

# SM HH @ LHC: viable channels

Michael Spannowsky

IPPP, Durham University

### Kinematics for gg -> HH

2->2 scattering process completely determined by 2 variables, e.g. S and T, E and scattering angle



- All SM and BSM effects covered by double-differential measurement of two variables
- Whether possible depends on signal rate and sensitivity in phase space (backgrounds)

## Higgs selfcoupling in HH+X



### Where is sensitivity located?

Measuring this small cross section in an inclusive search is very challenging at the HL-LHC: compromise between branching ratio and cleanliness of the signal



Several channels are currently under study by the collaborations

| Decay                          | Issues                                                                                                                                     | Expectation<br>3000 ifb                                                   | References                                                                                          |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| $b \overline{b} \gamma \gamma$ | <ul> <li>Signal small</li> <li>BKG large &amp;<br/>difficult to asses</li> <li>Simple reconst.</li> </ul>                                  | $S/B \simeq 1/3$<br>$S/\sqrt{B} \simeq 2.5$                               | [Baur, Plehn, Rainwater]<br>[Yao 1308.6302]<br>[Baglio et al. JHEP 1304]                            |  |
| $b\overline{b}\tau^+\tau^-$    | <ul> <li>tau rec tough</li> <li>largest bkg tt</li> <li>Boost+MT2 might help</li> </ul>                                                    | differ a lot<br>$S/B \simeq 1/5$<br>$S/\sqrt{B} \simeq 5$                 | [Dolan, Englert, MS]<br>[Barr, Dolan, Englert, MS]<br>[Baglio et al. JHEP 1304]                     |  |
| $b\overline{b}W^+W^-$          | <ul> <li>looks like tt</li> <li>Need semilep. W<br/>to rec. two H</li> <li>Boost + BDT proposed</li> </ul>                                 | differ a lot<br>best case:<br>$S/B \simeq 1.5$<br>$S/\sqrt{B} \simeq 8.2$ | [Dolan, Englert, MS]<br>[Baglio et al. JHEP 1304]<br>[Papaefstathiou, Yang,<br>Zurita 1209.1489]    |  |
| $b\overline{b}b\overline{b}$   | <ul> <li>Trigger issue<br/>(high pT kill signal)</li> <li>4b background large<br/>difficult with MC</li> <li>Subjets might help</li> </ul> | $S/B \simeq 0.02$<br>$S/\sqrt{B} \le 2.0$                                 | [Dolan, Englert, MS]<br>[Ferreira de Lima,<br>Papaefstathiou, MS]<br>[Wardrope et al,<br>1410.2794] |  |
| others                         | <ul> <li>Many taus/W not clear if 2 Higgs</li> <li>Zs, photons no rate</li> </ul>                                                          |                                                                           |                                                                                                     |  |

 $bb\gamma\gamma$ 

- Rate small for creative reconstruction ~ 300 events with 3 iab
- While side-band for photons clear, bump from bb very broad and background biased

Baur, Plehn, Rainwater (2003)W. Yao (2013)Baglio et al (2012)Barger, Everett, Jackson, Shaughnessy (2013)Azatov, Contino, Panico, Son (2015)For 3 iab: $S/\sqrt{B} \simeq 3$  $S/\sqrt{B} \simeq 6.46$  $S/\sqrt{B} \simeq 2.3$  $S/\sqrt{B} \simeq 2.1$ 

Difficulties: • Need to include hadronisation and parton shower

-> changes mass windows, # jets, fake rates

- Need to include reducible backgrounds
- Need exp. input on fake-rates and mass windows
- Need multi-jet merging for (ir)reducible backgrounds
- Reliable background simulation and fake rates true challenge for sensitivity estimate

- Estimates from experiments far worse than theory estimates
- Background estimates between both experiments quite different



|                                |                      | 50           |      |  |  |
|--------------------------------|----------------------|--------------|------|--|--|
| process                        | ATLAS                |              | CMS  |  |  |
| SM HH→bbγγ                     | 8.4±0.1              |              | 9.9  |  |  |
| bbyy                           | 9.7 ± 1.5            | γγ+jets      | 8.5  |  |  |
| ccyy, bbyj, bbjj, jjyy         | 24.1 ± 2.2           | γ+jets, jets | 7.4  |  |  |
| top background                 | $3.4 \pm 2.2$        |              | 1.1  |  |  |
| ttH(yy)                        | $6.1 \pm 0.5$        |              | 1.5  |  |  |
| Z(bb)H(yy)                     | $2.7 \pm 0.1$        |              | 3.3  |  |  |
| bbH(yy)                        | $1.2 \pm 0.1$        |              | 0.8  |  |  |
| Total background               | 47.1 ± 3.5           | ۲ _          | 22.6 |  |  |
| S/√B (barrel+endcap)           | 1.2                  | $\setminus$  |      |  |  |
| S/√B (split barrel and endcap) | 1.3                  | $\searrow$   |      |  |  |
|                                | BKG quite different! |              |      |  |  |

