

Christoph Englert

# HH in weakly interacting models

Mainz, 28.03.2015



- (non-)minimal Supersymmetry
- r generic 2HDMs ↓
- (non-)minimal Higgs portals



- (non-)minimal Supersymmetry
   generic 2HDMs
- (non-)minimal Higgs portals



heng

- exotic loop thresholds
- HH resonances
- modifications of SM-like couplings

- (non-)minimal Supersymmetry
   generic 2HDMs
- (non-)minimal Higgs portals





- (non-)minimal Supersymmetry
   generic 2HDMs
- (non-)minimal Higgs portals





[King, Mühlleitner, Nevzorv, Walz `14]



#### complicated models = plethora of phenomenological signatures

| B.3 (Point ID 210)  | Scenario   |           |           |
|---------------------|------------|-----------|-----------|
| $M_h, M_{H_s}, M_H$ | 124.1 GeV  | 184.3 GeV | 463.1 GeV |
| $M_{A_s}, M_A$      | 133.4  GeV | 457.2 GeV |           |

| B.3 (Point ID 210)                                      | Signal Rates |
|---------------------------------------------------------|--------------|
| $\sigma(ggH_s)$                                         | 390.38 fb    |
| $\sigma(ggH_s) { m BR}(H_s 	o b \overline{b})$          | 160.37 fb    |
| $\sigma(ggH_s)$ BR $(H_s \to \tau \tau)$                | 18.46 fb     |
| $\sigma(ggH_s){ m BR}(H_s	o WW)$                        | 176.63 fb    |
| $\sigma(ggH_s) BR(H_s \rightarrow ZZ)$                  | 29.00 fb     |
| $\sigma(ggH)$                                           | 1.326 pb     |
| $\sigma(ggH) { m BR}(H 	o t ar t)$                      | 684.96 fb    |
| $\sigma(ggH) BR(H \rightarrow hH_s)$                    | 184.85 fb    |
| $\sigma(ggH)BR(H \rightarrow hH_s \rightarrow bb + bb)$ | 50.46 fb     |
| $\sigma(ggH)BR(H \to hH_s \to bb + \tau\tau)$           | 11.08 fb     |
| $\sigma(ggH)BR(H \to hH_s \to \tau\tau + \tau\tau)$     | 0.61 fb      |
| $\sigma(ggH) { m BR}(H 	o hH_s 	o bb + \gamma\gamma)$   | 0.24 fb      |
|                                                         |              |

| D.1 (Point ID 5416) | Scenario   |             |           |
|---------------------|------------|-------------|-----------|
| $M_{H_s}, M_h, M_H$ | 9.6 GeV    | 124.2 GeV   | 793.4 GeV |
| 1/ 1/               | 070 0 0.11 | 700 0 0 .11 |           |

| D.1 (Point ID 5416)                                             | Signal Rates |
|-----------------------------------------------------------------|--------------|
| $\sigma(ggh)$                                                   | 44.28 pb     |
| $\sigma(ggh) BR(h \rightarrow H_s H_s)$                         | 4.22 pb      |
| $\sigma(ggh)BR(h \to H_s H_s \to \tau \tau + \tau \tau)$        | 3.58 pb      |
| $\sigma(ggh)BR(h \to H_s H_s \to \tau \tau + \mu \mu)$          | 31.64 fb     |
| $\sigma(ggH_s)$                                                 | 439.80 pb    |
| $\sigma(ggH_s) BR(H_s \to \mu\mu)$                              | 1.79 pb      |
| $\sigma(ggH_s)$ BR $(H_s \to \tau \tau)$                        | 405.09 pb    |
| $\sigma(ggH_s) BR(H_s \to c\bar{c})$                            | 5.17 pb      |
| $\sigma(ggH_s) { m BR}(H_s 	o s\bar{s})$                        | 7.24 pb      |
| $\sigma(ggH_s) \mathrm{BR}(H_s \to \gamma \gamma)$              | 7.95 fb      |
| $\sigma(ggH)$                                                   | 38.72 fb     |
| $\sigma(ggH)BR(H \to t\bar{t})$                                 | 9.80 fb      |
| $\sigma(ggH) \mathrm{BR}(H 	o 	ilde{\chi}_1^0 	ilde{\chi}_1^0)$ | 5.73 fb      |
| $\sigma(ggH)BR(H \to hH_s)$                                     | 8.08 fb      |
| $\sigma(ggH)BR(H \to hH_s \to b\bar{b} + \tau\tau)$             | 4.26 fb      |
| $\sigma(ggH)BR(H \to hH_s \to \tau\tau + \tau\tau)$             | 0.45 fb      |

