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Use a low energy theory

HH in gluon-gluon fusion

Loop induced process    
● Difficulty in higher order calculations
● MC automation 

Single Higgs solution:
Use a low energy theory, taking the m

t
>>m

H 
limit:

Effective 
Lagrangian

HH in gluon-gluon fusion

❖ Exact NLO computation requires:  
❖ Real emissions: HHj one loop (doable)      
❖ Virtual corrections: Include 2-loop amplitudes 

Not available (yet) 

✔
✗
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Biggest cross section 
Only loop  
induced channel
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HEFT approach in HH production

How well does the HEFT work for HH at LO?Does the effective theory work?

Dawson, Furlan, Lewis 1206.6663

10-20% difference in the total cross 
section at 14 TeV(depending on 
the scale choice)

VS

●LET known to work quite well 
for single Higgs
●Is this the case for HH?

10-20% difference for the total cross section

Looking closely...

●Differential distributions p
T
 and m

HH

Using MadGraph5  
implementation of 
LET and MadLoop

M
ad

G
ra

ph
5_

aM
C

@
N

LO

HEFT fails to reproduce the 
differential distributions, also for 
additional jets

Mass	  effects	  are	  important	  and	  need	  to	  be	  included



Hpair approach

● Real and virtual corrections: factor out the Born 
cross-section (hep-ph/9805244)

≈ x

≈ x

NLO approximations for HH: A step further

Using all available information:

Going beyond the Hpair approximation

1) Exact real emission matrix elements 
2) Virtual corrections in the HEFT-rescaled by the exact born 

Within the MG5_aMC@NLO framework: 
• HEFT UFO model allows us to generate events at NLO 
• MadLoop can perform the computation of the one-loop matrix 

elements: born and real-emission

Figure 1: Representative Feynman diagrams for box and triangle topologies for Higgs pair pro-
duction in gluon-gluon fusion at the lowest order in perturbative QCD. The two gauge-indepedent
classes of diagrams interfere destructively.

a)

b )

Figure 2: Sample of Feynman diagrams for the NLO Higgs pair production in gluon-gluon fusion.
a) Real one-loop and b) virtual two-loop corrections.

introduced, where the corresponding lagrangian reads

LHEFT =
αS

12π
Ga

µνG
a,µν log

(

1 +
H

v

)

, (2.1)

G being the QCD field tensor. The main motivation for using this approximation is that

it makes the computation of higher-order corrections feasible. The approximation has

been proven to work extremely well for single Higgs production [56]. The HEFT provides

accurate predictions for the total rates as well as for the differential distributions when the

invariants involved are not much larger than the top quark mass. Unfortunately, in the

case of double Higgs production, the relevant scale is at least the invariant mass of the HH

pair which is typically ! 2mt and therefore the HEFT provides only a rough approximation

for the total rates and a very poor one for the relevant distributions [19,34].

Given the fact that the full NLO results are not presently available and that the HEFT

gives a poor description of the process, efforts have been made to improve results taking

into account heavy-quark loop effects at least in an approximated way. A first step in

this direction has been taken in the seminal NLO calculation for Higgs pair production,

as implemented in the code HPAIR [6, 46], which provides total cross sections in the

SM and in SUSY. In this case, the NLO calculation is performed within the HEFT, yet

all contributions (virtual and real) to the short-distance parton-parton cross section are

expressed in terms of the LO cross section times an αS correction. The LO cross section in

the HEFT is then substituted by the LO one with the full heavy-quark mass dependence.

– 4 –
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• NLO HEFT event generation: MC@NLO method 

• Different weights stored internally: virtual, real and counter terms 
• Reweight on an event-by-event basis using the results of the 

exact loop matrix elements. Schematically: 

• Fully differential reweighting 
• Setup allows implementation of a Born (Hpair-type) reweighting if 

all weights are reweighted by   

A reweighting approach for HH
counterterms are such that Born-like (S-events) and real-emission (H-events) unweighted

events can obtained as the corresponding subtracted cross sections are separately finite.

