,
including hypercubic symmetry, charge conjugation, parity, time reversal, �3-hermiticity and
reflection positivity. Since we will use the lattice translation and rotational symmetry, let us
write them down explicitly: The lattice translation, Z2, is generated by  (x, y) 7!  (x+1, y)

and  (x, y) 7!  (x, y + 1). The lattice ⇡
2 rotation is given by

 (x, y) 7! ei
⇡
4 �3 (y,�x),  (x, y) 7!  (y,�x)e�i⇡4 �3 . (2.9)

The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.

2.2 Symmetry of the Dirac spectrum at central branch

Armed with the knowledge about central-branch Wilson fermions, we discuss the symmetry
property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
definite. This shows that the central-branch Wilson fermion is free from the sign problem.

We assume that our spacetime is set to torus, and approximate it as Z2/(NxZ ⇥ NyZ).
We only consider the case Nx, Ny are even integers, so that (�)x+y is well defined. We denote
the central-branch Wilson-Dirac operator as

D =
X

µ=1,2

(�µDµ � rCµ). (2.10)

1
The symmetry associated with (�1)n1+n2 is the same as the chiral symmetry in 2d staggered fermion,

which works as the axial rotation. However, we will see in this paper that its role is very different for the

central-branch Wilson fermion.
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◆Wilson without onsite terms
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2D Central-branch Wilson

・Flavor-chiral symmetry for central-branch Wilson fermion

Dirac eigenvalue distributionFigure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q

sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.
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2 Central-branch Wilson fermion

In this section, we first give a brief review on Wilson fermion and central-branch Wilson
fermion. We begin with looking into flavor-chiral symmetry of naive fermions by following
Ref. [51]. After that, using this knowledge, we discuss the symmetry of the Dirac spectrum for
the central-branch Wilson fermion. Using this symmetry, we prove that the Dirac determinant
of the central-branch Wilson fermion is positive definite on even-sites lattice. This shows that
the numerical Monte Carlo simulation is possible.

2.1 Wilson fermion and central branch

The 2d Wilson fermion action is

SW =
X

n

X

µ=1,2

 n�µDµ n

| {z }
naive kinetic term

+
X

n

m n n

| {z }
mass term

+ r
X

n

X

µ=1,2

 n(1� Cµ) n

| {z }
Wilson term

, (2.1)

where Dµ ⌘ (T+µ � T�µ)/2, Cµ ⌘ (T+µ + T�µ)/2 with T±µ n = Un,±µ n±µ, respectively.
The sum,

P
n, stands for the summation over spacetime lattice sites, n = (x, y) 2 Z ⇥ Z.

Because of the Wilson term, the degeneracy of four species in naive fermion is lifted into three
branches, where one, two and one flavors lives.

The 2d massless naive action possesses U(2) ⇥ U(2) flavor-chiral symmetries, which is a
remnant of the whole flavor-chiral symmetry of 4 species. (See [51] for the symmetries in 4d.)
The symmetries are invariances under
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X are site-dependent 2⇥ 2 matrices:
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�
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, (2.3)
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�
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, (2.4)

with ňµ = n⌫ 6=µ. The on-site mass term  ̄n n breaks this U(2)⇥U(2) symmetries to the U(2)

subgroup, generated by �(+)
X . In the presence of the Wilson term the U(2)⇥ U(2) invariance

is broken to the U(1) invariance under 12 in Eq. (2.3). This generator is vector-type, which
means that the Wilson fermion loses all the axial symmetry.

As discussed above, the 2d Wilson term lifts four species into three branches in the Dirac
spectrum in Fig. 1, and we shall discuss its details in Sec. 2.2. In Ref. [50, 51], it has been
shown that the Wilson fermion with the condition,

MW ⌘ m+ 2r = 0, (2.5)
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has an extra U(1) symmetry besides the usual U(1) vector symmetry. The Wilson fermion
with this condition gives the two-flavor massless fermions, which correspond to the central
branch of the Wilson Dirac spectrum as shown in Fig. 1. The fermion lattice action for this
case is given by

SCB =
X

n,µ

�
 ̄n�µDµ n � r ̄nCµ n

�
. (2.6)

This action is invariant under the ordinary U(1)V transformation generated by �(+) = 12,

U(1)V :  n 7! ei↵ n,  n 7!  ne
�i↵, (2.7)

and furthermore there is the extra U(1) symmetry generated by �(�) = (�)n1+n212,

U(1)V :  n 7! ei(�1)n1+n2� n,  n 7!  ne
i(�1)n1+n2� . (2.8)

The usual Wilson fermion has only the vector symmetry (2.7). The invariance under (2.8)
is restored only with the central-branch condition1 m + 2r = 0. It is notable that this
extra symmetry prohibits the on-site mass term  ̄n n, and eventually prohibits additive mass
renormalization as the chiral symmetry in staggered fermion does [50–52]. This formulation is
regarded as another realization of lattice fermions with the remnant of chiral symmetry, which
means we do not need fine-tuning of the mass parameter. It is also notable that such symmetry
enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
symmetries of this central-branch fermion are common with those of the usual Wilson fermion,
including hypercubic symmetry, charge conjugation, parity, time reversal, �3-hermiticity and
reflection positivity. Since we will use the lattice translation and rotational symmetry, let us
write them down explicitly: The lattice translation, Z2, is generated by  (x, y) 7!  (x+1, y)

and  (x, y) 7!  (x, y + 1). The lattice ⇡
2 rotation is given by

 (x, y) 7! ei
⇡
4 �3 (y,�x),  (x, y) 7!  (y,�x)e�i⇡4 �3 . (2.9)

The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.

2.2 Symmetry of the Dirac spectrum at central branch

Armed with the knowledge about central-branch Wilson fermions, we discuss the symmetry
property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
definite. This shows that the central-branch Wilson fermion is free from the sign problem.

