di-Higgs production at 100 TeV :

 the search for a golden channel

Andreas Papaefstathiou, CERN

HPPC, MITP, Mainz
27-30 April 2015

the plan

- motivation: has already been provided!
- describe what the FCC-hh is, (contrasting with high lumi.-LHC),
- consider channels for di-Higgs production at 100 TeV .

searching for di-Higgs production is like looking for a black cat in a coal cellar:

basic questions:

1. can a future $\mathbf{1 0 0} \mathbf{~ T e V ~ p p ~ c o l l i d e r ~ i n ~}$ principle contribute to the investigation of diHiggs production?
[note: will not discuss extraction of couplings here.]
2. furthermore: can it compete/improve on HL-LHC for di-Higgs?
3. what are the basic requirements for future colliders/detectors to achieve this?

FCC = Future Circular Collider

- [hopefully: provisional name!]
- FCC-hh = hadron-hadron.
- "an ambitious post-LHC accelerator project", pp C.O.M. energy: 100 TeV .
- conceptual design report to be published before end of 2018.
- potential materialisation in the 40s-50s? [my guess].

FCC-hh HL-LHC Round 1: data

attribute	HL-LHC	FCC-hh
pp centre-of-mass energy	14 TeV	100 TeV
circumference	26.7 km	100 (83) km
stored beam energy	0.694 GJ	8.4 (7.0) GJ
integrated luminosity [over lifetime]	3 ab-1	$3 / 10 / 30 \mathrm{ab}-1$

what about detector performance?

- at this point, the attributes of the FCC-hh detectors are left to the phenomenologist's imagination.
- assume:
- minimum performance: HL-LHC,
- ideal performance: 100% efficiencies, no smearing of momenta.
[1504.04621 AP]

HL-LHC parametrization

- efficiencies:

$$
\begin{aligned}
& \epsilon(j)=0.75+p_{t} / 150 \mathrm{GeV} \\
& \epsilon(\gamma)=0.76-1.98 \exp \left(-p_{t} / 16.1 \mathrm{GeV}\right) \\
& \epsilon(e)=0.85-0.191 \exp \left(1-p_{t} / 20 \mathrm{GeV}\right) \\
& \epsilon(\mu)=0.97(|\eta|>0.1), 0.54(|\eta|<0.1)
\end{aligned}
$$

- mistagging:

$$
\begin{aligned}
& p(j \rightarrow X)=\alpha_{X} \exp \left(-\beta_{X} p_{t} / \mathrm{GeV}\right) \\
& \alpha_{\gamma}=0.0093, \quad \beta_{\gamma}=0.036 \\
& \alpha_{\ell}=0.0048, \quad \beta_{\ell}=0.035
\end{aligned}
$$

- smearing: [ATL-PHYS-PUB-2013-009, ATL-PHYS-PUB-2013-004].

ideal parametrization

- efficiencies:

$$
\begin{aligned}
& \epsilon(j) \\
& \epsilon(\gamma) \\
& \epsilon(e) \\
& \epsilon(\mu)
\end{aligned}
$$

- mistagging: [turns out to be not so significant]

$$
\begin{aligned}
& p(j \rightarrow X)=\alpha_{X} \exp \left(-\beta_{X} p_{t} / \mathrm{GeV}\right) \\
& \alpha_{\gamma}=0.0093, \quad \beta_{\gamma}=0.036 \\
& \alpha_{\ell}=0.0048, \quad \beta_{\ell}=0.035
\end{aligned}
$$

- smearing: $[$ ATIL

FCC-hh HL-LHC Round 2: di-Higgs Physics

- here: focus on gluon-initiated di-Higgs.
- VBF \& associated production will be important too.
- in the SM: $\sigma(\mathbf{h h} @ 100 \mathrm{TeV}) \sim 40 x \sigma(h h @ 14 \mathrm{TeV})$:
~1600 $\mathbf{f b}$ versus $\boldsymbol{\sim} \mathbf{4 0} \mathbf{~ f b}$, [NNLO in low-energy thm].
- backgrounds, 14 TeV to 100 TeV :
- ~40-50x if gluon-initiated,
- $\mathbf{\sim 1 0 - 2 0 x}$ if qq-initiated.

hh distributions: $14 \rightarrow 100 \mathrm{TeV}$

- distributions have considerably longer tails,
- broadly similar to 14 TeV case: $\mathbf{m}_{\text {hh }}$ peak $\sim 400 \mathrm{GeV}$

hh distributions: $14 \rightarrow 100 \mathrm{TeV}$

[1412.7154 Barr, Dolan, Englert, Ferreira de Lima, Spannowsky]
[see also
1502.00539, Azatov,

Contino, Panico,
Son.]