The corresponding contributions to the total cross section can be written as

dσ(H) = dφn+1 (R− CMC) , (3.2)

dσ(S) = dφn+1

[

(

B + V + Cint
) dφn

dφn+1
+ (CMC − C)

]

. (3.3)

In the MadGraph5 aMC@NLO framework, one can automatically generate the code

corresponding to the Born, virtual, real amplitudes, the counter terms and the phase

space [50,75] in one go in order to compute cross sections and generate events for gg → HH

at NLO in QCD in the HEFT. All the finite heavy-quark one-loop matrix-elements (i.e.

those entering the Born and real contributions) needed can also be obtained within Mad-

Graph5 aMC@NLO. Note, however, that two limitations presently make the automatic

computation of the exact NLO result not possible. First, the computation of cross sec-

tions that have a loop Born matrix-element is not automated yet (even at the LO only).

Second, even with the automation for loop-induced processes, the need for the two-loop

amplitudes would require an external routine, as this cannot be performed automatically

by MadLoop. Therefore, the inclusion of heavy-quark effects needs manipulation that can

in principle be performed in two ways.

The first option is to generate the code for an NLO computation in the HEFT and

then replace the matrix-elements (for B,V,R, Cint and CMC) with the corresponding ones

in the FT. Even though this is the simplest option, it features several drawbacks. First, this

method is very inefficient as the (computationally expensive) one-loop and two-loop matrix

elements routines would then be called many times to probe and map all regions of phase

space. In addition, it requires the evaluation of the real one-loop matrix elements in the

FT in regions of phase space very close to the soft/collinear limits, i.e. where they might

feature unstable configurations. For such points, multiple precision needs to be employed

at the cost of a growth of the running time by a factor of a hundred.

The second option is to include the top-quark mass effects by reweighting after hav-

ing generated the short-distance events and before these are passed to a parton shower

program. In order for this procedure to be applied, all the weights corresponding to the

separate contributions (events and counter events) and the corresponding kinematics, which

is in general different between events and each of the counter events, need to be saved in

an intermediate event file. With this information it is then possible to recompute the to-

tal event weight by reweighting each contribution by the matrix-elements in the FT. The

weights corresponding to B,V, C(int), CMC are rescaled by the ratio BFT/BHEFT , while

those corresponding to R by the ratio RFT /RHEFT . When unweighted events are gener-

ated, this amounts into rescaling the whole weight of S-events with Born matrix-elements,

and the different terms corresponding to H-events as written above. This solution has the

advantage of requiring the FT matrix-elements to be evaluated in significantly fewer phase

space points than those used while integrating it directly. In addition, it is completely

general and only assumes that there are no regions in phase space where the HEFT gives

a vanishing contribution while the full theory does not. In our case this condition is sat-
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Total cross-section results for gg
● Total cross section at a function of the CoM energy: 

● Loop-improved

● Born-improved (similar to Hpair)

● LET

~10% difference 
between the loop 
improved (including 
real emission) and 
Born improved 
results 

EFT quickly 
diverges at high 
energies

~3% effect of using 
the complex mass 
scheme

NLO FTapprox 
Born-improved HEFT 

HEFT Comparing: 
• NLO FTapprox (exact real-

approximate virtuals)  
• Born-improved HEFT 
• NLO HEFT 

Reduction of the cross section 
by about 10% compared to the 
Born-improved results at 14 TeV 

Results: Total cross section for HH

Results	  at	  14	  TeV	  [fb]

10% : Exact real 
emission amplitudes

HH production in gluon-gluon fusion at 14 TeV Cross section [fb]

HEFT 19.2+35.2+2.8%
−24.3−2.9%

LO FT, Γt = 0 GeV 23.2+32.3+2.0%
−22.9−2.3%

FT, Γt = 1.5 GeV 22.7+32.3+2.0%
−22.9−2.3%

NLO

HEFT 32.9+18.1+2.9%
−15.5−3.7%

HEFT Born-improved 38.5+18.4+2.0%
−15.1−2.4%

FTapprox (virtuals: Born-rescaled HEFT ) 34.3+15.0+1.5%
−13.4−2.4%

FT′

approx (virtuals: estimated from single Higgs in FT) 35.0+15.7+2.0%
−13.7−2.4%

Table 1: Cross section results (in fb) for Higgs pair production in gluon-gluon fusion at 14 TeV.
LO results in the Full Theory are given without and with top-quark width effects. The first NLO
result corresponds to the HEFT, while the second to the Born-improved HEFT. The third NLO
result, FTapprox, corresponds to our baseline approach where all known top-quark mass corrections
coming from one-loop amplitudes are included and the HEFT Born-rescaled approximation for the
two-loop amplitudes is used. In the last result, FT′

approx , the information from the known two-loop
triangles is also used to estimate the full two-loop contributions. More details are given in the
text. All NLO results feature a finite top-quark width. The first uncertainty quoted refers to scale
variations, while the second to PDFs. Uncertainties are in percent. No cuts are applied to final
state particles and no branching ratios are included.

