ATLAS Higgs Pair Production studies.

Summary of Run 1 Searches and HL-LHC Prospects studies

N. Styles Higgs Pair Production at Colliders Workshop MITP, Mainz 27/05/15

Introduction

> ATLAS has been studying Higgs pair production in 8TeV Run 1 LHC data

- Used as a search channel with sensitivity to wide range of New Physics models
- Consider both resonant and non-resonant contributions
- Resonant: 2HDM, Graviton, Radion, Stoponium, Hidden sector mixing with Higgs...
- Non-resonant: Modified self-coupling, direct ttHH vertex, light coloured scalars...

> Will summarise two Run 1 Studies:

- "A search for resonant Higgs-pair production in the bb bb f nal state in pp collisions at s = 8 TeV" - ATLAS-CONF-2014-005
- "Search for Higgs boson pair production in the b b f nal state using pp collision data at s = 8 TeV from the ATLAS detector" Phys.Rev.Lett. 114 (2015) 081802
- > Also looking at prospects of measuring SM Higgs pair production at HL-LHC
 - Sensitivity to Higgs self-interaction
 - Results of studies in 1 channel so far public
 - "Prospects for measuring Higgs pair production in the channel H(→ γγ)H(→ bb) using the ATLAS detector at the HL-LHC" - ATL-PHYS-PUB-2014-019

Run 1 HH→4b Analysis

- Studied in context of KK Graviton decaying to Higgs Pair
 - For 1 TeV Graviton mass, BR(HH)~7%
 - MadGraph5 v1.5.1, Pythia v8.175
- > Events selection
 - Look for b-tagged di-jet pairs consistent with m_H
 - Acceptance reduced for high m_{G*} due to jet merging
 - tt-veto applied by checking compatibility with W and t mass when 'additional jets' considered
 - Dominant multijet background estimated from data by reweighting '2-tag' category based on 4-tag distribution in sideband/control regions
 - tt background also largely estimated from data

Run 1 HH→4b Analysis - Results

Signal Region Type No excess observed Multijet 109 ± 5 tī 10 ± 6 19.5 fb⁻¹ 2012 ATLAS data Z+jets 0.7 ± 0.2 114 observed events compatible with 120+/- 8 background Total Bkgd 120 ± 8 estimate Data 114 Set limits on cross-section $G^* (m_{G^*} = 500 \text{ GeV})$ 12.5 ± 0.4 • from 100 fb (500 GeV m_{G^*}) to 7 fb (1 TeV m_{G^*}) $G^* (m_{G^*} = 700 \text{ GeV})$ 12.5 ± 0.2 $\sigma(pp \rightarrow G^*) \times BR(G^* \rightarrow HH \rightarrow b\overline{b}b\overline{b})$ [fb] 25 Events / 50 GeV Expected Limit (95% CL) Signal Region Data Expected $\pm 1\sigma$ Multijet 20 Expected $\pm 2\sigma$ Observed Limit (95% CL) G* (m=700 GeV) 10^{2} RS Graviton, k/MPlanck = 1.0 G* (m=1000 GeV) x 10 15 ATLAS Preliminary 10 √s = 8 TeV: Ldt = 19.5 fb⁻¹ 10 $\sqrt{s} = 8$ TeV: Ldt = 19.5 fb⁻¹ Data / Bkgd ATLAS Preliminary 2.5**Bkgd Systematics** 600 800 1000 1200 1400 m_{G*} [GeV] 800 2000 m_{4i} [GeV] 1200 1400 1600 1800 600 800

N. Styles | MITP Higgs Pair Production at Colliders Workshop | 27/05/2015 | Slide 4

DES

- Search for resonant and non-resonant enhancements to HH crosssection
 - Chosen channel has large branching ratio on H→bb side, clean trigger and excellent mass resolution on H→γγ side
 - Particularly useful on resonant search where 260<m_x<500 GeV, where other channels suffer due to backgrounds and combinatorics
- > Data-driven background estimates for non-Higgs backgrounds
 - VH and ttH backgrounds use Pythia8
 - ggF and VBF backgrounds use POWHEG+Pythia8
- MadGraph 5 + Pythia 8 used for both resonant benchmark signal models
 - Non-resonant: SM Higgs pair production
 - Resonant: 10 MeV width, m_x = 260,300,350,500 GeV