- $\mathbf{P t}_{\text {t, }}$ peak $\sim \mathbf{m}_{\mathbf{t}}$.

hh@14 hh@100 TeV

- bottom line:
- at 100 TeV : hh signal has longer tails,
- higher cross sections: assume $\sigma_{\text {total }} \sim 1638 \mathrm{fb}$ at pp@100 TeV.
- physics of the "self-coupling Higgs sector" still lies broadly in the same phase space regions.
- versus backgrounds: not clear if translating a 14 TeV analysis to 100 TeV would yield similar results.

ggF hh final states

$\mathrm{BD}[(b \bar{b})(b \bar{b})]=33.3 \% \longrightarrow$ large QCD bkgs.
$\left.\operatorname{BR}[(b \bar{b})(W W)] \Rightarrow(2 \bar{b}) 8 \% .2 \ell+E^{\mathrm{miss}}\right]=1.7 \%$
$\operatorname{BR}[(b \bar{b})(\tau \bar{\tau})] \Rightarrow\left(b \overline{\mathrm{Z}} 9 \mathrm{q}_{0} 2 \ell+E^{\mathrm{miss}}\right]=0.9 \%$
$\operatorname{BR}[(b \bar{b})(\mu \bar{\mu})]=0.025 \%$
$\left.\mathbf{B R}[(\boldsymbol{W} \boldsymbol{W})(\boldsymbol{W} \boldsymbol{W})] \Rightarrow \boldsymbol{A} .62^{\mathrm{t}} / \boldsymbol{b}^{\prime \boldsymbol{7}}+E^{\mathrm{miss}}+j\right]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(\gamma \gamma)]=0.263 \%$
$\left.\operatorname{BR}[(b \bar{b})(Z Z)] \Rightarrow \$ b \bar{\theta} 5 \bar{F}_{0} 4 \ell\right]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(Z \gamma)] \Rightarrow(b \overline{\bar{L}} \overline{\mathrm{~F}} \% \% \mathrm{Z} \ell+\gamma]=0.013 \%$

hh final states

$\mathrm{PR}[(b \bar{b})(b \bar{b})]=33.3 \%$
$\operatorname{BR}\left[(b \bar{b})(W W) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=1.7 \%$
$\operatorname{BR}\left[(b \bar{b})(\tau \bar{\tau}) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=0.9 \%$
$\operatorname{BR}[(b \bar{b})(\mu \bar{\mu})]=0.025 \%$
$\mathrm{BR}\left[(W W)(W W) \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+E^{\mathrm{miss}}+j\right]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(\gamma \gamma)]=0.263 \%$
$\operatorname{BR}[(b \bar{b})(Z Z) \rightarrow(b \bar{b})+4 \ell]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})+2 \ell+\gamma]=0.013 \%$

$$
h h \rightarrow(b \bar{b})(\gamma \gamma)
$$

[100 TeV: 1412.7154 Barr, Dolan, Englert, Ferreira de Lima, Spannowsky, 1502.00539, Azatov, Contino, Panico, Son, see also relevant talk at "Higgs \& BSM at 100 TeV" workshop: He, Ren, Yao and 1308.6302, Yao. 14 TeV: hep-ph/0310056, Baur, Plehn, Rainwater, 1212.5581, Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira]

- the "most investigated" at 100 TeV : rare (0.263\%) but clean,
- good mass reconstruction from $\mathbf{y y}$: significant at HL-LHC and perhaps even more so at pp@100 TeV.
- could be the "golden" channel for hh @ $100 \mathbf{T e V}$, for $3 \mathrm{ab}^{-1}$:
- He, Ren, Yao: S ~ 420, B ~ 650,
- Barr, Dolan, Englert, Ferreira de Lima, Spannowsky: S ~ 31.8, B ~ 88,
- Azatov, Contino, Panico, Son: S ~ 279, B ~ 339.
- [differences due to: cuts (crucially M_{yv}) + detector effect simulation + event generation + more...]