functions (PDFs) are evaluated by using the MSTW2008 (LO and NLO) parametrisation

in the five-flavour scheme [84]. The renormalisation and factorisation scales µR,F are set to

µR = µF = µ0 = mHH/2. The dependence of the predictions on scale and PDF variations

can be estimated at no extra computational cost via a reweighting technique [77]. Scales

are varied independently in the range µ0/2 < µR, µF < 2µ0 and PDF uncertainties at the

68% C.L. are obtained following the prescription given by the MSTW collaboration [84].

Even though b-quark loops can be computed in our setup, b-quark masses as well as their

tiny (∼0.3%) contribution to the HH cross section are neglected in the following.

Table 1 collects our results. We first verify that the effect of the non–zero top-quark

width on the total cross section at LO, a ∼ 2% decrease, directly follows from the results

shown in fig. 3 and the fact that the invariant mass distribution peaks at ∼400 GeV. We

also note the well-known fact that the process receives large QCD corrections as well as the

expected reduction of the theoretical uncertainties for the NLO computations. We then

show three NLO results: i) the Born-improved HEFT result through a local event-by-event

reweighting, ii) the NLO FTapprox result, obtained by combining the exact real emission

matrix elements, with the Born-rescaled HEFT results for the virtual corrections and iii)

the NLO FT′

approx result obtained by combining the exact real emission matrix elements,

with the exact results of single Higgs production for the virtual corrections, as described

previously. For all NLO results we keep the finite top-quark width of 1.5 GeV.

We can now compare the different approximations of the FT NLO result. The first

– 10 –

LO

NLO

2%: Use of Complex-
Mass-Scheme 
Finite top width
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Differential distributions for the LHC 
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Including	  the	  exact	  
matrix	  elements	  
has	  a	  bigger	  effect	  
in	  the	  region	  of	  
hard	  parton	  
emission:	  tail	  of	  
pT(HH)	  distribution	  
Exact	  matrix	  
elements	  give	  a	  
better	  description
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Fig. 2. The total cross section at NLO as evaluated in the
effective theory (Eq. (3)), compared to the exact NLO result [5,
6]. Dashed line: only top quarks — solid line: including bottom
quarks (mOS

t = 175 GeV, mOS
b = 5GeV).
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Fig. 3. Relevance of the exact bottom quark contribution for
various values of the bottom Yukawa coupling [6]. gb/gt = 1
corresponds to the Standard Model (see also [7]).

limit” works at the 10% level even for very large Higgs
boson masses (see Fig. 2), it is tempting to apply a formal
“heavy-bottom approach”, defined by Eq. (3) with θ = tb
and mtb ≡ {mt, mb}. At NLO, it is κtb = κt. Fig. 3 shows
the deviation of σ∞

tb from the exact result at NLO [5,6]
for various values of the ratio gb/gt, where gb,t are the
Yukawa couplings of the bottom and top quark relative to
their SM values. Note that the solid/red curves (Standard
Model) of Figs. 3 and 2 are identical.

The curves in Fig. 3 show that the effect of the exact
NLO bottom contribution stays below 40% even for very
large bottom Yukawa couplings. For large Higgs boson
masses, the curves approach the Standard Model value
(solid/red curve).

SUSY loops. The contribution of squarks to the total
Higgs production cross section goes like (mq/mq̃)2. Thus,
as shown in Fig. 4, only top squarks with mt̃ ! 400GeV
give a sizable effect.
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Fig. 4. Relative size of the top quark/squark contributions:
delta(top,stop)=∆σt̃/σt, see Eq. (1). Furthermore, mt =
175 GeV, and mt̃R = mt̃L ≡ mt̃. Solid line: mt̃ = 175 GeV
— long/middle/short dashes: mt̃ = 200/300/400 GeV.
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Fig. 5. K-factors for the gluon-fusion process. Dashed: Stan-
dard Model — Solid: MSSM (no stop mixing). The narrow (red)
band shows the uncertainty due to the missing NNLO contribu-
tion in the effective vertex, the wide (green) band is the scale
uncertainty (from Ref. [11]).

