

Higgs pair production in Strongly Interacting Models

Ramona Gröber | 28.04.2015

INFN SEZIONE DI ROMA TRE

INFN Sezione di Roma Tre

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.
 - E.g. In SUSY, [MSSM: Djouadi, Killan, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.

E.g. in SUSY, [MSSM: Djouadi, Kilian, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.

E.g. in SUSY, [MSSM: Djouadi, Killan, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.

E.g. in SUSY, [MSSM: Djouadi, Killan, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.

E.g. in SUSY, [MSSM: Djouadi, Killan, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

How can the Higgs pair production cross section be influenced by new physics effects?

- Shift in the trilinear Higgs coupling. In most models: also shift in the other couplings. Exception e.g. singlet with zero VEV [ew baryogenesis scenario, see e.g. Curtin, Meade, Yu '14]
- Shift in the other Higgs boson couplings.
- Additional Higgs bosons.

E.g. in SUSY, [MSSM: Djouadi, Killan, Mühlleitner, Zerwas '99; ... NMSSM: Ellwanger '13; Nhung, Mühlleitner, Streicher, Walz '13]

Two Higgs Doublet Model [Baglio, Eberhardt, Nierste, Wiebusch '14; ...] or non-minimal Composite Higgs Models

Additional particles in the loop.

E.g. in SUSY or Composite Higgs Models [CHM: Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

Novel couplings.

E.g. in Composite Higgs Models and Little Higgs Models [CHM: RG, Mühlleitner '10; ... LHM: Dib, Rosenfeld, Zerwekh '05]

My talk: Composite Higgs Models, Littlest Higgs Model, Universal Extra dimensions Christoph's talk: Weakly-interacting Models Florian's talk: EFT for HH

OUTLINE

Novel couplings

New loop particles

How well are the top partners described by EFT?

Can the SM K-factor for QCD corrections be taken over?

Can BSM scenarios also be accessible in other production modes such as VBF or $t\bar{t}hh$?

Models

COMPOSITE HIGGS MODELS (CHM)

и	С	t
d	s	b
e-	μ^{-}	τ^{-}
$\nu_{ extsf{e}}$	$ u_{\mu}$	ν_{τ}

elementary particles

light, since pseudo-Goldstone boson spin 0: H, ... spin 1/2: T, B, $X^{5/3}$,... spin 1: ρ , a,... strongly interacting sector

Top quark t can mix with fermionic resonances of the strongly-interacting sector ("top

- partner" T)
- Higgs boson is pseudo-Goldstone boson of spontaneous symmetry breaking of global symmetry at scale f Here: SO(5) × U(1)/SO(4) × U(1)
- global symmetry explicitly broken \rightarrow Higgs potential generated by quantum corrections

COMPOSITE HIGGS MODELS

Parametrization of 4 Goldstone bosons

$$\Sigma(x) = \Sigma_0 e^{-iT^{\hat{a}}h^{\hat{a}}\sqrt{2}/f}, \qquad \Sigma_0 = (0, 0, 0, 0, 1)$$

• Description by non-linear σ -model

 $\mathcal{L} = \frac{f^2}{2} (D_{\mu} \Sigma)^T (D^{\mu} \Sigma), \qquad \text{ in unitary gauge: } \Sigma = (0, 0, 0, \sin H/f, \cos H/f)$

Leads to

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H + \frac{f^2}{4} \sin^2 \left(\frac{H}{f}\right) \left[g^2 W^{\mu} W_{\mu} + \frac{g^2}{\cos \theta_W} Z^{\mu} Z_{\mu}\right] + \dots$$

$$\downarrow$$

$$\xi = \frac{v^2}{f^2} = \sin^2 \frac{\langle H \rangle}{f}$$

Gauge boson-Higgs couplings:

$$g_{hVV}=g_{hVV}^{SM}\sqrt{1-\xi}, \qquad \qquad g_{hhVV}=g_{hhVV}^{SM}(1-2\xi)$$

hff, hhh, ... couplings depend on fermion embedding

FERMIONS IN CHMS

 Fermion embeddings in SO(5): spinorial (4), fundamental (5), antisymmetric (10), ...