hh final states

$\mathrm{BP}[(b \bar{b})(b \bar{b})]=33.3 \%$
$\operatorname{BR}\left[(b \bar{b})(W W) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=1.7 \%$
$\operatorname{BR}\left[(b \bar{b})(\tau \bar{\tau}) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=0.9 \%$
$\operatorname{BR}[(b \bar{b})(\mu \bar{\mu})]=0.025 \%$
$\mathrm{BR}\left[(W W)(W W) \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+E^{\mathrm{miss}}+j\right]=0.016 \%$
$\checkmark \operatorname{BR}[(b \bar{b})(\gamma \gamma)]=0.263 \%$
$\operatorname{BR}[(b \bar{b})(Z Z) \rightarrow(b \bar{b})+4 \ell]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})+2 \ell+\gamma]=0.013 \%$

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

- branching ratio (incl. taus) $=\mathbf{0 . 0 1 6 \%}$ (!),
- for $\boldsymbol{\sigma}(\mathbf{1 0 0 ~ T e V}) \boldsymbol{0} \mathbf{0 . 2 6} \mathbf{f b}$. (c.f. o(14 TeV) ~ 0.006 fb$)$
- ~ 780 events at 3000/fb.
- can reconstruct hh final state: sensitivity to new effects in the process over a wide range of phase space.

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

- backgrounds:

$t \bar{t} h, t \bar{t} Z, b \bar{b} h, Z Z h, Z Z Z, b \bar{b} Z Z$ (irreducible), $Z Z, h Z \quad$ (reducible, 2 mis-tagged b-jets), $W^{ \pm} Z h, W^{ \pm} Z Z$ (reducible, 1 mis-tagged lepton), [+ > 1 mis-tagged leptons: will not consider.]

- Monte Carlo simulation:
- signal (LO): OpenLoops + Herwig++, [1401.0007 AP, Maierhoefer]
- backgrounds (NLO): MG5/aMC@NLO + Herwig++.
[1405.0301, Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

before analysis

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$
$\mathbf{h h} \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \ell^{\prime}+\ell^{\prime-}\right)$	0.26
$\mathbf{t \overline { t } h} \rightarrow\left(\ell^{+} b \nu \ell\right)\left(\ell^{\prime-} \bar{b} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)$	193.6
$\mathbf{t} \bar{t} \mathbf{Z} \rightarrow\left(\ell^{+} b \nu \ell\right)\left(\ell^{\prime-} \bar{b} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)$	256.7
$\mathbf{b} \overline{\mathbf{b} h} \rightarrow b \bar{b}(4 \ell), p_{T, b}>15 \mathrm{GeV}$	0.26
$\mathbf{Z Z h} \rightarrow(4 \ell)(b \bar{b})$	0.12
$\mathbf{Z Z Z} \rightarrow(4 \ell)(b \bar{b})$	0.53
$\mathbf{Z Z Z} \rightarrow(4 \ell)+$ mis-tagged $b \bar{b}$	781.4
$\mathbf{h Z} \rightarrow(4 \ell)+$ mis-tagged $b \bar{b}$	68.2
$\mathbf{W} \pm \mathbf{Z Z} \rightarrow\left(\ell \nu_{\ell}\right)\left(\ell^{+} \ell^{-}\right)(b \bar{b})+$ mis-tagged ℓ	7.5
$\mathbf{W}^{ \pm} \mathbf{Z h} \rightarrow\left(\ell \nu_{\ell}\right)\left(\ell^{+} \ell^{-}\right)(b \bar{b})+$ mis-tagged ℓ	1.4

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

- a simple analysis, asking for:
- 4 isolated leptons with $\mathrm{p}_{\mathrm{T}}>(35,30,25,20) \mathrm{GeV}$,
- two R=0.4 anti-kT b-jets with $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$,
- MET < 100 GeV ,
- veto events with two on-shell Zs,
- $\Delta R($ lepton, lepton $)<1.0$,
- construct $\mathbf{M}_{\mathbf{b b}}, \mathbf{M}_{41}$ [and after cuts: $\mathbf{M}_{\mathbf{b b} 41]}$.