Run 1 HH \rightarrow b b – Selection and analysis procedure

> Event Selection

- Pairs of b-tagged jets and γγ pairs consistent with m_µ
- Additional mass constraint on 4-body mass for resonant search
- bb p_T correct by factor $125/m_{bb}$ (m_H =125 GeV in MC)
- mass window defined by 95% acceptance of MC signal
- Control region with <2 b-tagged jets</p>
 - For non-resonant case, exponential background distribution in m_w fit from control region
 - For background acceptance of 4-body mass cut in resonant case, use m_{yy} sidebands of control region fit with Landau distribution
- > Fit 3 components to m_{vv} spectrum in non-resonant search
 - Signal, continuum, and resonant single Higgs backgrounds
 - Resonant search carried out as counting experiment, due to statistical limitations imposed by 4-body mass cut

Run 1 HH \rightarrow b b – Results

- Results in 20.3 +/- 0.6 fb⁻¹ 2012 data
- Non-resonant search observes 5 events, 2.4σ excess over background-only hypothesis
 - 2.2 pb observed upper limit on HH production, compared to 1.0^{+0.5} pb expected limit
- Observed exclusion in resonant search ranges from 0.7 – 3.5 pb

Prospects Studies - HL-LHC

- > Self coupling is a fundamental property of the SM Higgs field
 - To understand if observed Higgs boson is really SM, must measure this coupling as well as its coupling to other particles
- Self-coupling strength can be determined by measuring Higgs pair production cross-section
 - Destructive interference between diagrams with and without self-interaction
- > NB Analysis is not currently optimised specifically for sensitivity to λ_{HHH}

Aside: HL-LHC and ATLAS Phase 2 Upgrade

- > High Luminosity LHC planned to begin operation ~2025
 - Aims to provide 3000 fb⁻¹ 14 TeV pp data
 - Peak instantaneous luminosity 5 7 x10³⁴cm⁻²s⁻¹
 - Implies events with pile-up 140-200
- > ATLAS detector will receive significant upgrades
 - Including full replacement of tracking detector
- > ATLAS 'Phase 2' upgrade simulation performed
 - Inserts baseline design for replacement tracker in current calorimeter/muon systems
 - Upgrades to other systems not yet available in these full-simulation samples

Self Coupling at HL-LHC

Decay Channel	Branching Ratio	Total Yield (3000 fb^{-1})
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b}+ au^+ au^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + au^+ au^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma\gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

- Total (SM) NNLO cross-section 40.8 fb⁻¹
 - Need large HL-LHC data sample to have a good chance of measuring this process

> A wide variety of final states available

- High branching fraction modes also have large backgrounds
- As for Run 1 study, bbγγ chosen as promising mode for study due to clean γγ signature (clean trigger, excellent mass resolution)
- > Final measurement will use combination of final states
 - bbττ, 4b and others are also under study, not yet approved within ATLAS

What about bbWW?

- Have seen in earlier talk that bbWW may still provide some sensitivity
- This was looked at in 2012 by ATLAS ahead of `European Strategy for Particle Physics' preparation
 - Looked at semi-leptonic channel
 - Require exactly 1 lepton, at least 4 jets (at least one b-tagged). missing transverse momentum
 - Chi² fit technique to reconstruct W and Higgs masses, then apply mass requirements
- Before any smearings or efficiencies applied S/B is of order 10⁻⁵
 - Final state identical to tt
 - Looks very prohibitive
- > Analysis cuts can reduce backgrounds by ~2 orders of magnitude
 - ...but signal also suffers
- Concluded from these studies that no reasonable sensitivity is possible