We assume that our spacetime is set to torus, and approximate it as Z2/(NxZ ⇥ NyZ).
We only consider the case Nx, Ny are even integers, so that (�)x+y is well defined. We denote
the central-branch Wilson-Dirac operator as

D =
X

µ=1,2

(�µDµ � rCµ). (2.10)

1
The symmetry associated with (�1)n1+n2 is the same as the chiral symmetry in 2d staggered fermion,

which works as the axial rotation. However, we will see in this paper that its role is very different for the

central-branch Wilson fermion.
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◆Wilson without onsite terms
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◆Relevant symmetries

Symmetries of CB Wilson
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is restored only with the central-branch condition1 m + 2r = 0. It is notable that this
extra symmetry prohibits the on-site mass term  ̄n n, and eventually prohibits additive mass
renormalization as the chiral symmetry in staggered fermion does [50–52]. This formulation is
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means we do not need fine-tuning of the mass parameter. It is also notable that such symmetry
enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
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including hypercubic symmetry, charge conjugation, parity, time reversal, �3-hermiticity and
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write them down explicitly: The lattice translation, Z2, is generated by  (x, y) 7!  (x+1, y)

and  (x, y) 7!  (x, y + 1). The lattice ⇡
2 rotation is given by
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The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.
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property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
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(Z2)lat.trans. :

(Z2)� :As a result, we have the following internal symmetry in the continuum description for the
central-branch Wilson fermion,

GCB fermion =
U(1)V ⇥ [U(1)V o (Z2)lat. trans.]

(Z2)F
⇥ (Z2)�, (3.23)

and this originates from the exact lattice symmetry. We gauge the U(1)V symmetry by
introducing the link variables, and then the global symmetry is divided by U(1) and becomes

G = GCB fermion/U(1)V =
U(1)V o (Z2)lat. trans.

(Z2)F
⇥ (Z2)�. (3.24)

3.3 Flavor singlet and non-singlet mass terms

We will show that the symmetry G has the ’t Hooft anomaly and gives an important constraint
on non-perturbative low-energy physics. Especially, its existence prohibits to create the mass
gap without having degenerate ground states. This condition would be obviously violated if
we could write down the fermion bilinear mass terms, because we can obtain the single gapped
ground state by sending such mass parameters to infinite. As a corollary, we cannot write
down the mass term that is invariant under G. Since we can find this conclusion in a more
elementary way than computing ’t Hooft anomaly, let us give a detailed discussion about it
in this section.

The fermion bilinear operator with U(1)V symmetry has the form4,

 (x+ n1, y + n2)�i (x, y). (3.25)

In order to have the U(1)V symmetry, we must set n1 + n2 an odd integer. The lattice
translational symmetry forbids to multiply the staggering phases, such as (�)x,y. We further
can use the lattice ⇡

2 rotation to constrain the possible terms. For example, if �i = 1, these
constraints require that it should appear in the combination,

⇥
 (x+ n1, y + n2) +  (x+ n2, y � n1) +  (x� n1, y � n2) +  (x� n2, y + n1)

⇤
 (x, y).

(3.26)

Substituting the low-energy expression (3.2) and (3.3), we obtain the leading term as

2((�1)n1 + (�1)n2)
�
 1 1 �  2 2

�
. (3.27)

Since n1+n2 has to be an odd integer, this leading term cancels as (�1)n1 +(�1)n2 = 0, and
it starts from the second-order derivatives in the low-energy limit. For other gamma matrices,
it is straightforward to check that the leading term also starts from the derivatives, so we
cannot obtain the mass term that is invariant under all the symmetries. This argument shows
that the symmetry G prohibits any type of fermion bilinear mass terms.

4
When we dynamically gauge U(1)V , we have to insert the Wilson lines for gauge invariance. Just for

notational simplicity, we consider the free fermion case.
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is restored only with the central-branch condition1 m + 2r = 0. It is notable that this
extra symmetry prohibits the on-site mass term  ̄n n, and eventually prohibits additive mass
renormalization as the chiral symmetry in staggered fermion does [50–52]. This formulation is
regarded as another realization of lattice fermions with the remnant of chiral symmetry, which
means we do not need fine-tuning of the mass parameter. It is also notable that such symmetry
enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
symmetries of this central-branch fermion are common with those of the usual Wilson fermion,
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The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.

2.2 Symmetry of the Dirac spectrum at central branch

Armed with the knowledge about central-branch Wilson fermions, we discuss the symmetry
property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
definite. This shows that the central-branch Wilson fermion is free from the sign problem.

We assume that our spacetime is set to torus, and approximate it as Z2/(NxZ ⇥ NyZ).
We only consider the case Nx, Ny are even integers, so that (�)x+y is well defined. We denote
the central-branch Wilson-Dirac operator as
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enhancement on the central branch is generic with the flavored-mass fermions [54]. The other
symmetries of this central-branch fermion are common with those of the usual Wilson fermion,
including hypercubic symmetry, charge conjugation, parity, time reversal, �3-hermiticity and
reflection positivity. Since we will use the lattice translation and rotational symmetry, let us
write them down explicitly: The lattice translation, Z2, is generated by  (x, y) 7!  (x+1, y)

and  (x, y) 7!  (x, y + 1). The lattice ⇡
2 rotation is given by

 (x, y) 7! ei
⇡
4 �3 (y,�x),  (x, y) 7!  (y,�x)e�i⇡4 �3 . (2.9)

The 4d central-branch fermion is summarized in Appendix. A, where 4d two-flavor central-
branch fermion is also discussed.

2.2 Symmetry of the Dirac spectrum at central branch

Armed with the knowledge about central-branch Wilson fermions, we discuss the symmetry
property of the Dirac spectrum, and we shall show that the Dirac determinant is positive
definite. This shows that the central-branch Wilson fermion is free from the sign problem.

We assume that our spacetime is set to torus, and approximate it as Z2/(NxZ ⇥ NyZ).
We only consider the case Nx, Ny are even integers, so that (�)x+y is well defined. We denote
the central-branch Wilson-Dirac operator as

D =
X

µ=1,2

(�µDµ � rCµ). (2.10)

1
The symmetry associated with (�1)n1+n2 is the same as the chiral symmetry in 2d staggered fermion,

which works as the axial rotation. However, we will see in this paper that its role is very different for the

central-branch Wilson fermion.
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(Z2)lat.trans. :

(Z2)� :As a result, we have the following internal symmetry in the continuum description for the
central-branch Wilson fermion,

GCB fermion =
U(1)V ⇥ [U(1)V o (Z2)lat. trans.]