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

M_{41}

$\mathbf{M b b}_{\text {bb }}$

$[100,150] \mathrm{GeV}$

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

- 4 isolated leptons with $\mathrm{p}_{T}>(35,30,25,20) \mathrm{GeV}$.

$$
h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell)
$$

results: \# of events @ $3 \mathrm{ab}^{-1}$.

channel	$N_{3 \mathrm{ab}}{ }^{-1}($ cuts, ideal)	$N_{3 \mathrm{ab}^{-1}}($ cuts, LHC)
$\mathbf{h h} \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \ell^{+} \ell^{-}\right)$	13.0	4.1
$\overline{\mathbf{t} \overline{\mathbf{t}} \mathrm{h} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime-} \bar{b} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)}$	30.4	10.9
$\mathbf{t} \overline{\mathbf{t}} \mathbf{Z} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime-} \bar{b} \bar{\nu}_{\ell^{\prime}}\right)(2 \ell)$	6.6	2.5
$\overline{\mathrm{bbh}} \rightarrow b \bar{b}(4 \ell), p_{T, b}>15 \mathrm{GeV}$	$\mathcal{O}(1)$	$\mathcal{O}\left(10^{-1}\right)$
$\mathbf{Z Z} \mathbf{Z} \rightarrow(4 \ell)(b \bar{b})$	$\mathcal{O}\left(10^{-3}\right)$	$\mathcal{O}\left(10^{-3}\right)$
$\mathbf{Z Z Z} \rightarrow(4 \ell)(b \bar{b})$	$\mathcal{O}\left(10^{-1}\right)$	$\mathcal{O}\left(10^{-1}\right)$
$\overline{\mathbf{Z Z}} \rightarrow(4 \ell)+$ mis-tagged $b \bar{b}$	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$
$\mathbf{h Z} \rightarrow(4 \ell)+$ mis-tagged $b \bar{b}$	$\mathcal{O}\left(10^{-3}\right)$	$\mathcal{O}\left(10^{-3}\right)$
$\mathbf{W} \pm \mathbf{Z} \mathbf{Z} \rightarrow\left(\ell \nu_{\ell}\right)\left(\ell^{+} \ell^{-}\right)(b \bar{b})+$ mis-tagged ℓ	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$
$\mathbf{W}^{ \pm} \mathbf{Z} \mathbf{h} \rightarrow\left(\ell \nu_{\ell}\right)\left(\ell^{+} \ell^{-}\right)(b \bar{b})+$ mis-tagged ℓ	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-3}\right)$

"ideal" S ~ 13, B ~ 37
 \Rightarrow definitely one to look out for!

hh final states

$\mathrm{BP}[(b \bar{b})(b \bar{b})]=33.3 \%$
$\operatorname{BR}\left[(b \bar{b})(W W) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=1.7 \%$
$\operatorname{BR}\left[(b \bar{b})(\tau \bar{\tau}) \rightarrow(b \bar{b})+2 \ell+E^{\mathrm{miss}}\right]=0.9 \%$
$\operatorname{BR}[(b \bar{b})(\mu \bar{\mu})]=0.025 \%$
$\operatorname{BR}\left[(W W)(W W) \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+E^{\mathrm{miss}}+j\right]=0.016 \%$
$\checkmark \operatorname{BR}[(b \bar{b})(\gamma \gamma)]=0.263 \%$
$\quad \mathrm{BR}[(b \bar{b})(Z Z) \rightarrow(b \bar{b})+4 \ell]=0.016 \%$
$\operatorname{BR}[(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})+2 \ell+\gamma]=0.013 \%$

$$
h h \rightarrow(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right)
$$

- backgrounds: $t \bar{t} \gamma, b \bar{b} Z \gamma+$ mis-tag backgrounds:

