Tilman Plehn

why?

how?

required?

when?

An Introduction

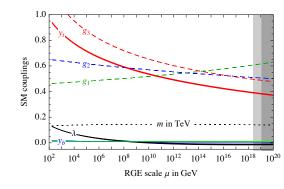
Tilman Plehn

Universität Heidelberg

Mainz, April 2015

Self coupling Tilman Plehn

why?


how?

required?

when?

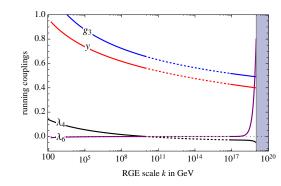
Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]

Self coupling Tilman Plehn

.....

why?


how?

required?

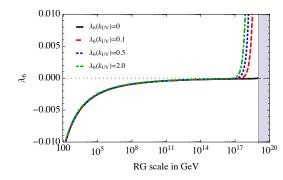
when?

Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]

Tilman Plehn

why?


how?

required?

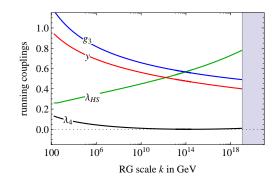
when?

Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]

Self coupling Tilman Plehn

why?


how?

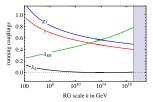
required?

when?

Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]

why?

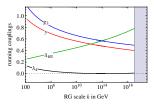

how?

required?

when?

Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]
- usually interpreted as *m_H* vs *m_t* only consistency condition on Standard Model
- strictly speaking λ vs y_t seriously hard at colliders [case for 100 TeV?]


why?

how?

- required?
- when?

Higgs self coupling

- Standard Model possibly consistent to Planck scale
- renormalizable theory tool to probe fundamental physics
- vacuum stability one of them decision on stability made at TeV scale [Buttazzo et al; Eichorn et al]
- usually interpreted as *m_H* vs *m_t* only consistency condition on Standard Model
- strictly speaking λ vs y_t seriously hard at colliders [case for 100 TeV?]
- Higgs portal for dark matter, baryogenesis,...
 [many papers: Pospelov; Ramsey-Musolf; Lebedev, Englert]
- smoking gun for strongly interacting Higgs
 [Contino...; Grojean...; Gröber, Mühlleitner]
- \Rightarrow we are in HEP for fundamental questions!

Tilman Plehn

why?

how?

required?

when?

Missing piece

Less visionary — missing piece in Standard Model

- LHC measurements of g_{HXX} on the way [rate-based and EFT]

- Higgs potential
$$V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \qquad \Rightarrow \qquad \lambda = \frac{m_H^2}{2v^2}$$

Tilman Plehn

why?

how?

required?

when?

Less visionary — missing piece in Standard Model

- LHC measurements of g_{HXX} on the way [rate-based and EFT]
- Higgs potential $V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \Rightarrow \lambda = \frac{m_H^2}{2v^2}$
- including D6 operators [Goertz, Papaefstathiou, Yang, Zurita; ...]

$$\begin{aligned} \mathcal{O}_{H} &= \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \qquad \mathcal{O}_{6} &= -\frac{1}{3} (\phi^{\dagger} \phi)^{3} \\ \mathcal{O}_{G} &= (\phi^{\dagger} \phi) \; G_{\mu\nu} G^{\mu\nu} \qquad \mathcal{O}_{f} &= y_{f} (\phi^{\dagger} \phi) \bar{Q}_{L} \phi r_{R} \end{aligned}$$

- modified self couplings

Missing piece

$$\begin{split} \mathscr{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{1}v^{2}}{2\Lambda^{2}} + \frac{2f_{2}v^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{1}v^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8v^{2}} \left[\left(1 - \frac{f_{1}v^{2}}{\Lambda^{2}} + \frac{4f_{2}v^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{1}v^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \\ \text{Feynman rule} \quad - i\frac{3m_{H}^{2}}{v} \left[1 - \frac{f_{1}v^{2}}{2\Lambda^{2}} + \frac{2f_{2}v^{4}}{3\Lambda^{2}m_{H}^{2}} + \frac{2f_{1}v^{2}}{3\Lambda^{2}m_{H}^{2}} \sum_{j < k}^{3}(\rho_{j}\rho_{k}) \right] \end{split}$$

Tilman Plehn

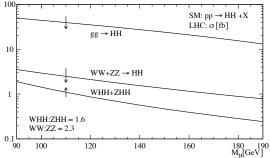
why?

how?

required?

when?