### $bb\tau^+\tau^-$

[Dolan, Englert, MS (2012)]

[Baglio et al (2012)]

Inclusive rate 9000 events for 3 iab

[Barr, Dolan, Englert, MS (2013)]

- Rate can be used for advanced reconstruction (jet substructure, MT2)
- b and tau most complicated objects to reliably simulate

|                                                 | $\xi = 0$ | $\xi = 1$ | $\xi = 2$ | $b\bar{b}	au	au$ | $b\bar{b}\tau\tau$ [ELW] | $b\bar{b}W^+W^-$ | ratio to $\xi = 1$ |
|-------------------------------------------------|-----------|-----------|-----------|------------------|--------------------------|------------------|--------------------|
| cross section before cuts                       | 59.48     | 28.34     | 13.36     | 67.48            | 8.73                     | 873000           | $3.2\cdot10^{-5}$  |
| reconstructed Higgs from $\tau s$               | 4.05      | 1.94      | 0.91      | 2.51             | 1.10                     | 1507.99          | $1.9\cdot 10^{-3}$ |
| fatjet cuts                                     | 2.27      | 1.09      | 0.65      | 1.29             | 0.84                     | 223.21           | $4.8\cdot10^{-3}$  |
| kinematic Higgs reconstruction $(m_{b\bar{b}})$ | 0.41      | 0.26      | 0.15      | 0.104            | 0.047                    | 9.50             | $2.3\cdot10^{-2}$  |
| Higgs with double $b$ -tag                      | 0.148     | 0.095     | 0.053     | 0.028            | 0.020                    | 0.15             | 0.48               |

For 3 jab:

 $S/\sqrt{B} \simeq 11.70$   $S/\sqrt{B} \simeq 9.37$   $S/\sqrt{B} \simeq 5.94 - 2.71$ 

- Some studies tau efficiency/fake over optimistic
- Need better simulation of tau decays
- Need detailed sensitivity study of hadronic, semilep, leptonic taus
- Need hadronic backgrounds for hadronic tau decays
- Need JES uncertainties for subjets

 $b\bar{b}\tau^+\tau^-$ 

- Here, major background ttbar -> MT2 can change that
- Handles to suppress backaround: leptons, b-jets and MET



- MT2 distribution discriminates between HH and ttbar
- Without jet substructure we find S/B  $\sim 1/5$

Exclusion at 95% CL:  $\lambda > \lambda_{95\% \ CL}^{3000/fb} \simeq 3.0 \times \lambda_{SM}$ 



 $\overline{b}bW^+W^-$ 

### $hh \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}\ell\nu jj$

- Fully reconstructable final state
- Triggering easy due to lepton
- But looks like ttbar...
- Resolved analysis considered hopeless, but how about boosting?

| Process                                                | $\sigma_{ m initial}$ (fb) | $\sigma_{\rm basic}$ (fb) |
|--------------------------------------------------------|----------------------------|---------------------------|
| $hh  ightarrow bar{b}\ell u jj$                        | 2.34                       | 0.134                     |
| $t\bar{t}  ightarrow b\bar{b}\ell\nu jj$               | $240 \times 10^3$          | 15.5                      |
| $W(\rightarrow \ell \nu) b \bar{b} + jets$             | $2.17 	imes 10^3$          | 0.97                      |
| $W(\rightarrow \ell \nu) + jets$                       | $2.636 	imes 10^6$         | $\mathcal{O}(0.01)$       |
| $h(\rightarrow \ell \nu j j)$ +jets                    | 36.11                      | O(0.0001)                 |
| $h( ightarrow \ell  u jj)bar{b}$                       | 6.22                       | $\mathcal{O}(0.001)$      |
| $h(\rightarrow b\bar{b}) + WW(\rightarrow \ell\nu jj)$ | 0.0252                     | -                         |
|                                                        |                            |                           |

For SM coupling  $\forall S/\sqrt{S+B} \sim 2.4 \quad 3.1\sigma$ with S=9 and B=6 after 600 ifb



#### Search for $HH \rightarrow bb^-WW \rightarrow bb^-l\nu l\nu$

#### **Event preselection:**

- 2 b-jets Medium WP, pT > 30 GeV
   2 leptons, muons: pT > 20 GeV, electrons: pT > 25 GeV
- MET >20GeV Clean up cuts (*mjj*, *mll*, Δ*Rjj*, Δ*Rll*, Δφ*jj*,*ll*)

