di-Higgs production at 100 TeV:

the search for a golden channel

Andreas Papaefstathiou, CERN

HPPC, MITP, Mainz 27-30 April 2015

the plan

- motivation: has already been provided!
- describe what the FCC-hh is, (contrasting with high lumi.-LHC),
- consider channels for di-Higgs production at 100 TeV.

searching for **di-Higgs production** is like looking for **a black cat in a coal cellar**:

basic questions:

1. can a future 100 TeV pp collider in principle contribute to the investigation of di-Higgs production?

[note: will not discuss extraction of couplings here.]

2. furthermore: can it **compete/improve** on HL-LHC for di-Higgs?

3. what are the **basic requirements** for future colliders/detectors to achieve this?

FCC = Future Circular Collider

- [hopefully: provisional name!]
- FCC-hh = hadron-hadron.
- "an ambitious post-LHC accelerator project", pp C.O.M. energy: 100 TeV.
- conceptual design report to be published before end of 2018.
- potential materialisation in the 40s-50s? [my guess].

FCC-hh Mata HL-LHC Round 1: data

attribute	HL-LHC	FCC-hh
pp centre-of-mass energy	14 TeV	100 TeV
circumference	26.7 km	100 (83) km
stored beam energy	0.694 GJ	8.4 (7.0) GJ
integrated Iuminosity [over lifetime]	3 ab-1	3/10/30 ab ⁻¹

what about detector performance?

- at this point, the attributes of the FCC-hh detectors are left to the **phenomenologist's imagination**.
- assume:
 - minimum performance: HL-LHC, [1412.7154 Barr, Dolan, Englert, Ferreira de Lima, Spannowsky, 1504.04621 AP, from ATL-PHYS-PUB-2013-009, ATL-PHYS-PUB-2013-004]
 - ideal performance: 100% efficiencies, no smearing of momenta.

HL-LHC parametrization

• efficiencies:

$$\begin{split} \epsilon(j) &= 0.75 + p_t/150 \text{ GeV} & \text{Ferreira de Lima,} \\ \epsilon(\gamma) &= 0.76 - 1.98 \exp(-p_t/16.1 \text{ GeV}) \\ \epsilon(e) &= 0.85 - 0.191 \exp(1 - p_t/20 \text{ GeV}) \\ \epsilon(\mu) &= 0.97 \; (|\eta| > 0.1), \; 0.54 \; (|\eta| < 0.1) \end{split}$$

• mistagging:

 $p(j \to X) = \alpha_X \exp(-\beta_X p_t / \text{GeV})$ $\alpha_\gamma = 0.0093, \ \beta_\gamma = 0.036$ $\alpha_\ell = 0.0048, \ \beta_\ell = 0.035$

• smearing: [ATL-PHYS-PUB-2013-009, ATL-PHYS-PUB-2013-004].

Dolan, Englert,

ideal parametrization

• efficiencies:

[**1504.04621** <u>AP</u>]

• mistagging: [turns out to be not so significant]

 $p(j \to X) = \alpha_X \exp(-\beta_X p_t / \text{GeV})$ $\alpha_\gamma = 0.0093, \ \beta_\gamma = 0.036$ $\alpha_\ell = 0.0048, \ \beta_\ell = 0.035$

• smearing: [ATL PHYS PUB 2013 009, ATL PHYS PUB 2013 004].

FCC-hh 🌇 HL-LHC Round 2: di-Higgs Physics

- here: focus on **gluon-initiated** di-Higgs.
- VBF & associated production will be important too.
- in the SM: $\sigma(hh@100 \text{ TeV}) \sim 40x \sigma(hh@14 \text{ TeV})$:

~1600 fb versus ~40 fb, [NNLO in low-energy thm].

- backgrounds, 14 TeV to 100 TeV:
 - ~40-50x if gluon-initiated,
 - ~10-20x if qq-initiated.

hh distributions: $14 \rightarrow 100$ TeV

- distributions have considerably longer tails,
- broadly similar to 14 TeV case: m_{hh} peak ~ 400 GeV

hh distributions: $14 \rightarrow 100$ TeV

рт, n peak ~ **m**t.

