gg**→** HH

NNLO σ in fb with CTEQ10

Scale	e √s			
	7	8	13	14
μ =m _{HH} /2	7.52	10.9	37.2	44.1
$\mu = m_{HH}$	6.85	9.96	34.3	40.7
μ=2m _{HH}	6.12	8.94	31.1	37. <u>1</u>
"+" [%]	10%	9 %	8%	8%
"-" [%]	11%	10%	9 %	9 %

Thanks to Mazzitelli and de Florian for numbers

Improvements in Theory

- What do we want?
 - Full NLO with masses

Masses change distributions

- When can we use $m_{t} \rightarrow \infty$
- How to estimate m_t uncertainties?
- aMC@NLO / Low energy expansion (Grigio) get opposite sign of m_t effects

Advances/Improvements

- HOW BIG ARE 1/m² CORRECTIONS?
- Compute NLO with virtual corrections in m_t→∞ limit and real corrections with exact m_t dependence (improved HEFT)
- Compute 1/m_t² corrections to NLO and normalize to exact LO
- Different results from 2 approaches

1/m² corrections at NLO: Grigo,Hoff, Melnikov, Steinhauser, arXiv:1305.7340 HEFT: Maltoni, Vryonidou, Zaro, arXiv: 1408.6542; Frederix et al, arXiv: 1401.7340

NLO with 1/m_t² corrections

- Poor convergence of 1/m_t² expansion
- Impose cut on partonic energy, $\sqrt{s_{cut}}$ (=m_{HH} at LO)

1/m_t² corrections at NLO: Grigo,Hoff, Melnikov, Steinhauser, arXiv:1305.7340

NLO FT_{approx}

- Include m_t in Born and in real contributions at NLO
- Only approximation is in 2-loop virtual contributions

11% decrease from result obtained rescaling $mt \rightarrow \infty$ NLO K factor by exact

Improvements in Theory

What is status of MCs?

– What do we need?

Are there re-summed calculations we need?

– Jet vetos?

What is best strategy?

SM, HH

Frederix et al, 1401.7340

Constant K factor?

Operationally: What is best way to do simulations?