#### Analysis Optimization:

- Neural network discriminant from kinematic variables
- \* Variables: *Mll*, *Mjj*,  $\Delta Rll$ ,  $\Delta Rjj$ ,  $\Delta Rjl$ , *MET*,  $\Delta \varphi ll$ , *jj*, *pjj*, and *MT*

#### **Analysis Setup:**

- Phase II scenario Assuming 3000/fb
- Based on Delphes reconstruction
- Considering only the main background: t<sup>-</sup>t
- The rest of the SM processes are negligible



Very large uncertainties in fit Huge systematic uncertainties



### CMS feasibility study for ECFA

### $\overline{b}b\overline{b}b$

- Difficult to trigger (requires large pT cuts or fat jet)
- Huge QCD backgrounds
- Can try to use jet substructure techniques to overcome large backgrounds
- Maybe sideband possible?
- After reconstruction and 3000 ifb:
- S/B ~ 1/20



[Baur, Plehn, Rainwater]

[Dolan, Englert, MS]

[Papaefstathiou, Ferreira, MS]

[Wardrope, Jansen, Konstantinidis, Cooper, Falla, Norjoharudeen]

| sample                                                         | $\sigma_{ m initial}~({ m fb})$ |
|----------------------------------------------------------------|---------------------------------|
| $hh, h \rightarrow b\bar{b}$ (SM)                              | 10.7                            |
| QCD $(b\bar{b})(b\bar{b})$                                     | $151.1 \times 10^{3}$           |
| $Zb\bar{b},Z  ightarrow b\bar{b}$                              | $8.8 \times 10^{3}$             |
| $hZ, \ h \to b \bar{b}, \ Z \to b \bar{b}$                     | 70.0                            |
| $hW, h \rightarrow b\bar{b}, W \rightarrow c\bar{b}(\bar{c}b)$ | 96.4                            |



More jets can keep m inv small and pT,H large

need to work a little harder

Eff. theory breaks down quickly





## Higgs selfcoupling in HHjj+X



[Contino et al. JHEP 1005] [Baglio et al. JHEP 1304] [Dolan, Englert, Greiner, MS]

- Want to study VVHH Directly related to long. gauge boson scattering  $V_L V_L \rightarrow hh$
- In SM fixed:  $g_{WWhh} = e^2/(2s_w^2)$   $g_{ZZhh} = e^2/(2c_w^2 s_w^2)$
- However in BSM models, e.g. composite (strongly coupled light) Higgs models, can be strongly modified
- Higher-dim operators momentum dependent -> enhanced in high-pT region

## Higgs selfcoupling in HHjj+X



- For kinematic distributions full loop recommended in gluon fusion
- Analysis in  $\ \bar{b}b\tau^+\tau^-$
- Very bad S/B, but expected to improve easily...

|            |                                  | Signal with $\xi \times \lambda$ |                                 |                                  | Background |            | S/B                    |
|------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|------------|------------|------------------------|
|            |                                  | $\xi = 0$                        | $\xi = 1$                       | $\xi = 2$                        | $tar{t}jj$ | Other BG   | ratio to $\xi = 1$     |
|            | tau selection cuts               | 0.212                            | 0.091                           | 0.100                            | 3101.0     | 57.06      | $0.026 \times 10^{-3}$ |
|            | Higgs rec. from taus             | 0.212                            | 0.091                           | 0.100                            | 683.5      | 31.92      | $0.115 \times 10^{-3}$ |
|            | Higgs rec. from $b$ jets         |                                  | 0.016                           | 0.017                            | 7.444      | 0.303      | $1.82 \times 10^{-3}$  |
| 2 tag jets |                                  | 0.024                            | 0.010                           | 0.012                            | 5.284      | 0.236      | $1.65 \times 10^{-3}$  |
|            | incl. GF after cuts/re-weighting | 0.181                            | 0.099                           | 0.067                            | 5.284      | 0.236      | 1/61.76                |
|            |                                  |                                  |                                 |                                  |            |            |                        |
| WBF only   |                                  |                                  | Signal with $\zeta > \zeta = 0$ | $\langle \{g_{WWhh}, g_{ZZh} \}$ | $h$ }      | Background | RC                     |

|                                  | Signar with S ~ (gw whith gz zhin) |             |           | Davidio      |          |  |
|----------------------------------|------------------------------------|-------------|-----------|--------------|----------|--|
|                                  | $\zeta = 0$                        | $\zeta = 1$ | $\zeta=2$ | $t\bar{t}jj$ | Other BG |  |
| tau selection cuts               | 1.353                              | 0.091       | 0.841     | 3101.0       | 57.06    |  |
| Higgs rec. from taus             | 1.352                              | 0.091       | 0.840     | 683.5        | 31.92    |  |
| Higgs rec. from $b$ jets         | 0.321                              | 0.016       | 0.207     | 7.444        | 0.303    |  |
| 2 tag jets/re-weighting          | 0.184                              | 0.010       | 0.126     | 5.284        | 0.236    |  |
| incl. GF after cuts/re-weighting | 0.273                              | 0.099       | 0.214     | 5.284        | 0.236    |  |