The SUSY relation between the top and stop Yukawa
coupling requires to include also gluino effects at higher
orders in αs to arrive at finite results. A sample diagram
with top quark, top squark, and gluino is displayed in
Fig. 1 (b).

The NLO corrections (evaluated through Eq. (3) with
θ = tt̃ and mtt̃ ≡ {mt, mt̃, mg̃}) were found to be very
similar to the Standard Model case [8] (see also Ref. [9],
so that the tree-level ratios shown in Fig. 4 hardly change
at NLO. In this first study, squark mixing effects had been
neglected, but more detailed investigations are under way.

The dominant corrections to the Higgs production cross
section originate from real gluon emission [10]. Thus, it is
possible to derive a rather precise estimate of the NNLO
terms based on the NNLO result in the SM [3] and the
NLO effective Higgs-gluon coupling [8]. In this way, the
reduced scale uncertainty of the NNLO in the SM directly
carries forward to the supersymmetric case. The result is
shown in Fig. 5, details can be found in Ref. [11].

Are our results robust?

Harlander, arxiv:0311.005

One might argue that we are spoiling possible cancellations by including the exact 
top mass dependence in the real corrections but not in the virtual corrections…

Comparison of  
• Born-rescaled HEFT results 
• Available exact results

Michael	  Spira:	  “Below	  and	  at	  the	  2mt	  
threshold	  a	  cancellation	  is	  happening	  
between	  the	  top	  mass	  effects	  in	  the	  real	  and	  
virtual	  corrections	  and	  the	  Born-‐rescaled	  
HEFT	  result	  is	  very	  close	  to	  the	  exact	  one”

Let’s look at single Higgs production:

important observation is that the Born-improved result is 11% larger than our baseline

one. We also note here that the Born-improved result obtained by a local event-by-event

rescaling is within 1% of what one would obtain from a global Born rescaling obtained

using the total cross section numbers, i.e., σNLO
HEFT × σLO

FT /σ
LO
HEFT . The difference from

the Born-improved result only slightly reduces (9%) when an estimate for the finite top-

quark mass terms from the two-loop contributions is included, see last line of tab. 1. Our

NLO FTapprox result is rather stable in that respect. This is related to the fact that the

cancellation we discussed earlier for single Higgs production is only relevant very close to

the tt̄ threshold, with the Born-rescaled result rapidly rising over the exact one above the

threshold. In the case of single Higgs production, we have indeed checked that for Higgs

masses above 400 GeV the NLO FTapprox result (only including the exact real emission

matrix element but not the known two–loop virtual results) is closer to the exact result

than the corresponding Born-improved one. In the case of Higgs pair production, one could

also argue that even if a similar cancellation of the top-quark mass effects between the real

and virtual corrections occurred at the tt̄ threshold, it would not have a very pronounced

effect on the total cross section, as for Higgs pair production the peak of the invariant mass

distribution is located at higher mass values.

At this point it is worth to recall the results of ref. [57], where the top-quark mass

effects at NLO in QCD were estimated by computing the first few terms in the 1/m2
t

expansion for the K−factor. The 1/m2
t expansion is known not to converge well at LO [19]

and is not supposed to work beyond or even close to the
√
s = 2mt threshold, around and

beyond which the bulk of theHH cross section resides. However, in ref. [57] an attempt was

made by combining the exact Born cross section with the 1/m2
t expanded K−factors, as a

“taming” technique for the expansion. A +10% increase with respect to the Born-rescaled

HEFT result was found, i.e., an effect similar in size but opposite in sign to our estimate.

Combined with our findings, the estimate of ref. [57] implies that the difference between

the finite part of the Born-rescaled HEFT virtuals and the exact ones should account for a

+20% increase of the total cross section, a quite large effect indeed, especially considering

that by including top-mass effects in the virtual corrections estimated via the known two-

loop triangles, leads only to a couple of percent increase. Besides, we note that the results

of the same 1/m2
t expansion approach applied to the production of a single heavy Higgs

of mass between 400 and 500 GeV, are known to overestimate the exact results in the FT

when no high-energy matching is performed [55,85,86].