(Z2)F
⇥ (Z2)�, (3.23)

and this originates from the exact lattice symmetry. We gauge the U(1)V symmetry by
introducing the link variables, and then the global symmetry is divided by U(1) and becomes

G = GCB fermion/U(1)V =
U(1)V o (Z2)lat. trans.

(Z2)F
⇥ (Z2)�. (3.24)

3.3 Flavor singlet and non-singlet mass terms

We will show that the symmetry G has the ’t Hooft anomaly and gives an important constraint
on non-perturbative low-energy physics. Especially, its existence prohibits to create the mass
gap without having degenerate ground states. This condition would be obviously violated if
we could write down the fermion bilinear mass terms, because we can obtain the single gapped
ground state by sending such mass parameters to infinite. As a corollary, we cannot write
down the mass term that is invariant under G. Since we can find this conclusion in a more
elementary way than computing ’t Hooft anomaly, let us give a detailed discussion about it
in this section.

The fermion bilinear operator with U(1)V symmetry has the form4,

 (x+ n1, y + n2)�i (x, y). (3.25)

In order to have the U(1)V symmetry, we must set n1 + n2 an odd integer. The lattice
translational symmetry forbids to multiply the staggering phases, such as (�)x,y. We further
can use the lattice ⇡

2 rotation to constrain the possible terms. For example, if �i = 1, these
constraints require that it should appear in the combination,

⇥
 (x+ n1, y + n2) +  (x+ n2, y � n1) +  (x� n1, y � n2) +  (x� n2, y + n1)

⇤
 (x, y).

(3.26)

Substituting the low-energy expression (3.2) and (3.3), we obtain the leading term as

2((�1)n1 + (�1)n2)
�
 1 1 �  2 2

�
. (3.27)

Since n1+n2 has to be an odd integer, this leading term cancels as (�1)n1 +(�1)n2 = 0, and
it starts from the second-order derivatives in the low-energy limit. For other gamma matrices,
it is straightforward to check that the leading term also starts from the derivatives, so we
cannot obtain the mass term that is invariant under all the symmetries. This argument shows
that the symmetry G prohibits any type of fermion bilinear mass terms.

4
When we dynamically gauge U(1)V , we have to insert the Wilson lines for gauge invariance. Just for

notational simplicity, we consider the free fermion case.
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(Z2)lat.trans.

(Z2)⇡
2 rot.

Tanizaki, TM (19)

The Wilson + mass term gives

� r

2

X

n

X

µ

 n( n+µ̂ +  n�µ̂) = �r

2

X

(x,y)

⇥
 (@2y � @2x) � (�)x+y ⌧1(@

2
y � @2x) 

⇤
. (3.7)

Combining them, we get

S =
X

(x,y)

n
 
h
/@ � r

2
(@2y � @2x)

i
 � (�)x+y ⌧1

h
/@ � r

2
(@2y � @2x)

i
 
o
. (3.8)

Here, ⌧i is the Pauli matrices in the flavor space.

3.2 From lattice symmetry to internal symmetry

We have obtained the connection between lattice fermion and the continuum effective descrip-
tion. This allows us to identify the role of lattice symmetry in the continuum. We shall see
that both lattice translation and lattice ⇡

2 rotation induce important internal symmetries in
the continuum limit.

3.2.1 Vector-like symmetry

First, let us discuss the vector-like symmetry in the continuum limit. We claim that the
vector-like symmetry of this system is given by

U(1)V ⇥ [U(1)V o (Z2)lat. trans.]

(Z2)F
. (3.9)

Here, (Z2)F is generated by the fermion parity transformation,  7! � . We will gauge
U(1)V in the lattice Schwinger model, so the vector-like global symmetry is given by

U(1)V o (Z2)lat. trans.
(Z2)F

= O(2) ⇢ SU(2)flavor
(Z2)F

, (3.10)

and this is the subgroup of the flavor SU(2)/Z2(= SO(3)) symmetry.
Lattice on-site symmetry: We first discuss the lattice on-site symmetry. As we have
seen in the previous section, there are two U(1) symmetries, U(1)V and U(1)V . The U(1)V
symmetry (2.7) gives the flavor-independent U(1) symmetry,

 7! ei↵ ,  7!  e�i↵. (3.11)

The site-dependent U(1) symmetry (2.8), U(1)V , gives the flavored U(1) symmetry,

 7! ei�⌧1 ,  7!  e�i�⌧1 . (3.12)

Since this result is less trivial compared with that of U(1)V , let us show it explicitly. The
site-dependent U(1) symmetry (2.8) is given by  7! ei(�)x+y� ,  7!  ei(�)x+y� , and then
the infinitesimal transformation is

� = i(�)x+y((�)x 1 + (�)y 2)

= i((�)x 2 + (�)y 1). (3.13)
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◆ 2D QED with CB Wilson = Schwinger-like model

Substituting this into the low-energy expression, we find that

 (x, y) 7! ei
⇡
4 (��

(new)
3 ) ⌦ ⌧1 (y,�x),  (x, y) 7!  (y,�x)e�i⇡4 (��

(new)
3 ) ⌦ (�⌧1). (3.19)

Appearance of ⌧1 is due to the exchange of staggering phases (�)x $ (�)y, and this is not so
important. We also use the fact that the gamma matrices are redefined as �(new)

µ = (�)µ�µ
in taking the continuum limit at the central branch. This flips the sign of the spin rotation,
⌃ = 1

4 [�1, �2] = i
2�3, in the exponent. As a result, the spin rotation direction becomes

opposite. To resolve this issue, we note that

ei
⇡
4 (��

(new)
3 ) =

1� i�(new)
3p
2

= �i�(new)
3

1 + i�(new)
3p
2

= �i�(new)
3 ei

⇡
4 �

(new)
3 . (3.20)

Using this, the lattice ⇡
2 rotation turns out to be a combination of the spacetime ⇡

2 rotation
and the discrete chiral transformation in the continuum limit:

 (x, y) 7! �(new)
3 ei

⇡
4 �

(new)
3  (y,�x),

 (x, y) 7!  (y,�x)e�i⇡4 �
(new)
3 (��(new)

3 ). (3.21)

Here, we eliminate i⌧1 = ei
⇡
2 ⌧1 by a site-dependent U(1) transformation, and this simplifies the

expression. We can understand this invariance as follows. Look at the effective action (3.8),
then the kinetic term with the first-order derivative /@ has the invariance under axial symmetry.
However, the kinetic terms with the second-order derivative, @2

y�@2
x, break the axial symmetry

completely. We also notice that it also breaks naive ⇡
2 rotation, since @2

y � @2
x flips its sign.