#### NMSSM

| B.3 (Point ID 210)  | Scenario  |           |           |
|---------------------|-----------|-----------|-----------|
| $M_h, M_{H_s}, M_H$ | 124.1 GeV | 184.3 GeV | 463.1 GeV |
| $M_{A_s}, M_A$      | 133.4 GeV | 457.2 GeV |           |

| B.3 (Point ID 210)                                      | Signal Rates |
|---------------------------------------------------------|--------------|
| $\sigma(ggH_s)$                                         | 390.38 fb    |
| $\sigma(ggH_s){ m BR}(H_s	o bar{b})$                    | 160.37 fb    |
| $\sigma(ggH_s) BR(H_s \to \tau \tau)$                   | 18.46 fb     |
| $\sigma(ggH_s){ m BR}(H_s	o WW)$                        | 176.63 fb    |
| $\sigma(ggH_s) BR(H_s \rightarrow ZZ)$                  | 29.00 fb     |
| $\sigma(ggH)$                                           | 1.326 pb     |
| $\sigma(ggH) BR(H \to t\bar{t})$                        | 684.96 fb    |
| $\sigma(ggH) BR(H \rightarrow hH_s)$                    | 184.85 fb    |
| $\sigma(ggH)BR(H \rightarrow hH_s \rightarrow bb + bb)$ | 50.46 fb     |
| $\sigma(ggH)BR(H \to hH_s \to bb + \tau\tau)$           | 11.08 fb     |
| $\sigma(ggH)BR(H \to hH_s \to \tau\tau + \tau\tau)$     | 0.61 fb      |
| $\sigma(ggH) { m BR}(H 	o hH_s 	o bb + \gamma\gamma)$   | 0.24 fb      |
| $-(-\pi)DD/\pi$ , $\pi$                                 | 00 41 0      |



- correlation of on- and off-shell regions can provide complementary yet highly non-linear information to constrain model parameters
- experimental strategies differ (unboosted kinematics require rare decays)

[King, Mühlleitner, Nevzorv, Walz `14]





7

#### NMSSM



high discrimination taggers triggered by jet substructure development:

- pile-up & underlying event at LHC 13?
- general feasibility for modeldependent cross sections after fits?

| D.1 (Point ID 5416) | Scenario    |            |           |
|---------------------|-------------|------------|-----------|
| $M_{H_s}, M_h, M_H$ | 9.6 GeV     | 124.2 GeV  | 793.4 GeV |
| 1/ 1/               | 070 0 (1-1/ | 700 0 0.17 |           |

| D.1 (Point ID 5416)                                                 | Signal Rates |  |
|---------------------------------------------------------------------|--------------|--|
| $\sigma(ggh)$                                                       | 44.28 pb     |  |
| $\sigma(ggh) BR(h \rightarrow H_s H_s)$                             | 4.22 pb      |  |
| $\sigma(ggh) BR(h \to H_s H_s \to \tau \tau + \tau \tau)$           | 3.58 pb      |  |
| $\sigma(ggh)BR(h \to H_s H_s \to \tau \tau + \mu \mu)$              | 31.64 fb     |  |
| $\sigma(ggH_s)$                                                     | 439.80 pb    |  |
| $\sigma(ggH_s)BR(H_s \to \mu\mu)$                                   | 1.79 pb      |  |
| $\sigma(ggH_s)BR(H_s \to \tau\tau)$                                 | 405.09 pb    |  |
| $\sigma(ggH_s)BR(H_s \to c\bar{c})$                                 | 5.17 pb      |  |
| $\sigma(ggH_s) BR(H_s \rightarrow s\bar{s})$                        | 7.24 pb      |  |
| $\sigma(ggH_s)$ BR $(H_s \to \gamma\gamma)$                         | 7.95 fb      |  |
| $\sigma(ggH)$                                                       | 38.72 fb     |  |
| $\sigma(ggH)BR(H \to t\bar{t})$                                     | 9.80 fb      |  |
| $\sigma(ggH) \mathrm{BR}(H 	o 	ilde{\chi}_1^0 	ilde{\chi}_1^0)$     | 5.73 fb      |  |
| $\sigma(ggH)BR(H \to hH_s)$                                         | 8.08 fb      |  |
| $\sigma(ggH)BR(H \to hH_s \to b\bar{b} + \tau\tau)$                 | 4.26 fb      |  |
| $\sigma(ggH)BR(H \rightarrow hH_s \rightarrow \tau\tau + \tau\tau)$ | 0.45 fb      |  |