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$
$\mathbf{h} \mathbf{h} \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right)$	0.21
$\mathbf{b} \overline{\mathbf{b}} \mathbf{Z} \gamma \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right) \gamma, p_{T, b}>30 \mathrm{GeV}$	26.00×10^{3}
$\mathbf{t} \overline{\mathbf{t}} \gamma \rightarrow\left(L^{+} b \nu_{L} l\right)\left(L^{-} \bar{b} \bar{\nu}_{L}\right) \gamma$	7.94×10^{3}
$\mathbf{\mathbf { b } \mathbf { b } \mathbf { Z } \rightarrow b \overline { b } (\ell ^ { + } \ell ^ { - }) + \text { mis-tagged } \gamma , p _ { T , b } > 3 0 \mathrm { GeV }}$	107.36×10^{3}
$\mathbf{t} \overline{\mathbf{t}} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{\prime-} \bar{b} \bar{\nu}_{\ell^{\prime}}\right)+$ mis-tagged γ, [generation-level cuts]	25.08×10^{3}

- irreducible backgrounds much larger than in 4 lepton case.

$$
h h \rightarrow(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right)
$$

- a simple analysis, asking for:
- 2 isolated leptons with $\mathrm{p}_{T}>(40,35) \mathrm{GeV}$,
- 1 isolated photon with $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$,
- $R=0.4$ anti- k_{T} b-jets with $p_{T}>(60,40) \mathrm{GeV}$,
- MET < 80 GeV ,
- $\mathbf{M}_{\mathbf{b b}}$ in $(100,150) \mathrm{GeV}$,
- $\mathbf{M}_{\mathrm{IIV}}$ in $(110,140) \mathrm{GeV}$,
- [+ some other cuts taking into account distances between reconstructed objects.]

$$
h h \rightarrow(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right)
$$

results: \# of events @ $3 \mathrm{ab}^{-1}$.

channel	$N_{3 \text { ab-1 }}$ (cuts, ideal)	$N_{3 \text { ab-1 }}($ cuts, LHC $)$
$\mathbf{h h} \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right)$	14	8
$\mathbf{b} \overline{\mathbf{b}} \gamma \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right) \gamma, p_{T, b}>30 \mathrm{GeV}$	266	203
$\mathbf{t \overline { \mathbf { t } } \gamma \rightarrow (L ^ { + } b \nu _ { L } l) (L ^ { - } \overline { b } \overline { \nu } _ { L }) \gamma}$	78	79
$\mathbf{b} \overline{\mathbf{b} Z} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right)+$mis-tagged $\gamma, p_{T, b}>30 \mathrm{GeV}$	20	21
$\mathbf{t \overline { \mathbf { t } } \rightarrow (\ell ^ { + } b \nu _ { \ell }) (\ell ^ { \prime } - \overline { b } \overline { \nu } _ { \ell ^ { \prime } }) + \text { mis-tagged } \gamma}$	14	10

"ideal" S ~ 14, B ~ 378.
\Rightarrow most likely does not qualify for the podium...

hh final states

$\operatorname{BR}[(b \bar{b})((b \bar{b})]=33.3 \%$
$\operatorname{BR}\left[(b \bar{b})(W W) \rightarrow(b \bar{b})+2 \ell+E^{\text {miss }}\right]=1.7 \%$
$\operatorname{BR}\left[(b \bar{b})(\tau \bar{\tau}) \rightarrow(b \bar{b})+2 \ell+E^{\text {miss }}\right]=0.9 \%$
$\operatorname{BR}[(b \bar{b})(\mu \bar{\mu})]=0.025 \%$
$\operatorname{BR}\left[(W W)(W W) \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+E^{\text {miss }}+j\right]=0.016 \%$
$\checkmark \operatorname{BR}[(b \bar{b})(\gamma \gamma)]=0.263 \%$
$\operatorname{BR}[(b \bar{b})(Z Z) \rightarrow(b \bar{b})+4 l]=0.016 \%$ $\mathrm{BR} f(b \bar{b})(Z \hat{\gamma}) \rightarrow(b \bar{b})+2 \ell+-\}=0.013 \%$

$$
h h \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-}+\mathbb{E}\right)
$$

- fairly large signal cross section at 100 TeV , contribution from two different Higgs boson decays.
- but: top pairs and bbZ constitute large backgrounds.