The idea is that the combination of them is the symmetry.
Assuming that Z8 lattice rotation3 enhances to the Lorentz symmetry in the continuum

limit, this indicates that the discrete chiral transformation also emerges:

(Z8)lattice rot.
enhance�����! (Z2)� ⇥ Spin(2). (3.22)

As a result, we have the following internal symmetry in the continuum description for the
central-branch Wilson fermion,

GCB fermion =
U(1)V ⇥ [U(1)V o (Z2)lat. trans.]

(Z2)F
⇥ (Z2)�, (3.23)

and this originates from the exact lattice symmetry. We gauge the U(1)V symmetry by
introducing the link variables, and then the global symmetry is divided by U(1) and becomes

G = GCB fermion/U(1)V =
U(1)V o (Z2)lat. trans.

(Z2)F
⇥ (Z2)�. (3.24)

3
This is Z8 instead of Z4 because 2⇡ rotation of fermions gives (�1)F , and we get Spin(2) for the Lorentz

symmetry for fermions in continuum instead of SO(2).
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Pay attention to discrete subgroup of vector-like symmetry

This breaks lattice translation and rotation separately, but some combinations are still un-
broken.

3.4 Anomaly matching and low-energy physics

We have seen that we cannot write down the fermion mass term without violating the sym-
metry G. Using ’t Hooft anomaly matching condition, we can show the more strong fact that
the system cannot have the gapped unique ground state. An ’t Hooft anomaly of symmetry
G is defined as follows: We define the partition function with the background G-gauge field
A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
(Z2)F

. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
 (x, y + L) = ei↵2(x)⌧3 (x, y). (3.38)

Here, ↵1 and ↵2 denote the transition functions of U(1)V gauge symmetry along x and y

directions, respectively, and they are 2⇡-periodic scalars. These transition functions are in-
troduced because the fermion wave function needs to be periodic only up to the U(1) gauge

5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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◆ ZN background 1-form gauge field

→ nothing but ZN twisted boundary conditions = ZN flux

This breaks lattice translation and rotation separately, but some combinations are still un-
broken.
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We have seen that we cannot write down the fermion mass term without violating the sym-
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A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
(Z2)F

. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
 (x, y + L) = ei↵2(x)⌧3 (x, y). (3.38)

Here, ↵1 and ↵2 denote the transition functions of U(1)V gauge symmetry along x and y

directions, respectively, and they are 2⇡-periodic scalars. These transition functions are in-
troduced because the fermion wave function needs to be periodic only up to the U(1) gauge

5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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This breaks lattice translation and rotation separately, but some combinations are still un-
broken.

3.4 Anomaly matching and low-energy physics

We have seen that we cannot write down the fermion mass term without violating the sym-
metry G. Using ’t Hooft anomaly matching condition, we can show the more strong fact that
the system cannot have the gapped unique ground state. An ’t Hooft anomaly of symmetry
G is defined as follows: We define the partition function with the background G-gauge field
A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
(Z2)F

. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
 (x, y + L) = ei↵2(x)⌧3 (x, y). (3.38)

Here, ↵1 and ↵2 denote the transition functions of U(1)V gauge symmetry along x and y

directions, respectively, and they are 2⇡-periodic scalars. These transition functions are in-
troduced because the fermion wave function needs to be periodic only up to the U(1) gauge

5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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◆ Gauging vector-like symmetry

This breaks lattice translation and rotation separately, but some combinations are still un-
broken.

3.4 Anomaly matching and low-energy physics

We have seen that we cannot write down the fermion mass term without violating the sym-
metry G. Using ’t Hooft anomaly matching condition, we can show the more strong fact that
the system cannot have the gapped unique ground state. An ’t Hooft anomaly of symmetry
G is defined as follows: We define the partition function with the background G-gauge field
A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
(Z2)F

. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
 (x, y + L) = ei↵2(x)⌧3 (x, y). (3.38)

Here, ↵1 and ↵2 denote the transition functions of U(1)V gauge symmetry along x and y

directions, respectively, and they are 2⇡-periodic scalars. These transition functions are in-
troduced because the fermion wave function needs to be periodic only up to the U(1) gauge

5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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This breaks lattice translation and rotation separately, but some combinations are still un-
broken.
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We have seen that we cannot write down the fermion mass term without violating the sym-
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the system cannot have the gapped unique ground state. An ’t Hooft anomaly of symmetry
G is defined as follows: We define the partition function with the background G-gauge field
A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
(Z2)F

. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
 (x, y + L) = ei↵2(x)⌧3 (x, y). (3.38)

Here, ↵1 and ↵2 denote the transition functions of U(1)V gauge symmetry along x and y

directions, respectively, and they are 2⇡-periodic scalars. These transition functions are in-
troduced because the fermion wave function needs to be periodic only up to the U(1) gauge

5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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This breaks lattice translation and rotation separately, but some combinations are still un-
broken.

3.4 Anomaly matching and low-energy physics

We have seen that we cannot write down the fermion mass term without violating the sym-
metry G. Using ’t Hooft anomaly matching condition, we can show the more strong fact that
the system cannot have the gapped unique ground state. An ’t Hooft anomaly of symmetry
G is defined as follows: We define the partition function with the background G-gauge field
A, Z[A], and consider the G-gauge transformation, A 7! A+d✓. If the phase of the partition
function behaves as

Z[A+ d✓] = Z[A] exp(iA[A, ✓]), (3.35)

this anomalous phase A is called the ’t Hooft anomaly5. Importantly, ’t Hooft anomaly is
invariant under the renormalization-group flow, and thus non-trivial ’t Hooft anomaly requires
the non-trivial infrared dynamics, such as gapless excitations, spontaneous symmetry breaking,
or intrinsic topological order.

In this section, following Refs. [17, 18, 26–28], we first show that the symmetry G of the
2d central-branch Wilson fermion has Z2 ’t Hooft anomaly in continuum. This anomaly is
the field theoretic realization of the LSM theorem for spin-1/2 chain, and, using this fact, we
discuss the possible low-energy behaviors in comparison with the exact solution of Heisenberg
XY Z model. We also discuss its connection to the Aoki phase [60–62] of 2d lattice Gross-
Neveu model with the Wilson fermion.