hidden low lying states: exotic phenomenology!

8

## towards reconstructing model parameters

hhh coupling expectation constrained by single Higgs measurements in concrete models (e.g. 2HDMs)

[Baglio, Eberhardt, Nierste, Wiebusch `14]



single heavy Higgs phenomenology important (tuning in the MSSM?)

9

#### **MSSM**

#### ► situation similar in the MSSM



► What is the statistical pull of dihiggs final states?

## reconstructing model parameters?

concrete expectations for a concrete (most) simple scenario,
 i.e. singlet-extended Higgs sector?

$$\cos^{2} \chi = 0.9, \quad M_{1m}/M_{0m} = 2.5, \quad v_{1}/v_{0} = 2$$
  
$$t_{000}^{m} = \frac{1}{2} M_{0m}^{2} \left( c_{\chi}^{3}/v_{0} + s_{\chi}^{3}/v_{1} \right) \qquad \text{single Higgs pheno}$$
  
$$t_{001}^{m} = -\frac{1}{6} \left( 2M_{0m}^{2} + M_{1m}^{2} \right) \left( c_{\chi}/v_{0} - s_{\chi}/v_{1} \right) c_{\chi}s_{\chi}$$

## reconstructing model parameters?

concrete expectations for a concrete (most) simple scenario,
 i.e. singlet-extended Higgs sector?

$$\operatorname{cos}^{2} \chi = 0.9, \quad M_{1m}/M_{0m} = 2.5, \quad v_{1}/v_{0} = 2$$

$$t_{000}^{m} = \frac{1}{2} M_{0m}^{2} \left( c_{\chi}^{3}/v_{0} + s_{\chi}^{3}/v_{1} \right) \qquad \text{single Higgs pheno}$$

$$t_{001}^{m} = -\frac{1}{6} \left( 2M_{0m}^{2} + M_{1m}^{2} \right) \left( c_{\chi}/v_{0} - s_{\chi}^{2}/v_{1} \right) c_{\chi}s_{\chi}$$



concrete expectations for a concrete (most) simple scenario,
 i.e. singlet-extended Higgs sector?

$$\cos^{2} \chi = 0.9, \quad M_{1m}/M_{0m} = 2.5, \quad v_{1}/v_{0} = 2$$
  
$$t_{000}^{m} = \frac{1}{2} M_{0m}^{2} \left( c_{\chi}^{3}/v_{0} + s_{\chi}^{3}/v_{1} \right) \qquad \text{single Higgs pheno}$$
  
$$t_{001}^{m} = -\frac{1}{6} \left( 2M_{0m}^{2} + M_{1m}^{2} \right) \left( c_{\chi}/v_{0} - s_{\chi}/v_{1} \right) c_{\chi}s_{\chi}$$

ILC?



[Choi, CE, Zerwas `13]

#### thresholds



differential distributions relevant. Can this be accessed?

# Summary & Conclusions (if any)

- very hard to make generic statements at this stage: lots of models with exotics still viable, however hh does not exist in a vacuum
- lots of benchmarking underway
- need to validate strategies in different kinematic regimes and channels
- the role of hh for heavy Higgs searches (will be model-dependent)