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$
$\mathbf{h \mathbf { h }} \rightarrow(b \bar{b})\left(W^{+} W^{-}\right) \rightarrow(b b)\left(\ell^{\prime+} \nu_{\ell^{\prime}} \ell^{-} \bar{\nu}_{\ell}\right)$	27.16
$\mathbf{h} \rightarrow(b \bar{b})\left(\tau^{+} \tau^{-}\right) \rightarrow(b \bar{b})\left(\ell^{\prime+} \nu_{\ell^{\prime}} \bar{\nu}_{\tau} \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$	14.63
$\mathbf{t \overline { t }} \rightarrow\left(\ell^{+} b \nu_{\ell}\right)\left(\ell^{-} \overline{\bar{\nu}}{\overline{\ell^{\prime}}}^{\prime}\right)$, cuts as in Eq.	25.08×10^{3}
$\mathbf{b} \overline{\mathbf{b} \mathbf{Z}} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	107.36×10^{3}
$\mathbf{b} \overline{\mathbf{b}} \mathbf{h} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	26.81
$\overline{\mathbf{b} \overline{\mathbf{b}} \mathbf{W}^{ \pm} \rightarrow b \bar{b}\left(\ell^{ \pm} \nu_{\ell}\right), p_{T, b}>30 \mathrm{GeV}+\text { mis-tagged } \ell}$	1032.6
$\ell^{+} \ell^{-}+$jets $\rightarrow\left(\ell^{+} \ell^{-}\right)+$mis-tagged $b \bar{b}$	2.14×10^{3}

- [note: could also consider $\mathbf{M}_{\mathbf{T} 2}$, but top pairs turns out to be the second most important background.]

$$
h h \rightarrow(b \bar{b})\left(\tau^{+} \tau^{-}\right) \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-}+\not \mathbb{E}_{T}\right)
$$

angles very small!

number of unknowns

 reduced:

$$
h h \rightarrow(b \bar{b})\left(\mu^{+} \mu^{-}\right)
$$

- top pairs and bbZ still constitute large backgrounds.
- low missing energy could help eliminate top pairs.

channel	$\sigma(100 \mathrm{TeV})(\mathrm{fb})$
$\overline{\mathbf{h h} \rightarrow(b \bar{b})\left(\mu^{+} \mu^{-}\right)}$	0.42
$\mathbf{t \overline { \mathbf { t } } \rightarrow (\ell ^ { + } b \nu _ { \ell }) (\ell ^ { \prime - } \overline { b } \overline { \nu } _ { \ell ^ { \prime } }) , \text { cuts as in Eq. 1 }}$	
$\mathbf{b} \overline{\mathbf{b}} \mathbf{Z} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	25.08×10^{3}
$\mathbf{b} \overline{\mathbf{b}} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	107.36×10^{3}
$\overline{\mathbf{b}} \overline{\mathbf{b}} \mathbf{W}^{ \pm} \rightarrow b \bar{b}\left(\ell^{ \pm} \nu_{\ell}\right), p_{T, b}>30$ GeV + mis-tagged ℓ	26.81
$\ell^{+} \ell^{-}+$jets $\rightarrow\left(\ell^{+} \ell^{-}\right)+$mis-tagged $b \bar{b}$	1032.6

- design two signal regions to handle the two channels depending on amount of missing energy.

$$
h h \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-}\right)+\left(\mathbb{E}_{T}\right)
$$

- design two signal regions to handle the two channels depending on amount of missing energy.

observable	$\mathrm{SR}_{\text {生 }}$	SR_{μ}
\mathbb{E}_{T}	$>100 \mathrm{GeV}$	$<40 \mathrm{GeV}$
$p_{T, \ell_{1}}$	$>60 \mathrm{GeV}$	$>90 \mathrm{GeV}$
$p_{T, \ell_{2}}$	$>55 \mathrm{GeV}$	$>60 \mathrm{GeV}$
$\Delta R\left(\ell_{1}, \ell_{2}\right)$	<0.9	$\in(1.0,1.8)$
$M_{\ell \ell}$	$\in(50,80) \mathrm{GeV}$	$\in(120,130) \mathrm{GeV}$
$p_{T, b_{1}}$	$>90 \mathrm{GeV}$	$>90 \mathrm{GeV}$
$p_{T, b_{2}}$	$>80 \mathrm{GeV}$	$>80 \mathrm{GeV}$
$\Delta R\left(b_{1}, b_{2}\right)$	$\in(0.5,1.3)$	$\in(0.5,1.5)$
$M_{b b \ell \ell}$	$>350 \mathrm{GeV}$	$>350 \mathrm{GeV}$
$M_{b b}$	$\in(110,140) \mathrm{GeV}$	$\in(110,140) \mathrm{GeV}$
$M_{\text {reco. }}$	$>600 \mathrm{GeV}$	none

$$
h h \rightarrow(b \bar{b})\left(\mu^{+} \mu^{-}\right)
$$

results: \# of events @ $3 \mathrm{ab}^{-1}$.