3.4.1 ’t Hooft anomaly and comparison with Heisenberg XY Z model

We consider the U(1) gauge theory with the central-branch Wilson fermion, and then the
system has the global symmetry G. Let us introduce the background gauge field for the
vector-like symmetry, and we will see that (Z2)� is anomalously broken [17, 18, 26–28].

As the vector-like symmetry, we especially pay attention to the subgroup,

Z2 ⇥ Z2 '
(Z4)V o (Z2)lat. trans.

(Z2)F
⇢

U(1)V o (Z2)lat. trans.
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. (3.36)

The background gauge field can be realized as the twisted boundary condition on the two-
torus T 2. We twist the fermion boundary conditions by i⌧1 2 (Z4)V along x-direction, and by
⌧3 2 (Z2)lat. trans. along y-direction:

 (x+ L, y) = ei↵1(y)(i⌧1) (x, y), (3.37)
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5
For clarity, we note that the symmetry is not explicitly broken even if the ’t Hooft anomaly is present.
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Twisted boundary conditions with

Anomaly matching for QED with CB

◆          transformation on the gauged action

transformations. We can relate  (x+ L, y + L) and  (x, y) in two ways:

 (x+ L, y + L) = ei↵1(y+L)(i⌧1) (x, y + L)

= ei(↵1(y+L)+↵2(x))(i⌧1⌧3) (x, y), (3.39)
 (x+ L, y + L) = ei↵2(x+L)⌧3 (x+ L, y)

= ei(↵1(y)+↵2(x+L))(i⌧3⌧1) (x, y). (3.40)

We note that ⌧1⌧3 = �⌧3⌧1. For consistency, the transition functions must satisfy

↵1(y + L) + ↵2(x) = ↵1(y) + ↵2(x+ L) + ⇡ mod 2⇡. (3.41)

We can represent the difference of gauge fields, a = ax(x, y)dx + ay(x, y)dy, between x = L

and x = 0, etc., using the transition functions as

a(x = L, y)� a(x = 0, y) = @y↵1(y)dy,

a(x, y = L)� a(x, y = 0) = @x↵2(x)dx. (3.42)

Therefore, under this twisted boundary condition, the topological charge is fractionalized:
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes6. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.44)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.
6
We note that these odd number of fermionic zero modes appear due to the twisted boundary condition.

This twisted boundary condition is introduced in order to detect the ’t Hooft anomaly. When performing the

numerical simulation of this system, we can use the periodic boundary condition, and then the semi-positivity

of the Dirac determinant holds.
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Z2 ’t Hooft anomaly

1. massless excitation 
2. spontaneous symmetry breaking of (Z4)V , (Z2)lat.trans., (Z2)�

・Several possibilities of low-energy dynamics…….

・Is there a cond-mat system in the same universality class?

・ Yes !  It is 1D XXZ Heisenberg spin chain system !



◆ XXZ spin chain
In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW

X

(x,y)

  (x, y) +
g2
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X
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  (x, y)
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+
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Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW

X

(x,y)

  (x, y) +
g2

2

X

(x,y)

h�
  (x, y)

�2
+
�
 i�3 (x, y)

�2i
. (3.47)

– 15 –

Symmetries : ⇥(Z2)lat.trans.
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
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`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.44)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.45)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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◆ XXZ spin chain
In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):
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When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
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When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.44)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.45)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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◆ XXZ spin chain
In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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Symmetries : ⇥(Z2)lat.trans.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.44)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.45)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.44)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.45)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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◆ XXZ spin chain
In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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Symmetries : ⇥(Z2)lat.trans.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.45)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.46)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW
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same symmetry structure 
as CB-Wilson Schwinger model

Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.43)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.

In order to get some insight about the possible low-energy behavior, we summarize the result
of the Heisenberg XY Z spin-1/2 chain (for details, see the textbook, e.g., [63]):

Ĥ = �
X

`

(JxX̂`X̂`+1 + JyŶ`Ŷ`+1 + JzẐ`Ẑ`+1). (3.44)

Jx,y,z denote the coupling constants, and X̂`, Ŷ`, Ẑ` are Pauli matrices for the spin at site `.
Generically, this model has the on-site spin symmetry, (Z2 ⇥ Z2)spin, and it has Z2 mixed
anomaly with lattice translation. We can summarize the correspondence between symmetries
of our lattice U(1) gauge theory and those of the Heisenberg chain as follows:

Low-energy description XY Z spin chain Our lattice formulation
SO(3)V or its O(2) subgroup (Z2 ⇥ Z2)spin U(1)V o (lattice trans.)

(Z2)� lattice translation lattice rotation
(3.45)

When Ji 6= Jj for i 6= j, the system has two ground states and the anomaly is matched
by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.
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Ĥ = �
X

`
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by discrete symmetry breaking. It depends on the couplings Jx,y,z whether the anomaly is
matched by breaking (Z2 ⇥ Z2)spin (ferromagnetic phase) or by breaking lattice translation
(anti-ferromagnetic phase). When J ⌘ Jx = Jy 6= Jz, the model is called the XXZ spin
chain and has an enlarged spin symmetry, SO(2) o Z2. This enlarged SO(2) corresponds to
U(1)V in our lattice model, and these two models have exactly the same symmetry structure
by the above correspondence. If |Jz/J | < 1, the system is in the gappless phase with spinon,
spin-wave and bound-state excitations, while if |Jz/J | > 1 the anomaly is matched by two
vacua due to discrete symmetry breaking.