Less visionary — missing piece in Standard Model


- LHC measurements of g_{HXX} on the way [rate-based and EFT]
- Higgs potential $V = \mu^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 \qquad \Rightarrow \qquad \lambda = \frac{m_H^2}{2v^2}$
- including D6 operators [Goertz, Papaefstathiou, Yang, Zurita; ...]

$$\begin{aligned} \mathcal{O}_{H} &= \partial_{\mu}(\phi^{\dagger}\phi) \; \partial^{\mu}(\phi^{\dagger}\phi) \qquad \mathcal{O}_{6} &= -\frac{1}{3}(\phi^{\dagger}\phi)^{3} \\ \mathcal{O}_{G} &= (\phi^{\dagger}\phi) \; G_{\mu\nu} G^{\mu\nu} \qquad \mathcal{O}_{f} &= y_{f}(\phi^{\dagger}\phi) \bar{Q}_{L}\phi r_{R} \end{aligned}$$

 \Rightarrow Higgs pair production

Missing piece

[Djouadi, Kilian, Mühlleitner, Zerwas]

Tilman Plehn

why?

how?

required?

when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference

- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]

$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

- threshold behavior

$$\left[3m_{H}^{2}\ \frac{g_{ggH}}{s-m_{H}^{2}}+g_{ggHH}\right]^{2}\sim g_{ggH}\ \left[3m_{H}^{2}\ \frac{1}{3m_{H}^{2}}-1\right]^{2}\rightarrow 0$$

Tilman Plehn

why?

how?

required?

when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference
- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]

$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

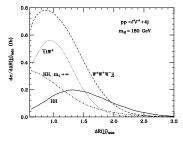
g 8888888

.

..... H

g 0000000

2 22222222


Н

- threshold behavior

$$\left[3m_{H}^{2} \ \frac{g_{ggH}}{s - m_{H}^{2}} + g_{ggHH}\right]^{2} \sim g_{ggH} \ \left[3m_{H}^{2} \ \frac{1}{3m_{H}^{2}} - 1\right]^{2} \rightarrow 0$$

Signal Extraction [Baur etal; Dolan etal]

- large top mass approximation useless

Tilman Plehn

why?

how?

required?

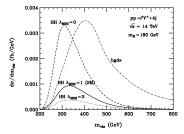
when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference

- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]


$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

- threshold behavior

$$\left[3m_{H}^{2} \frac{g_{ggH}}{s-m_{H}^{2}} + g_{ggHH}\right]^{2} \sim g_{ggH} \left[3m_{H}^{2} \frac{1}{3m_{H}^{2}} - 1\right]^{2} \rightarrow 0$$

Signal Extraction [Baur etal; Dolan etal]

- large top mass approximation useless
- kinematics affected by self coupling

Tilman Plehn

why?

how?

required?

when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference

- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]

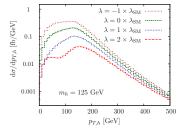
$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

.

......

----- H

·


Н

- threshold behavior

$$\left[3m_{H}^{2} \frac{g_{ggH}}{s-m_{H}^{2}}+g_{ggHH}\right]^{2} \sim g_{ggH} \left[3m_{H}^{2} \frac{1}{3m_{H}^{2}}-1\right]^{2} \rightarrow 0$$

Signal Extraction [Baur etal; Dolan etal]

- large top mass approximation useless
- kinematics affected by self coupling

Tilman Plehn

why?

how?

required?