SM fermion masses introduced by partial compositeness

Lagrangian for an SO(5) multiplet ψ transforming in the fundamental representation:

$$\begin{split} \mathcal{L} &= \frac{f^2}{2} (D_{\mu} \Sigma)^T (D^{\mu} \Sigma) + i \bar{q}_L \not D q_L + i \bar{t}_R \not D t_R + i \bar{b}_R \not D b_R + \overline{\psi} \left(i \not D - M_5 \right) \psi + \\ &- y f \left(\overline{\psi} \cdot \Sigma \right) \left(\Sigma^T \cdot \psi \right) - \left(\lambda_L \overline{q}_L Q_R + \lambda_R \overline{\tilde{T}}_L t_R \right) \end{split}$$

- Mixing of all 2/3 charged top-partners with top quark
- Term with coupling y introduces $t_i \overline{t}_i h$, $t_i \overline{t}_i hh$, ... couplings

OTHER MODELS CONSIDERED HERE

Littlest Higgs Models with T parity:

- Coset SU(5)/SO(5) with $[SU(2) \times U(1)]^2$ gauged.
- New scalars, but *T* parity forbids $hh\phi$ couplings \Rightarrow no resonant *hh* production.
- Top partners *T* to cancel quadratic top mass dependence in Higgs mass.
- hhtt coupling.

Universal extra dimensions

- 5D Lagrangian compactified on circle with radius R
- 4D description: Kaluza Klein tower of states, SM particles correspond to zero component
- \blacksquare All fields propagate in extra dimension \to approximate KK number conservation \to KK excitations are pair-produced

• two degenerate top partners per level with $m_{T_n} = \sqrt{m_t^2 + n^2/R^2}$

Models

Novel couplings

tThh COUPLING IN LITTLEST HIGGS MODEL

Strong increase of cross section compared to SM due to tthh coupling

tthh coupling in Composite Higgs Models

Strong increase of cross section compared to SM due to tthh coupling

ACCESSABILITY OF *t*thh COUPLING

- Study focused on CHMs [Contino, Ghezzi, Moretti, Panico, Piccini, Wulzer '12] $\implies t\bar{t}hh$ coupling can be constrained with higher precision than *hhh* coupling
- Newer study in context of EFT [Azatov, Contino, Panico, Son '15]

Novel couplings Ramona Gröber – Higgs pair production in Strongly Interacting Models

New fermions in the loop

HIGGS PAIR PRODUCTION IN COMPOSITE HIGGS MODELS

HIGGS PAIR PRODUCTION IN COMPOSITE HIGGS MODELS

Fermions with masses below cut-off \rightarrow cross section depends explicitly on the masses of new resonances. [Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12]

HIGGS PAIR PRODUCTION IN COMPOSITE HIGGS MODELS

Fermions with masses below cut-off \rightarrow cross section depends explicitly on the masses of new resonances. [Gillioz, RG, Grojean, Mühlleitner, Salvioni '12; Dolan, Englert, Spannowsky '12] Can *hh* give us any information on the spectrum of the loop particles?

CAN hh GIVE US ANY INFORMATION ON THE LOOP PARTICLES?

What can we get from single Higgs?

CAN *hh* give us any information on the loop particles?

What can we get from single Higgs?

In many CHMs/LHMs: Top partners simultanously shift $t\bar{t}h$ coupling and lead to hgg contact interaction [Falkowski '07; Low, Vichi '10; Azatov, Galloway '11; Gillioz, RG, Grojean, Mühlleitner, Salvioni '12] Need measurement to lift degeneracy:

- *t*th production
- hj [Azatov, Paul '13; Banfi, Martin, Sanz '13; Grojean, Salvioni, Schlaffer, Weiler '13]
- Off-shell measurements $gg \rightarrow ZZ$ [Azatov, Grojean, Paul, Salvioni '14]

CAN hh GIVE US ANY INFORMATION ON THE LOOP PARTICLES?

What can we get from single Higgs?

In many CHMs/LHMs: Top partners simultanously shift $t\bar{t}h$ coupling and lead to hgg contact interaction [Falkowski '07; Low, Vichi '10; Azatov, Galloway '11; Gillioz, RG, Grojean, Mühlleitner, Salvioni '12] Need measurement to lift degeneracy:

- *t*th production
- hj [Azatov, Paul '13; Banfi, Martin, Sanz '13; Grojean, Salvioni, Schlaffer, Weiler '13]
- Off-shell measurements $gg \rightarrow ZZ$ [Azatov, Grojean, Paul, Salvioni '14]

What can we get from double Higgs?

CAN *hh* give us any information on the loop particles?

What can we get from single Higgs?