Our anomaly matching argument shows that the lattice Schwinger model with the central-
branch fermion belongs to the same universality class, and we do not need fine-tuning of bare
parameters.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW

X

(x,y)

  (x, y) +
g2

2

X

(x,y)

h�
  (x, y)

�2
+

�
 i�3 (x, y)

�2i
. (3.47)
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Ĥ = �
X

`
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symmetries :

◆ Gauging vector-like symmetry with TBC

◆          transformation on the gauged action

transformations. We can relate  (x+ L, y + L) and  (x, y) in two ways:

 (x+ L, y + L) = ei↵1(y+L)(i⌧1) (x, y + L)

= ei(↵1(y+L)+↵2(x))(i⌧1⌧3) (x, y), (3.39)
 (x+ L, y + L) = ei↵2(x+L)⌧3 (x+ L, y)

= ei(↵1(y)+↵2(x+L))(i⌧3⌧1) (x, y). (3.40)

We note that ⌧1⌧3 = �⌧3⌧1. For consistency, the transition functions must satisfy

↵1(y + L) + ↵2(x) = ↵1(y) + ↵2(x+ L) + ⇡ mod 2⇡. (3.41)

We can represent the difference of gauge fields, a = ax(x, y)dx + ay(x, y)dy, between x = L

and x = 0, etc., using the transition functions as

a(x = L, y)� a(x = 0, y) = @y↵1(y)dy,

a(x, y = L)� a(x, y = 0) = @x↵2(x)dx. (3.42)

Therefore, under this twisted boundary condition, the topological charge is fractionalized:

1

2⇡

Z

T 2
da =

1

2⇡

✓Z L

0
dy(ay(L, y)� ay(0, y))�

Z L

0
dx(ax(x, L)� ax(x, 0))

◆

=
1

2⇡
(↵1(L)� ↵1(0)� ↵2(L) + ↵2(0))

2 1

2
+ Z. (3.43)

Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes6. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.44)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.
6
We note that these odd number of fermionic zero modes appear due to the twisted boundary condition.

This twisted boundary condition is introduced in order to detect the ’t Hooft anomaly. When performing the

numerical simulation of this system, we can use the periodic boundary condition, and then the semi-positivity

of the Dirac determinant holds.
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Z2 ’t Hooft anomaly



・Aoki phase conjecture              yields following breaking 

consistent to the anomaly matching condition !

Mixed ’t Hooft anomaly is matched by the existence of Aoki phase.
Figure 2. The conjectured 2d Aoki phase diagram in Wilson fermion with four-fermion interaction,
which is obtained within the mean-field approximation. Horizontal and vertical axes represent MW and
the four-fermion coupling g2, respectively. The phase A is the trivial phase, and the phase B breaks
parity by pseudo-scalar condensate h i�3 i, which is called Aoki phase. The red line corresponds
to the central branch, where the extra vector symmetry U(1)V emerges, and the central branch is
included inside the Aoki phase. Our Z2 ’t Hooft anomaly tells that this central cusp of Aoki phase is
the exact result beyond the mean-field approximation.

3.4.2 Aoki phase of 2d lattice Gross-Neveu model with Wilson fermion

It would be useful to compare our result with the preceding studies on the phase structure of
Wilson fermion. Such studies are very important to understand if the lattice regularized theory
has the correct continuum limit when we perform the numerical Monte Carlo simulation.

The phase structure of Wilson fermion was first studied in Refs. [60–62]. The 2d lat-
tice Gross-Neveu model with N Wilson fermions is considered there, and the mean-field gap
equation in the large-N limit shows that there is a parity-broken phase due to pseudo-scalar
condensate h i�3 i 6= 0. That parity-broken phase is called Aoki phase. The central branch
corresponds to the central cusp of the conjectured Aoki phase diagram as shown in Fig. 2,
where the phase A is the trivial one and the phase B is Aoki phase.

In order to establish the connection between our result and Aoki phase, we first trans-
late the results in Refs. [60–62] into our setup. We consider the system with four-fermion
interaction,

S = SCB +MW

X

(x,y)

  (x, y) +
g2
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(x,y)

h�
  (x, y)

�2
+

�
 i�3 (x, y)
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In order to justify the mean-field gap equation, we have to introduce N -flavor lattice fermions
and take the large-N limit, but we here just perform the mean-field approximation with N = 1.
We then obtain the phase diagram shown in Fig. 2. The central branch is at MW = 0, and
the mean-field computation shows that there is the pseudo-scalar condensate at any g2.
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We note that the four-fermion coupling explicitly breaks U(1)V symmetry at the central
branch, because (  (x, y))2 7! ei4(�)x+y�(  (x, y))2, etc. However, unlike the mass term, it
keeps the non-trivial discrete subgroup, (Z4)V . In Sec. 3.4.1, we have shown that there is a
Z2 mixed ’t Hooft anomaly between (Z4)V ⇢ U(1)V , lattice translation, and lattice rotation.
The pseudo-scalar condensate h i�3 i means the spontaneous symmetry breaking,

(Z4)V
SSB��! (Z2)F , (3.47)

and this means that existence of Aoki phase at any g2 is required by anomaly matching
argument. If we translate this result into the language of XY Z spin chain, Aoki phase
corresponds to the ferromagnetic phase that breaks (Z2 ⇥ Z2)spin spontaneously.

Lastly, let us make several remarks before closing this section. Since the mean-field
computation cannot be justified without the large-N limit, we may have a different phase
structure for N = 1 from Fig. 2. Whatever it is, we have shown that the ’t Hooft anomaly
matching requires that there are at least two degenerate vacua at the central branch MW = 0

for any couplings g2. Let us again emphasize that the anomaly constraint comes from three
symmetries, (Z4)V , lattice translation, and lattice ⇡

2 rotation. If we break at least one of these
symmetries, Aoki phase can terminate at some critical coupling gc, and the system can belong
to the trivially gapped phase. In Ref. [64], the phase diagram is studied for anistropic lattices
in order to understand the result of density-matrix renormalizatoin group, and it is found that
Aoki phase does not extend to the zero coupling when lattice anistropy is introduced. This
is consistent with our anomaly constraint since lattice ⇡

2 rotation is explicitly broken, which
clarifies the importance of lattice symmetries.