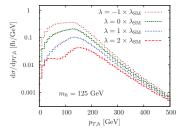
when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference

- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]


$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

- threshold behavior

$$\left[3m_{H}^{2} \frac{g_{ggH}}{s-m_{H}^{2}} + g_{ggHH}\right]^{2} \sim g_{ggH} \left[3m_{H}^{2} \frac{1}{3m_{H}^{2}} - 1\right]^{2} \rightarrow 0$$

Signal Extraction [Baur etal; Dolan etal]

- large top mass approximation useless
- kinematics affected by self coupling
- \Rightarrow shape analysis necessary and possible

Tilman Plehn

why?

how?

required?

when?

LHC

One-loop amplitude $gg \rightarrow HH$

- destructive interference

- convenient effective theory [links ggHH vertex to gluon self energy for $m_H \ll m_t$]

$$\mathscr{L}_{ggH} = G^{\mu\nu}G_{\mu\nu} \frac{\alpha_s}{\pi} \left(\frac{H}{12\nu} - \frac{H^2}{24\nu^2} + \ldots\right) = \frac{\alpha_s}{12\pi} G^{\mu\nu}G_{\mu\nu} \log\left(1 + \frac{H}{\nu}\right)$$

- threshold behavior

$$\left[3m_{H}^2 \; \frac{g_{ggH}}{s-m_{H}^2} + g_{ggHH}\right]^2 \sim g_{ggH} \; \left[3m_{H}^2 \; \frac{1}{3m_{H}^2} - 1\right]^2 \rightarrow 0$$

Analysis strategy [Baur etal]

- search for *HH* production [like ATLAS paper] SM: no 5σ signal
- g_{ttH} from Higgs couplings analysis [similarly EFT]
- limits on 'anomalous' Higgs self coupling exclude $\lambda < 0$ with enhanced rate exclude $\lambda \gg 1$ from p_T
- \Rightarrow which signatures?

Tilman Plehn

why?

how?

required?

when?

Signatures

Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

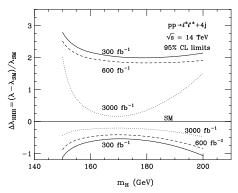
- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?

m _h [GeV]	signal	$N^{2 \times 300}$	WWWjj	tīW	tīZ	tīj	WZ4j	WW4j	tītī
150	0.074	44	0.361	0.222	0.054	0.082	0.148	0.0052	0.0018
160	0.194	116	0.486						
180	0.177	106	0.404						
200	0.083	50	0.292						

Tilman Plehn

why?

how?


required?

when?

Signatures

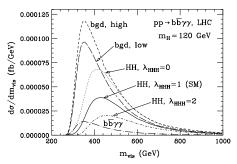
Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?

Tilman Plehn

why?

how?


required?

when?

Signatures

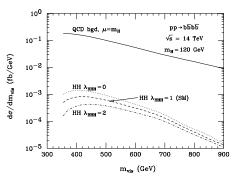
Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{i,\ell} p^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim$ 1

Tilman Plehn

why?

how?


required?

when?

Signatures

Old channels: $HH ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $_{[\Sigma_{j,\ell}\,\rho^\mu)^2]}$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: ttj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- at least not as hard as 4b [Spanno's talk]

Tilman Plehn

why?

how?

required?

when?

Signatures

Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $[\Sigma_{j,\ell} \rho^{\mu})^2]$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: tīj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- at least not as hard as 4b [Spanno's talk]

New attempts: $HH \rightarrow b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-$ [Dolan etal, Papaefstathiou etal]

 $\begin{array}{ll} - \ b \bar{b} \tau^+ \tau^- \colon \text{not very promising with usual analysis} & \text{[Baur etal (2003)]} \\ & \text{but benefitting from fat jets tools} & \text{[BDRS, Dolan etal]} \end{array}$

	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\bar{b}\tau \tau$	$b\bar{b}\tau\tau$ [ew]	b̄₽W ⁺ W [−]	ratio to $\xi = 1$
before cuts	59.48	28.34	13.36	67.48	8.73	873000	$3.2 \cdot 10^{-5}$
reconstructed $m_{ au au}$	4.05	1.94	0.91	2.51	1.10	1507.99	1.9 · 10 ⁻³
fatjet cuts	2.27	1.09	0.65	1.29	0.84	223.21	4.8 · 10 ⁻³
reconstructed mbb	0.41	0.26	0.15	0.104	0.047	9.50	2.3 · 10 ⁻²
double b-tag	0.148	0.095	0.053	0.028	0.020	0.15	0.48

Tilman Plehn

why?

how?

required?

when?

