Top quark mass effects in Higgs boson pair production at NLO

Jonathan Grigo, Jens Hoff, Kirill Melnikov and Matthias Steinhauser

Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT)

> HPPC Meeting Mainz April 29, 2015

Outline

- **1** our approach: analytic computation of $\sigma(pp \rightarrow HH + X)$ up to powers of $(1/m_t^2)^6$ at NLO
- 2 status quo, results of [JG, Hoff, Melnikov, Steinhauser 2013]
- recent work, work in progress (preliminary)

Partonic LO cross section $\sigma^{LO}(gg ightarrow HH)$

Hadronic LO cross section $\sigma^{LO}(gg \rightarrow HH)$

$$\sigma(s_{
m cut}) = \int_{4m_{H}^{2}/s_{
m had}}^{1} {
m d} au \left(rac{{
m d}\mathcal{L}}{{
m d} au}
ight) \sigma_{
m part}(au s_{
m had}) heta(au s_{
m had}-s_{
m cut})$$

$1/m_t^2$ expansion at LO

scales

$$m_H = 126 \text{ GeV}$$

 $m_t = 173 \text{ GeV}$
 $\rho = \frac{m_H^2}{m_t^2} \approx 0.5$

$$\sqrt{s} \ge 2m_H = 252 \,\, {
m GeV}$$

 $2m_t = 346 \,\, {
m GeV}$

NLO computation (asymptotic expansion)

gluon-gluon channel

- virtual corrections
 - $\mathcal{M}(gg \rightarrow hh)$ 126 two loop diagrams
 - cross check: $\mathcal{M}(gg \rightarrow gg)$ 1052 four loop diagrams
- real corrections
 - $\mathcal{M}(gg
 ightarrow gg)$ 1530 four loop diagrams

 \Rightarrow analytic results for $\mathrm{d}\sigma_{\mathrm{virt}}$

 \Rightarrow analytic results for $\sigma_{\rm real}$

Partonic NLO cross section $\sigma^{LO}(gg \rightarrow HH)$

LO factorization for total partonic cross section

$$\begin{split} \sigma_{\rm exp}^{\rm NLO} &\to \sigma^{\rm NLO} := \sigma_{\rm exact}^{\rm LO} \frac{\sigma_{\rm exp}^{\rm NLO}}{\sigma_{\rm exp}^{\rm LO}} \\ \sigma &= \int_{4m_{H}^{2}}^{s} dQ^{2} \ \tilde{\sigma} \qquad \qquad \tilde{\sigma} := \left(\frac{d\sigma}{dQ^{2}}\right) \end{split}$$

Hadronic NLO cross section $\sigma^{LO}(gg \rightarrow HH)$

Factorization of LO cross section

LO factorization for total partonic cross section

$$\begin{split} \sigma_{\rm exp}^{\rm NLO} \to \sigma^{\rm NLO} &:= \sigma_{\rm exact}^{\rm LO} \frac{\sigma_{\rm exp}^{\rm NLO}}{\sigma_{\rm exp}^{\rm LO}} \\ \sigma &= \int_{4m_H^2}^s {\rm d}Q^2 \; \tilde{\sigma} \qquad \qquad \tilde{\sigma} := \left(\frac{{\rm d}\sigma}{{\rm d}Q^2}\right) \end{split}$$

Differential LO factorization (dF)

$$\tilde{\sigma}_{\mathrm{exp}}^{\mathrm{NLO}} \rightarrow \tilde{\sigma}^{\mathrm{NLO}} := \tilde{\sigma}_{\mathrm{exact}}^{\mathrm{LO}} \frac{\tilde{\sigma}_{\mathrm{exp}}^{\mathrm{NLO}}}{\tilde{\sigma}_{\mathrm{exp}}^{\mathrm{LO}}}$$

Differential LO factorization (dF)

$$\begin{split} \sigma^{\rm NLO} &= \left(\int \mathrm{d} Q^2 \qquad \tilde{\sigma}_V \quad \right) \qquad + \qquad \sigma_S \qquad + \qquad \sigma_H \\ \rightarrow \ \sigma^{\rm NLO} &= \left(\int \mathrm{d} Q^2 \qquad \tilde{\sigma}_V \qquad + \qquad \tilde{\sigma}_S \quad \right) \qquad + \qquad \sigma_H \end{split}$$

 $\tilde{\sigma}_S^{\rm NLO}, \tilde{\sigma}_{V
m poles}^{\rm NLO} \propto \sigma^{\rm LO} \Rightarrow \tilde{\sigma}_{
m SV}^{\rm NLO} \propto \sigma^{\rm LO}$ [de Florian, Mazzitelli 2012]

NLO improved

Hadronic NLO improved cross section $\sigma^{LO}(gg \rightarrow HH)$

Conclusions and Outlook

m_t effects at NLO are

- (previous work) of $\mathcal{O}(10\%)$ for σ_{tot} [JG, Hoff, Melnikov, Steinhauser 2013]
- \blacksquare (recent work, preliminary) of at most $\pm 15\%$ for $\sigma_{\rm tot}$
- smaller for low s(Q²)

analytic expansion of *exact* NLO cross section below top threshold

- \Rightarrow benchmark for upcoming *exact* computations
- $\blacksquare \Rightarrow m_t \to \infty$ is
 - reasonable starting point at NLO
 - probably sufficient at NNLO
- NNLO $(m_t \rightarrow \infty)$ already available, another +20%! [de Florian, Mazzitelli 2013] [JG, Melnikov, Steinhauser 2014]

backup

NLO improved

Hadronic NLO improved cross section $\sigma^{LO}(gg ightarrow HH)$

Hadronic NLO... both

NLO hadronic

NLO-LO partonic

Partonic K-factor

virtual - real

partonic NLO cross section $\sigma^{LO}(gg \rightarrow HH)$