In Sec. 2.2, we have shown that the central-branch Wilson fermion has no sign problem.
We have just shown that the 2d lattice Gross-Neveu model at MW = 0 has the pseudo-
scalar condensate h i�3 i that breaks parity/charge conjugation, so it may cause some ques-
tions about the prohibition of parity breaking (or charge-conjugation breaking in 2d case)
by Vafa-Witten theorem [65]. Although Vafa-Witten theorem on parity itself has a certain
subtlety as discussed in Refs. [66, 67], we note that the Vafa-Witten theorem is circumvented
in two ways in the case of this model. First, our theorem on semi-positivity assumes that the
Dirac operator anti-commutes with (�)x+y, but the Hubbard-Stratonovich transformation of
the four-fermion coupling violates this assumption. Therefore, the positivity assumption in
the Vafa-Witten theorem does not hold, although this still leaves some questions, such as,
if we have the sign-problem-free reformulation of the system or not. Second, the pseudo-
scalar condensate spontaneously breaks (Z4)V and parity/charge-conjugation separately, but
there is a diagonal subgroup that keeps the condensate invariant. Using this fact, redefined
parity/charge-conjugation with broken internal symmetry is not spontaneously broken. We
note that the same situation appears in 4d two-flavor QCD with isospin chemical potential.
The conclusion of the Vafa-Witten theorem is evaded as there is no non-zero vacuum expec-
tation value for pseudo-scalar operators that are neutral under other internal symmetries.
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Since the system has two-flavor Dirac fermion, the index theorem tells us that there is an
odd number of zero modes6. As a result, the partition function with the twisted boundary
condition flips its sign under the discrete chiral transformation,

(Z2)� : Ztwisted 7! �Ztwisted, (3.44)

which is nothing but the mixed ’t Hooft anomaly. This anomaly is the field-theoretic realiza-
tion of the LSM theorem [3, 4].

Let us discuss the possible low-energy physics by requiring the anomaly matching condi-
tion. In (1 + 1) dimensions, there are two ways to match this anomaly:

• gapless excitations, or

• two vacua by spontaneous breaking of discrete symmetry.
6
We note that these odd number of fermionic zero modes appear due to the twisted boundary condition.

This twisted boundary condition is introduced in order to detect the ’t Hooft anomaly. When performing the

numerical simulation of this system, we can use the periodic boundary condition, and then the semi-positivity

of the Dirac determinant holds.
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Z2 ’t Hooft anomaly

1. massless excitation → unlikely for asymptotic-free model 
2. two vacua by Z2 spontaneous symmetry breaking      

among (Z4)V , (Z2)lat.trans., (Z2)�

Anomaly matching for CB Gross-Neveu



3.  Species doubling & Betti numbers
Yumoto, TM (22)(23)



Reconsider Naive and Wilson Yumoto, TM (22)

New fermion discretizations Tatsuhiro Misumi

!"# !

$%# !

!!"#$% !&#'()!

! $%# !

!"# !

Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3
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What is the meaning of the numbers?

3D Wilson
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Reconsider Naive and Wilson Yumoto, TM (22)

(π,0) (π,π)(0,0)
Figure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q
sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.

– 5 –

1 12

What is the meaning of the numbers?
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(π,0,0,0)
1 14 6 4
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What is the meaning of the numbers?
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Topological invariants Yumoto, TM (22)

・Topological invariant

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)

・4D torus

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1

Sum of Betti numbers is 16 → # of naive fermion species !



Yumoto, TM (22)

・Topological invariant

・3D torus

β0(M) = 1 β1(M) = 3 β2(M) = 3 β3(M) = 1

Sum of Betti numbers is 8 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

・Topological invariant

・2D torus

β0(M) = 1 β1(M) = 2 β2(M) = 1

Sum of Betti numbers is 4 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

・Topological invariant

・D-dim hyperball

β0(M) = 1 β1(M) = 0 β2(M) = 0  …..

Sum of Betti numbers is 1 → # of Dirac zero modes in free theory

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

・Topological invariant

・T4 × R1

Sum of Betti numbers is 16 → maximal # of species !

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1 β5(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

・Topological invariant

・T2 × R2

Sum of Betti numbers is 4 → maximal # of species !

β0(M) = 1 β1(M) = 2 β2(M) = 1 β3(M) = 0 β4(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

・Topological invariant

・2D Spheres

Sum of Betti numbers is 2 → # of Dirac zero modes in free theory

β0(M) = 1 β1(M) = 0 β2(M) = 1

Kamata, Matsuura, TM, Ohta (16)
Yumoto, TM (21)

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) (= Ker∂n/Im∂n+1)



Yumoto, TM (22)

1+1

sum of βn(M) 

1D torus

max # of  free Dirac zeromodes

2D torus

3D torus

4D torus

Hyperball

Sphere

TD × Rd

2

1+2+1 4

1+3+3+1 8

1+4+6+4+1 16

1+0+0+…. 1  

1+0+0+…+1 2

2D + 0 2D

Topological invariants

TD (1+1)D 2D



Conjecture on fermion species Yumoto, TM (22)

A sum of Betti numbers of a continuum manifold 
is equivalent to 

a maximal number of exact Dirac zero modes 
on the discretized version of the manifold.

・Conjecture

It can be a theorem complementary to Nielsen-Ninomiya’s no-go theory. 



Sketch of proof Yumoto, TM (23)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent 
to each of nullity of the Dirac matrix on 1D torus and 1D 
ball by homology theory and Hodge theory.

By use of Künneth theorem, elevate the above argument to 
higher dimensional space such as 4D Torus and Hyperball.

Classify necessary conditions and complete proof.

キネットの公式・チェイン複体のホモロジー
普遍係数定理・コホモロジー群

キネットの公式の証明
キネットの公式は次のものである。C∗, C′

∗を自由加群からなるチェイン複体とする。

Hn(C∗ ⊗ C′
∗) ∼=

⊕

p+q=n

Hp(C∗) ⊗ Hq(C′
∗) ⊕

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C′
∗))

証明は

0 −→
⊕

p+q=n

Hp(C∗)⊗Hq(C
′
∗)

I−−−→ Hn(C∗ ⊗ C′
∗) −→

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) −→ 0

が分裂する完全系列であることを示す。
まず、Zp = ker(∂ : Cp −→ Cp−1)とし、Bp = im(∂ : Cp −→ Cp−1)とする（普通は

Bp は Bp−1 と書かれる）。このとき、

0 −→ Z∗
i−→ C∗

∂−→ B∗ −→ 0

は自由加群からなるチェイン複体の短完全系列である。よって、sp : Bp −→ Cp で
∂ ◦ sp = idBp

となるもの、あるいは rp : Cp −→ Zpで、rp ◦ ∂ = idZp となるものが存
在する（このことを「分裂する」という）。とくに Cp

∼= Zp ⊕ Bp である。
B∗ は自由加群だから、完全系列

0 −→ Z∗ ⊗ C′
∗

i−→ C∗ ⊗ C′
∗

∂−→ B∗ ⊗ C′
∗ −→ 0

が得られる。（ここで p : C∗ ⊗C′
∗ −→ Z∗ ⊗C′

∗で p ◦ i = idC∗⊗C′
∗ となるものがある。）

このチェイン複体の短完全系列から、ホモロジー群の長完全系列が得られる。

Hn+1(B∗ ⊗ C′
∗)