channel	$N_{3 \text { ab-1 }}($ cuts, ideal $)$	$N_{3 \text { ab-1 }}($ cuts, LHC param.
$\mathbf{h h} \rightarrow(b b \bar{b})\left(\mu^{+} \mu^{-}\right)$	8.6	1.8
$\mathbf{t \overline { \mathbf { t } } \rightarrow (\ell ^ { + } b \nu) (\ell ^ { \prime } - \overline { b } \overline { \nu } _ { \ell ^ { \prime } }) , \text { cuts as in Eq. } 1}$	$32.0_{-9.3}^{+25.3}$	$24.5_{-7.1}^{+19.3}$
$\mathbf{b} \overline{\mathbf{b}} \mathbf{Z} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	<7.5	$49.4_{-14.4}^{+133.4}$
$\mathbf{b} \overline{\mathbf{b}} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\mathbf{b} \overline{\mathbf{b}} \mathbf{W}^{ \pm} \rightarrow b \bar{b}\left(\ell^{ \pm} \nu_{\ell}\right), p_{T, b}>30 \mathrm{GeV}+$ mis-tagged ℓ	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$
$\ell^{+} \ell^{-}+$jets $\rightarrow\left(\ell^{+} \ell^{-}\right)+$mis-tagged $b \bar{b}$	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$

- very few events after analysis with fairly large backgrounds.
- possible improvement by better muon resolution?

$$
h h \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-}+\notin\right)
$$

results: \# of events @ $3 \mathrm{ab}^{-1}$.

channel	$N_{3 \mathrm{ab}^{-1}}(\mathrm{cuts}$, ideal $)$	$N_{3 \mathrm{ab}}$ (cuts, LHC param.)
$\mathbf{h h} \rightarrow(b \bar{b})\left(W^{+} W^{-}\right) \rightarrow(b \bar{b})\left(\ell^{\prime+} \nu_{\ell^{\prime}} \ell^{-} \bar{\nu}_{\ell}\right)$	20.9	19.9
$\mathbf{h h} \rightarrow(b \bar{b})\left(\tau^{+} \tau^{-}\right) \rightarrow(b \bar{b})\left(\ell^{\prime+} \nu_{\ell^{\prime}} \bar{\nu}_{\tau} \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right)$	38.5	24.3
$\mathbf{t \overline { \mathbf { t } } \rightarrow (\ell ^ { + } b \nu _ { \ell }) (\ell ^ { \prime - } \overline { b } \overline { \nu } _ { \ell ^ { \prime } }) , \text { cuts as in Eq. } 1}$	$16.0_{-5.1}^{+21.1}$	$6.1_{-1.1}^{+14.1}$
$\mathbf{b} \overline{\mathbf{b}} \mathbf{Z} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	$257.9_{-74.6}^{+203.7}$	$493.7_{-113.4}^{+224.9}$
$\mathbf{b} \overline{\mathbf{b}} \rightarrow b \bar{b}\left(\ell^{+} \ell^{-}\right), p_{T, b}>30 \mathrm{GeV}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\mathbf{b} \overline{\mathbf{b}} \mathbf{W}^{ \pm} \rightarrow b \bar{b}\left(\ell^{ \pm} \nu_{\ell}\right), p_{T, b}>30 \mathrm{GeV}+$ mis-tagged ℓ	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$
$\ell^{+} \ell^{-}+$jets $\rightarrow\left(\ell^{+} \ell^{-}\right)+$mis-tagged $b \bar{b}$	$\mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}\left(10^{-2}\right)$