HL-LHC performance & object definitions

- Full simulation not available for signal plus all backgrounds under HL-LHC conditions
 - Performance parameterisations extracted from benchmark samples, and applied to generator-level particle 4-vectors
 - ATL-PHYS-PUB-2013-009, ATL-PHYS-PUB-2013-004
 - Momentum smearings, efficiency functions, fake rates, etc...
- > Probabilities for $e \rightarrow \gamma$ fakes not described in notes
 - After discussion, took assumption that performance will be ~similar to today

N. Styles | MITP Higgs Pair Production at Colliders Workshop | 27/05/2015 | Slide 12

Monte Carlo Samples

Samples	Generated/	$\sigma \cdot BR$	Order	Generated	Equivalent
	Showered With	(fb)	pQCD	Events	Lum. (fb^{-1})
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=1)$	MadGraph5/Pythia8	0.11	NNLO	3×10^{5}	2.8×10^{6}
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	MadGraph5/Pythia8	0.23	NNLO	3×10^{5}	1.3×10^{6}
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=2)$	MadGraph5/Pythia8	0.05	NNLO	3×10^{5}	6.1×10^{6}
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	MadGraph5/Pythia8	1.81	NNLO	3×10^{5}	0.2×10^{6}
$b\bar{b}\gamma\gamma$	MadGraph5/Pythia8	338	LO	4.0×10^{6}	1.2×10^4
$c\bar{c}\gamma\gamma$	MadGraph5/Pythia8	1.6×10^{3}	LO	1.8×10^{7}	1.2×10^{4}
$b\bar{b}\gamma j$	MadGraph5/Pythia8	2.6×10^{5}	LO	1.9×10^{7}	72
$b\bar{b}jj$	MadGraph5/Pythia8	9.4×10^{7}	LO	4.9×10^{5}	5.2×10^{3}
jjγγ	MadGraph5/Pythia8	2.2×10^{4}	LO	4.6×10^{7}	2×10^{3}
$t\bar{t} \ge 1$ lepton)	MC@NLO/Herwig	5.3×10^{5}	NNLO	1.5×10^{7}	280
$t\bar{t}\gamma$	MadGraph5/Pythia8	3.3×10^{3}	LO	6.2×10^{6}	1.9×10^{3}
$t\bar{t}H(\gamma\gamma)$	POWHEG/Pythia8	1.39	NLO	1.2×10^{5}	8.4×10^{4}
$Z(b\bar{b})H(\gamma\gamma)$	Pythia8	0.304	NLO	1.0×10^{6}	3.3×10^{6}
$b\bar{b}H(\gamma\gamma)$	MadGraph5/Pythia8	1.32	NLO	7.5×10^{5}	5.6×10^{5}

> Signal under several self-coupling scenarios

- Unless otherwise stated, talking about SM scenario
- > 4 main background categories
 - irreducible continuum, reducible continuum, top, and single Higgs

N. Styles | MITP Higgs Pair Production at Colliders Workshop | 27/05/2015 | Slide 13

Kinematics

Kinematics

Selection Criteria

- > The following event selection was arrived at following optimisation
 - Mostly optimised S/\(\vee\)(B), but tried to avoid overly tight cuts on parameters where it could reduce sensitivity to self-coupling through restricting the phase space

Event Selection Criteria				
\geq 2 isolated photons, with p _T > 30 GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.37$				
\geq 2 jets identified as <i>b</i> -jets with leading/subleading p _T > 40/25 GeV, $ \eta < 2.5$				
No isolated leptons with $p_T > 25$ GeV, $ \eta < 2.5$				
< 6 jets with p_T > 25 GeV, $ \eta $ < 2.5				
$0.4 < \Delta R^{b\overline{b}} < 2.0, 0.4 < \Delta R^{\gamma\gamma} < 2.0, \Delta R^{\gamma b} > 0.4$				
$100 < m_{b\overline{b}} < 150 \text{ GeV}, 123 < m_{\gamma\gamma} < 128 \text{ GeV}$				
$p_T^{\gamma\gamma}, p_T^{b\overline{b}} > 110 \text{ GeV}$				