Signatures

Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $_{[\Sigma_{j,\ell}\,\rho^\mu)^2]}$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: *tīj* background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- at least not as hard as 4b [Spanno's talk]

New attempts: $HH \rightarrow b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-$ [Dolan etal, Papaefstathiou etal]

- $\begin{array}{ll} b\bar{b}\tau^+\tau^-: \mbox{ not very promising with usual analysis} & \mbox{[Baur etal (2003)]} \\ & \mbox{ but benefitting from fat jets tools} & \mbox{[BDRS, Dolan etal]} \end{array}$
- further improved S/B with add'l jet?

Tilman Plehn

why?

how?

required?

when?

Signatures

Old channels: $H\!H ightarrow 4W, bar{b}\gamma\gamma$ [Baur etal (2002-2003)]

- 4W: visible mass against backgrounds and to probe threshold $_{[\Sigma_{j,\ell}\,\rho^{\mu})^2]}$
 - (1) small for 2 particle final state (signal)
 - (2) large for many backgrounds
- known problem: tīj background [matrix element versus shower?]
- only working for heavier Higgs?
- $b\bar{b}\gamma\gamma$: rate limited, but $S/B\sim 1$
- at least not as hard as 4b [Spanno's talk]

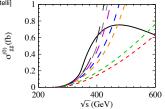
New attempts: $HH \rightarrow b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-$ [Dolan etal, Papaefstathiou etal]

- $\begin{array}{ll} \ b \bar{b} \tau^+ \tau^- \colon \text{not very promising with usual analysis} & \text{[Baur etal (2003)]} \\ & \text{but benefitting from fat jets tools} & \text{[BDRS, Dolan etal]} \end{array}$
- further improved S/B with add'l jet?
- $b\bar{b}W^+W^-$: not very promising [Dolan etal] maybe possible [Papaefstathiou etal]
- $t\bar{t}$ background a big challenge
- \Rightarrow where are the experimental studies?

Tilman Plehn

why?

how?


required?

when?

Tools

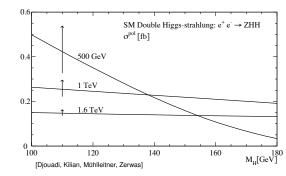
Precision predictions

- LO loop amplitudes in many MC codes
- approximate NLO available [Dawson, Dittmaier, Spira]
- NLO with top mass [Grigo, Hoff, Melnikov, Steinhauser]
- NNLO predictions on the way [de Florian, Mazzitelli]
- \Rightarrow remember the distributions!

Tilman Plehn

why?

how?


required?

when?

Linear collider

Rate at linear collider: $e^+e^- \rightarrow ZHH$

- very limited number of events
- low Higgs mass, decays $H
 ightarrow b ar{b}$
- measurement of λ through total rate ($m_h = 120 \text{ GeV}$)
- ⇒ hard measurement everywhere

Tilman Plehn

why?

how?

required?

when?

HL-LHC and Nimatron

Make use of 100 TeV and/or 30ab⁻¹

- where do we benefit?
- what is new? $pp \rightarrow HH \rightarrow (b\bar{b})+$ weakly interacting [Papaefstathiou]
- combined with top Yukawa measurement?
- \Rightarrow what is the progress since 2003?
- \Rightarrow where are the experimental studies?
- \Rightarrow why Higgs pairs and not cheaper channels?
- \Rightarrow why billions of dollars?

That looks really hard!