In many CHMs/LHMs: Top partners simultanously shift $t\bar{t}h$ coupling and lead to hgg contact interaction [Falkowski '07; Low, Vichi '10; Azatov, Galloway '11; Gillioz, RG, Grojean, Mühlleitner, Salvioni '12] Need measurement to lift degeneracy:

- *t*th production
- hj [Azatov, Paul '13; Banfi, Martin, Sanz '13; Grojean, Salvioni, Schlaffer, Weiler '13]
- Off-shell measurements $gg \rightarrow ZZ$ [Azatov, Grojean, Paul, Salvioni '14]

What can we get from double Higgs?

c_g (in EFT approach) can be further constrained by *hh* For chiral fermions and scalars, *M_{HH}* distributions change.
 For vector-like fermions as in CHM and LHM, they do not.

CAN hh GIVE US ANY INFORMATION ON THE LOOP PARTICLES?

What can we get from double Higgs?

• c_g (in EFT approach) can be further constrained by *hh*

[Azatov, Contino, Panico, Son '15]

[Dawson, Ismail, Low '15]

For chiral fermions and scalars, M_{HH} distributions change.

For vector-like fermions as in CHM and LHM, they do not.

CAN hh GIVE US ANY INFORMATION ON THE LOOP PARTICLES?

What can we get from double Higgs?

• c_g (in EFT approach) can be further constrained by *hh*

[Azatov, Contino, Panico, Son '15]

[Dawson, Ismail, Low '15]

For chiral fermions and scalars, M_{HH} distributions change.

For vector-like fermions as in CHM and LHM, they do not.

However the measurement of distributions is difficult.

HOW WELL ARE THE TOP PARTNERS DESCRIBED BY EFT?

Universal extra dimensions

[Edelhäuser, Knochel, Steeger '15]

And for CHMs and LHM? There are diagrams with both top quark and heavy top partner.

How well are the top partners described by EFT? Ramona Gröber – Higgs pair production in Strongly Interacting Models

This very preliminary analysis shows: If we do not find top partners before we measure *hh* the deviations between EFT/full are small.

Can SM *K*-factor for QCD corrections be taken over?

QCD CORRECTIONS

Computed in LET approximation.

$$\mathcal{L} = -m_t \bar{t} t \left(c_t \frac{h}{v} + c_{tt} \frac{h}{2v^2} \right) - c_3 \frac{1}{6} \frac{3M_h^2}{v} h^3 + \frac{\alpha_s}{\pi} G^{a \mu \nu} G^a_{\mu \nu} \left(c_g \frac{h}{v} + c_{gg} \frac{h^2}{2v^2} \right)$$

- Real corrections: LO cross section factors out. Can be taken over from SM.
- Virtual corrections: Third diagram needs to be re-evaluated. At NLO in the matching condition no factorization of LO cross section for non-zero cg and cgg.

QCD CORRECTIONS

 \Rightarrow Effect of dim-6 contributions on *K*-factor is $\mathcal{O}(\text{few \%})$

Can the SM K-factor for QCD corrections be taken over? Ramona Gröber – Higgs pair production in Strongly Interacting Models

Can BSM scenarios also be accessible in other production modes such as VBF or *tthh*?

Can BSM scenarios also be accessible in other production modes such as VBF or tthh? Ramona Gröber – Higgs pair production in Strongly Interacting Models

28.04.2015 22/24

OTHER PRODUCTION MODES?

hh production via vector boson fusion:

In CHMs: Increase of cross section with partonic c.m. energy [Contino, Grojean, Moretti, Piccini, Rattazzi '10]

Coupling modifications in CHMs weaken the destructive interference between the different contributions $[{\tt Gröber}, {\tt Mühlleitner\, `10}]$

- Process gives access to hhVV coupling
- Ongoing studies, seems difficult but can give bounds on anomolous hhVV coupling [Bondu, Contino, Gouzevitch, Massironi, Oliveira, Rojo '14]
- Study of resonant production of KK graviton in warped extra-dimensional models finds low significances (Belyaev, Bondu, Massironi, Oliveira, Rosenfeld, Sanz '14)

<u>tīthh:</u>

- For $\lambda > \lambda_{SM} t\bar{t}hh$ can even be the leading channel
- First study in [Englert, Krauss, Spannowsky, Thompson '14]
- Studies in context of BSM models? Also tthh coupling accessible?

- Interesting *hh* phenomenology of strongly-interacting models including novel couplings and new fermions in the loops.
- Gluon fusion cross section enhanced in Composite Higgs Model and Littlest Higgs Model; reduced in Universal Extra Dimension.

Thanks for your attention!