While only an exact calculation of the missing two-loop amplitudes will finally settle

this issue, the NLO FTapprox approach provides central values for the cross sections that

appear rather robust, predicting a correction of about -10% with respect to those obtained

by means of the Born-improved HEFT. In addition, together with the results of ref. [57],

our study provides an estimate of about 10% for the uncertainty to be associated with the

HEFT calculation due to the missing top-quark mass effects. Such an uncertainty should

be quoted along with the other theoretical uncertainties in the HEFT calculations, at NLO

but also at NNLO.

Finally, we note that including the exact one–loop 2 → 3 matrix elements provides

a more accurate description of the tails of the distributions where hard parton emissions

– 11 –
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NLO HEFT Born-improved
NLO FTapproxH production at the LHC14
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The bulk of the HH cross section lies well above the 2mt threshold 

In this region the Born-rescaled results overestimate the exact result for single 
Higgs: 7-8% at 500 GeV

The single Higgs case

Same procedure applied to single Higgs production for different Higgs masses: 
Comparison to the exact result:
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Our approach

Hpair approach

m(H)~m(HH)



Approximate virtual corrections

• Part	  (triangle)	  of	  the	  virtual	  corrections	  is	  known	  from	  single	  Higgs	  NLO	  corrections	  
• Corrections	  known	  as	  a	  function	  of	  the	  Higgs	  and	  top	  masses

Figure 1: Representative Feynman diagrams for box and triangle topologies for Higgs pair pro-
duction in gluon-gluon fusion at the lowest order in perturbative QCD. The two gauge-indepedent
classes of diagrams interfere destructively.

a)

b )

Figure 2: Sample of Feynman diagrams for the NLO Higgs pair production in gluon-gluon fusion.
a) Real one-loop and b) virtual two-loop corrections.

introduced, where the corresponding lagrangian reads

LHEFT =
αS

12π
Ga

µνG
a,µν log

(

1 +
H

v

)

, (2.1)

G being the QCD field tensor. The main motivation for using this approximation is that

it makes the computation of higher-order corrections feasible. The approximation has

been proven to work extremely well for single Higgs production [56]. The HEFT provides

accurate predictions for the total rates as well as for the differential distributions when the

invariants involved are not much larger than the top quark mass. Unfortunately, in the

case of double Higgs production, the relevant scale is at least the invariant mass of the HH

pair which is typically ! 2mt and therefore the HEFT provides only a rough approximation

for the total rates and a very poor one for the relevant distributions [19,34].

Given the fact that the full NLO results are not presently available and that the HEFT

gives a poor description of the process, efforts have been made to improve results taking

into account heavy-quark loop effects at least in an approximated way. A first step in

this direction has been taken in the seminal NLO calculation for Higgs pair production,

as implemented in the code HPAIR [6, 46], which provides total cross sections in the

SM and in SUSY. In this case, the NLO calculation is performed within the HEFT, yet

all contributions (virtual and real) to the short-distance parton-parton cross section are

expressed in terms of the LO cross section times an αS correction. The LO cross section in

the HEFT is then substituted by the LO one with the full heavy-quark mass dependence.

– 4 –

Varying the virtual corrections for HH

Assume these corrections factorise in the same way for the box and triangle i.e.  
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1. Introduction

Present LHC data already provide convincing evidence that the scalar particle observed

at the LHC is the one predicted by the Brout-Eglert-Higgs breaking mechanism [1, 2] of

the SU(2)L × U(1)Y symmetry as implemented in the Standard Model (SM) [3]. Here,

the strength of the Higgs boson couplings are uniquely determined by the masses of the

elementary particles, including the Higgs boson itself. The measured couplings to fermions

and vector bosons are found to agree within 10-20% with the SM predictions [4, 5]. No

direct information, however, has been collected so far on the Higgs self-couplings that

appear in the potential:

σHH
virt =

σH
virt

σH
Born

× σHH
Born (1.1)

The values of the Higgs self-couplings λHHH and λHHHH are fixed in the SM by gauge

invariance and renormalisability to λHHH = λHHHH = M2
H/v, i.e. fully determined by

the mass of the Higgs boson and the Higgs field vacuum expectation value v. Direct

information on the Higgs three-point and four-point interactions would therefore provide

key information on the upper scale of validity of the SM when thought of as an effective

theory itself, or on the possible existence of a richer scalar sector, featuring other scalar

fields possibly in other representations.