So far very rudimentary analysis:

**GF+WBF** 

## Higgs selfcoupling in ttHH



## Higgs selfcoupling in ttHH

[Englert, Krauss, MS, Thompson]

[Liu, Zhang]

|                                       | signal                |                       | backgrounds                |                       |                       |                       |                       |                         |
|---------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|
|                                       | $\xi = 1$             | $\xi = 4$             | $t\bar{t}b\bar{b}b\bar{b}$ | $t\bar{t}hb\bar{b}$   | $t\bar{t}hZ$          | $t\bar{t}Zb\bar{b}$   | $t\bar{t}ZZ$          | Wbbbb                   |
| trigger                               | 0.10                  | 0.23                  | 4.75                       | 1.38                  | 0.64                  | 1.37                  | $1.36 \times 10^{-2}$ | 1.33                    |
| jet cuts                              | $7.40 \times 10^{-2}$ | 0.17                  | 1.44                       | 0.76                  | 0.40                  | 0.65                  | $8.74 \times 10^{-3}$ | $ 7.46 \times 10^{-2} $ |
| 5 b tags                              | $1.23 \times 10^{-2}$ | $2.83 \times 10^{-2}$ | $4.46 \times 10^{-2}$      | $6.19 \times 10^{-2}$ | $7.24 \times 10^{-3}$ | $4.43 \times 10^{-2}$ | $1.25 \times 10^{-3}$ | $5.35 \times 10^{-4}$   |
| $2 \times h \rightarrow b\bar{b}$     | $7.33 \times 10^{-3}$ | $1.69 \times 10^{-2}$ | $1.59 \times 10^{-2}$      | $2.71 \times 10^{-2}$ | $3.41 \times 10^{-3}$ | $1.56 \times 10^{-2}$ | $4.28 \times 10^{-4}$ | $<1 \times 10^{-4}$     |
| lep./had. $t$                         | $5.04 \times 10^{-3}$ | $1.12 \times 10^{-2}$ | $9.50 \times 10^{-3}$      | $1.66 \times 10^{-2}$ | $2.29 \times 10^{-3}$ | $9.42 \times 10^{-3}$ | $2.69 \times 10^{-4}$ | $<1 \times 10^{-4}$     |
| lep. $t$ only                         | $2.33 \times 10^{-3}$ | $5.29 \times 10^{-3}$ | $5.03 \times 10^{-3}$      | $9.36 \times 10^{-3}$ | $1.14 \times 10^{-3}$ | $4.90 \times 10^{-3}$ | $1.39 \times 10^{-4}$ | $<1 \times 10^{-4}$     |
| had. $t$ only                         | $2.71 \times 10^{-3}$ | $5.93 \times 10^{-3}$ | $4.47 \times 10^{-3}$      | $7.20 \times 10^{-3}$ | $1.16 \times 10^{-3}$ | $4.44 \times 10^{-3}$ | $1.30 \times 10^{-4}$ | $ <1\times10^{-4} $     |
| 6 b tags                              | $2.21 \times 10^{-3}$ | $4.97 \times 10^{-3}$ | $3.80 \times 10^{-3}$      | $8.01 \times 10^{-3}$ | $9.57 \times 10^{-4}$ | $5.10 \times 10^{-3}$ | $1.86 \times 10^{-4}$ | $<1 \times 10^{-4}$     |
| $   2 \times h \rightarrow b\bar{b} $ | $1.81 \times 10^{-3}$ | $5.94 \times 10^{-3}$ | $2.01 \times 10^{-3}$      | $5.47 \times 10^{-3}$ | $6.60 \times 10^{-4}$ | $3.28 \times 10^{-3}$ | $1.11 \times 10^{-4}$ | $ <1\times10^{-4} $     |

- Signal rate too small for inventive reconstruction
- Though Backgrounds for 5+ b-tags already small
- 13-22 signal event with 3000 ifb

 $\lambda \lesssim 2.51 \ \lambda_{\rm SM}$  at 95% CLs.





## Summary



 Separation of signal and background most limiting factor to measure Higgs selfcoupling at LHC



Still reconstruction more important than normalisation of S



- Need FINALLY input from experimentalists
- Exploiting boosted topologies in leptonic or hadronic decays can help to increase sensitivity
- However, sensitivity in individual channels expected to be low Combination of many channels necessary