> Also performed cross-check, using selection compatible with Run 1 study

 After appropriate scalings applied, reasonable agreement with background estimate from Run 1 study

Results

Expected yields (3000 fb^{-1})	Total	Barrel	End-cap
Samples			
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=1)$	8.4±0.1	6.7±0.1	1.8 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	13.7±0.2	10.7 ± 0.2	3.1 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=2)$	4.6 ± 0.1	3.7 ± 0.1	0.9 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	36.2 ± 0.8	27.9 ± 0.7	8.2 ± 0.4
$b\bar{b}\gamma\gamma$	9.7±1.5	5.2±1.1	4.5±1.0
$c\bar{c}\gamma\gamma$	7.0±1.2	4.1±0.9	2.9 ± 0.8
$b\bar{b}\gamma j$	8.4±0.4	4.3±0.2	4.1 ± 0.2
$b\bar{b}jj$	1.3±0.2	0.9 ± 0.1	0.4 ± 0.1
jjγγ	7.4±1.8	5.2 ± 1.5	$2.2{\pm}1.0$
$t\bar{t} \ge 1$ lepton)	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1
$t\bar{t}\gamma$	3.2 ± 2.2	1.6±1.6	1.6 ± 1.6
$t\bar{t}H(\gamma\gamma)$	6.1±0.5	4.9 ± 0.4	1.2 ± 0.2
$Z(bar{b})H(\gamma\gamma)$	2.7 ± 0.1	1.9 ± 0.1	0.8 ± 0.1
$b\bar{b}H(\gamma\gamma)$	1.2 ± 0.1	1.0 ± 0.1	0.3 ± 0.1
Total Background	47.1±3.5	29.1±2.7	18.0 ± 2.3
$S/\sqrt{B}(\lambda/\lambda_{SM}=1)$	1.2	1.2	0.4

Split events into barrel/endcap categories

- If one photon has 1.37<|eta|<2.37, endcap</p>
- > Overall significance 1.3 σ
 - ('total' column means 'only one category')

N. Styles | MITP Higgs Pair Production a

m_{bb} [GeV]

Limit Setting

> Based on these results, we should be able to exclude values of the selfcoupling strength larger than 8.7xSM, and smaller than -1.3xSM

Summary of Prospects study

- Projected signal significance ~1.3 σ in this channel, for 3000 fb⁻¹ of 14 TeV p-p data
 - Tried to make as realistic a projection as possible, including as many major effects as feasible
 - More realistic pile-up treatment now available; can be included for future studies
 - Not very inspiring on its own, but can form a component of a measurement that uses multiple channels (combining results across ATLAS and CMS)
 - Work is ongoing on these other channels
- > Number of places where we can potentially improve matters
 - Different b-tagging working points (including specialization for c-jet rejection)
 - Look at Multi-Variate Analysis techniques; very preliminary look suggests ~30% improvement
 - Being considered within context of High-eta extensions of ATLAS tracker upgrade
 - Very open to other suggestions of improvements we could try!

Conclusions

- > ATLAS has studied Higgs pair production in Run 1 data as BSM searches
 - No excess found in 4b final state
 - b b f nal state observes small excess (2^a) compared to background-only hypothesis in non-resonant search
 - Look forward to Run 2 to see how these results develop in 13 TeV dataset
- Prospect studies for HL-LHC have been undertaken
 - Aim to observe SM Higgs pair production and measure Higgs self-coupling in 3000 fb⁻¹ of 14 TeV pp data
 - Important part of foreseen HL-LHC physics program
 - b b study currently available; other channels with which this will form combined measurement under study and results hopefully available soon
 - Use Run 1 and Run 2 experience to improve these studies
 - Suggestions for new avenues to to explore to improve sensitivity, increase realism of projection, or other suggestions, would all be highly welcomed