In this context, multiple Higgs production plays a special role. At the lowest order,

Higgs pair production is the simplest production process that is sensitive to the trilinear

self-coupling λHHH , while to probe the quartic Higgs coupling λHHHH one would need to

consider at least triple Higgs production. Unfortunately, in the Standard Model multiple

Higgs production rates at the LHC are quite small [6,7] and the prospects to make precise

enough measurements at the LHC (assuming Standard Model values) are at best challeng-

ing [8–10] for double Higgs production and rather bleak for triple Higgs production [7,11].

– 1 –

NLO	  results	  at	  14	  TeV	  [fb]

HH production in gluon-gluon fusion at 14 TeV Cross section [fb]

HEFT 19.2+35.2+2.8%
−24.3−2.9%

LO FT, Γt = 0 GeV 23.2+32.3+2.0%
−22.9−2.3%

FT, Γt = 1.5 GeV 22.7+32.3+2.0%
−22.9−2.3%

NLO

HEFT 32.9+18.1+2.9%
−15.5−3.7%

HEFT Born-improved 38.5+18.4+2.0%
−15.1−2.4%

FTapprox (virtuals: Born-rescaled HEFT ) 34.3+15.0+1.5%
−13.4−2.4%

FT′

approx (virtuals: estimated from single Higgs in FT) 35.0+15.7+2.0%
−13.7−2.4%

Table 1: Cross section results (in fb) for Higgs pair production in gluon-gluon fusion at 14 TeV.
LO results in the Full Theory are given without and with top-quark width effects. The first NLO
result corresponds to the HEFT, while the second to the Born-improved HEFT. The third NLO
result, FTapprox, corresponds to our baseline approach where all known top-quark mass corrections
coming from one-loop amplitudes are included and the HEFT Born-rescaled approximation for the
two-loop amplitudes is used. In the last result, FT′

approx , the information from the known two-loop
triangles is also used to estimate the full two-loop contributions. More details are given in the
text. All NLO results feature a finite top-quark width. The first uncertainty quoted refers to scale
variations, while the second to PDFs. Uncertainties are in percent. No cuts are applied to final
state particles and no branching ratios are included.

functions (PDFs) are evaluated by using the MSTW2008 (LO and NLO) parametrisation

in the five-flavour scheme [84]. The renormalisation and factorisation scales µR,F are set to

µR = µF = µ0 = mHH/2. The dependence of the predictions on scale and PDF variations

can be estimated at no extra computational cost via a reweighting technique [77]. Scales

are varied independently in the range µ0/2 < µR, µF < 2µ0 and PDF uncertainties at the

68% C.L. are obtained following the prescription given by the MSTW collaboration [84].

Even though b-quark loops can be computed in our setup, b-quark masses as well as their

tiny (∼0.3%) contribution to the HH cross section are neglected in the following.

Table 1 collects our results. We first verify that the effect of the non–zero top-quark

width on the total cross section at LO, a ∼ 2% decrease, directly follows from the results

shown in fig. 3 and the fact that the invariant mass distribution peaks at ∼400 GeV. We

also note the well-known fact that the process receives large QCD corrections as well as the

expected reduction of the theoretical uncertainties for the NLO computations. We then

show three NLO results: i) the Born-improved HEFT result through a local event-by-event

reweighting, ii) the NLO FTapprox result, obtained by combining the exact real emission

matrix elements, with the Born-rescaled HEFT results for the virtual corrections and iii)

the NLO FT′

approx result obtained by combining the exact real emission matrix elements,

with the exact results of single Higgs production for the virtual corrections, as described

previously. For all NLO results we keep the finite top-quark width of 1.5 GeV.

We can now compare the different approximations of the FT NLO result. The first

– 10 –

2% effect
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Conclusion: Results are stable under the variation of estimates for the (unknown) 
finite part of the virtual corrections



Summary-Outlook

• New Monte Carlo implementation of the gluon fusion process at 
approximate NLO, provided within MG5_aMC@NLO 

• Results are obtained by employing the exact matrix elements for the real 
emission amplitudes and Born-rescaled HEFT virtual corrections 

• Provides a better description of the high pT kinematics and a total cross 
section different by -10% from the Born-rescaled result 

• Comparison to other NLO approximations (Jonathan’s talk) 

            Associated uncertainty due to missing top mass effects ~10%
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Thanks for your attention...