"ideal" S ~ 60, B ~ 273* [* background uncertainty due to limited MC samples]
\Longrightarrow a silver channel?

$$
\begin{gathered}
h h \rightarrow\left(W^{+} W^{-}\right)\left(W^{+} W^{-}\right) \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+E^{\text {miss }}+j \\
\text { [1503.07611, Li, Li, Yan, Zhao] } \\
\text { [see also hep-ph/0206024 Baur, Plehn, Rainwater for high-mass Higgs] }
\end{gathered}
$$

- same-sign di-leptons kills a lot of background (particularly ZW),
- their analysis finds good significance at 100 TeV :
- S~160, B~523 for $3 \mathrm{ab}^{-1}$.
- but assumes $\mathrm{p}_{\mathrm{t}}>(30,10,10) \mathrm{GeV}$ for the three leptons: this may be a little optimistic @ 100 TeV .
- [note: $\mathbf{4 \mathbf { T }}$ and $\mathbf{2 \boldsymbol { 2 } \mathbf { 2 W }}$ final states can generate the same final state.]

100 ReV: the story so far

SM hb discovery

$$
\begin{aligned}
h h & \rightarrow(b \bar{b})(b \bar{b}) \\
h h & \rightarrow(b \bar{b})(\gamma \gamma) \\
h h & \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell) \\
h h & \rightarrow(b \bar{b})(Z \gamma) \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-} \gamma\right) \\
h h & \rightarrow(b \bar{b})\left(\ell^{+} \ell^{-}+\notin\right) \\
h h & \rightarrow(b \bar{b})\left(\mu^{+} \mu^{-}\right) \\
h h & \rightarrow \ell^{ \pm} \ell^{ \pm} \ell^{\prime \mp}+\notin+j
\end{aligned}
$$

?

to do

- VBF/associated production @ 100 TeV .
- use of jet substructure techniques [particularly for high-invariant mass regions],
- include hadronic tau decays,
- extraction of self-coupling/D=6 EFT coefficients.
- examine details of the detector [...].

thanks for your attention!

statistics for MC samples

- at 100 TeV , background cross sections are very large: we need to generate substantial Monte Carlo events samples.
- we can apply reasonable generation-level cuts.
- but: what if we are left with a low number of MC events?
- can still calculate a 1-o uncertainty for the expectation values using Poisson statistics.

statistics for MC samples

- question: given that we have observed \mathbf{N} Monte Carlo events after cuts, what are uncertainties $\boldsymbol{\Delta} \mathbf{N}_{+}$ and $\mathbf{\Delta N}$., such that

$$
N_{-\Delta N_{-}}^{+\Delta N_{+}}
$$

defines a 68\% confidence level (1-б) interval?

- this can be determined by integrating the Poisson distribution:

$$
\left.\begin{array}{l}
p\left(N+\Delta N_{+}\right)=\int_{N+\Delta N_{+}}^{\infty} \mathrm{d} \lambda \frac{\lambda^{N} \mathrm{e}^{-\lambda}}{N!} \\
p\left(N-\Delta N_{-}\right)=\int_{0}^{N-\Delta N_{-}} \mathrm{d} \lambda \frac{\lambda^{N} \mathrm{e}^{-\lambda}}{N!}
\end{array}\right\}=15.9 \% \text { for } 1-\sigma .
$$

statistics for MC samples

$$
\left.\begin{array}{l}
p\left(N+\Delta N_{+}\right)=\int_{N+\Delta N_{+}}^{\infty} \mathrm{d} \lambda \frac{\lambda^{N} \mathrm{e}^{-\lambda}}{N!} \\
p\left(N-\Delta N_{-}\right)=\int_{0}^{N-\Delta N_{-}} \mathrm{d} \lambda \frac{\lambda^{N} \mathrm{e}^{-\lambda}}{N!}
\end{array}\right\}=15.9 \% \text { for } 1-\sigma .
$$

solve using standard gamma functions:

$$
\begin{aligned}
& \frac{\Gamma\left(N+1, N+\Delta N_{+}\right)}{N!}=15.9 \% \\
& \frac{\gamma\left(N+1, N-\Delta N_{-}\right)}{N!}=15.9 \%
\end{aligned} \quad(\text { for } \mathrm{N}>0)
$$