∂−→ Hn(Z∗ ⊗ C′
∗) −→ Hn(C∗ ⊗ C′

∗) −→ Hn(B∗ ⊗ C′
∗)

∂−→ Hn−1(Z∗ ⊗ C′
∗)

ここで、
#

Zp−1 ⊗ C′
q

0←−−− Zp ⊗ C′
q#(−1)p∂′′

Zp ⊗ C′
q−1

#

Bp−1 ⊗ C′
q

0←−−− Bp ⊗ C′
q#(−1)p∂′′

Bp ⊗ C′
q−1

であり F が自由加群のときH∗(F ⊗ C′
∗) ∼= F ⊗ H∗(C′

∗)となるから、
⊕

p+q=n+1

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

∂ の定義をみると、∂ = j ⊗ id (j : Bp+1 = Bp ⊂ Zp)であることがわかる。
⊕

p+q=n

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n−1

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

Details of this conjecture will be discussed in Jun Yumoto’s talk on 7th



Summary

• Wilson fermion is regarded asSPT, which has gapless mode 
at the boundary, or Domain-wall fermion.

• ’t Hooft anomaly matching is applicable to Lattice field 
theory. It may reveal phase structure specific to lattice.

• New conjecture on fermion doubling is proposed:          
Maximal # of exact Dirac zeromodes on discretized 
manifold is equal to sum of Betti numbers of the manifold.



◆Use of extra U(1) symmetry

This procedure shows semi-positivity  

Semi-positivity of det(D)

So far, we have seen a generic feature of any Wilson fermion by �3-hermiticity. The
existence of the site-dependent U(1) symmetry, U(1)V , is the special feature of the central-
branch Wilson fermion. This means that the central-branch Wilson-Dirac operator satisfies

D(�)x+y = �(�)x+yD. (2.18)

Using this anti-commutation relation, we obtain

D(�)x+y|R�i = ��(�)x+y|R�i, (2.19)
hL�|(�)x+yD = ��hL�|(�)x+y. (2.20)

This shows that if � 2 C \ {0} is in the Dirac spectrum so is ��. These symmetries explain
why Fig. 1 is symmetric under Re(�) 7! �Re(�) and Im(�) 7! �Im(�).

Now, we would like to show that the central-branch Wilson fermion has no sign problem,
i.e.

det(D) � 0. (2.21)

We emphasize that this is an important property of this fermion when we consider the Monte
Carlo simulation of lattice gauge theory. In order to prove this, it is useful to introduce the
hermitian Wilson-Dirac operator,

H = �3D. (2.22)

The �3-hermiticity of D ensures that H† = H, so its spectrum is in real values. The U(1)V
symmetry gives H(�)x+y = �(�)x+yH, so the non-zero spectrum forms the pair with the
opposite sign. When there are no zero eigenvalues, we can label the spectrum as

{±"i}i=1,...,NxNy . (2.23)

Since NxNy is an even integer, we obtain that

det(D) = det(H) =

NxNyY

i=1

"i(�"i) = (�1)NxNy

NxNyY

i=1

"2i > 0. (2.24)

If there are some zero eigenvalues, det(D) = 0. We have shown the semi-positivity of det(D).
We note that the same argument can be used for 4d central-branch Wilson fermion, too,

and the Dirac determinant is again positive semi-definite.

3 Analytical study of low-energy effective theory

In this section, we study the property of low-energy effective theory of the lattice Schwinger
model with the central-branch Wilson fermion. By using the low-energy approximation, we
make the connection between the lattice gauge theory and the continuum field theory. Using
this approximation, we can translate the exact symmetry on lattice into the emergent internal
symmetry on continuum, and we compute the ’t Hooft anomaly of the symmetry.

– 6 –

Figure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q

sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.

– 5 –

Pair of +ε and -ε

◆Use of hermitian Dirac operator

It shows that +λ and -λ make a pair.

Tanizaki, TM (19)

12

The central-branch Wilson fermion has further property to restrict the quark determinant. The

U(1)V symmetry specific to the central-branch condition can be expressed as

D(�1)
P

µ nµ = �(�1)
P

µ nµD, (22)

which means the pairing of nonzero eigenvalues �,�� in the Dirac spectrum. This property is

reflected by the point-symmetric Dirac spectrum of the central branch Wilson fermion. We now

define the hermitian Dirac operator as

H = �5D. (23)

The �5-hermiticity of D guarantees H† = H and its spectrum should be real. The U(1)V symmetry

is expressed for this operator as

H(�1)
P

µ nµ = �(�1)
P

µ nµH, (24)

which leads to the pairing of nonzero eigenvalues ",�" in the spectrum of H. We here ignore zero

eigenvalues for a while and label the spectrum of eigenvalues as

{±"i}i=1,...,N , (25)

where N is defined as N = N1N2N3N4. Since N is an even integer, we obtain

det(D) = det(H) =
NY

i=1

"i(�"i) = (�1)N
NY

i=1

"2i > 0. (26)

If the spectrum contains zero eigenvalues, we have det(D) = 0. Therefore det(D) is positive semi-

definite,

det(D) � 0. (27)

We can rephrase this result in terms of spectrum of D: When there are real negative eigenvalues,

we simultaneously have genuine zero eigenvalues and the determinant becomes zero. When there

are no real negative eigenvalues, we have no zero eigenvalues and the determinant becomes nonzero

and positive-real. Thus, the determinant is positive semi-definite for any configuration.

In the Monte Carlo simulation with the central-branch fermion, there are two possible patterns

of its use, both of which have their own advantages and disadvantages:

The first pattern is to generate configurations right on the central branch without mass shift

and take a continuum limit. This method is free from the sign problem of quark determinant,

but the parameter set corresponds to the parity-broken phase. Although it may correspond to
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U(1)V symmetry specific to the central-branch condition can be expressed as
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