- bottom line:
 - at 100 TeV: **hh** signal has longer tails,
 - higher cross sections: assume $\sigma_{total} \sim 1638~fb$ at pp@100 TeV.
 - physics of the "self-coupling Higgs sector" still lies broadly in the same phase space regions.
 - versus backgrounds: not clear if translating a 14 TeV analysis to 100 TeV would yield similar results.

ggF hh final states

 $BR[(b\bar{b})(b\bar{b})] = 33.3\% \longrightarrow \text{ large QCD bkgs.}$ $BR[(b\bar{b})(WW)] \Rightarrow (b\bar{b})\% 2\ell + E^{\text{miss}}] = 1.7\%$ $BR[(b\bar{b})(\tau\bar{\tau})] \Rightarrow (b\bar{b})\% 2\ell + E^{\text{miss}}] = 0.9\%$ $BR[(b\bar{b})(\mu\bar{\mu})] = 0.025\%$

 $\mathbf{BR}[(WW)(WW)] \Rightarrow 4 \div 62 \%'^{\mp} + E^{\text{miss}} + j] = 0.016\%$

hh final states

 $\begin{aligned} & \text{BR}[(b\bar{b})(b\bar{b})] = 33.3\% \\ & \text{BR}[(b\bar{b})(WW) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 1.7\% \\ & \text{BR}[(b\bar{b})(\tau\bar{\tau}) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 0.9\% \\ & \text{BR}[(b\bar{b})(\mu\bar{\mu})] = 0.025\% \end{aligned}$

 $BR[(WW)(WW) \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\prime\mp} + E^{\text{miss}} + j] = 0.016\%$

$$BR[(b\bar{b})(\gamma\gamma)] = 0.263\%$$
$$BR[(b\bar{b})(ZZ) \rightarrow (b\bar{b}) + 4\ell] = 0.016\%$$
$$BR[(b\bar{b})(Z\gamma) \rightarrow (b\bar{b}) + 2\ell + \gamma] = 0.013\%$$

 $hh \to (bb)(\gamma\gamma)$

[100 TeV: **1412.7154** Barr, Dolan, Englert, Ferreira de Lima, Spannowsky, **1502.00539**, Azatov, Contino, Panico, Son, see also relevant talk at "Higgs & BSM at 100 TeV" workshop: He, Ren, Yao and **1308.6302**, Yao. 14 TeV: **hep-ph/0310056**, Baur, Plehn, Rainwater, **1212.5581**, Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira]

- the "most investigated" at 100 TeV: rare (0.263%) but clean,
- good mass reconstruction from yy: significant at HL-LHC and perhaps even more so at pp@100 TeV.
- could be the "golden" channel for hh @ 100 TeV, for 3 ab⁻¹:
 - He, Ren, Yao: **S ~ 420, B ~ 650,**
 - Barr, Dolan, Englert, Ferreira de Lima, Spannowsky: S ~ 31.8, B ~ 88,
 - Azatov, Contino, Panico, Son: **S ~ 279, B ~ 339.**
- [differences due to: cuts (crucially $M_{\gamma\gamma}$) + detector effect simulation + event generation + more...]

hh final states

 $\begin{aligned} & \text{BR}[(b\bar{b})(b\bar{b})] = 33.3\% \\ & \text{BR}[(b\bar{b})(WW) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 1.7\% \\ & \text{BR}[(b\bar{b})(\tau\bar{\tau}) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 0.9\% \\ & \text{BR}[(b\bar{b})(\mu\bar{\mu})] = 0.025\% \end{aligned}$

 $BR[(WW)(WW) \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\prime\mp} + E^{\text{miss}} + j] = 0.016\%$

$$\bigvee BR[(b\bar{b})(\gamma\gamma)] = 0.263\%$$
$$BR[(b\bar{b})(ZZ) \rightarrow (b\bar{b}) + 4\ell] = 0.016\%$$
$$BR[(b\bar{b})(Z\gamma) \rightarrow (b\bar{b}) + 2\ell + \gamma] = 0.013\%$$

$hh \to (b\overline{b})(ZZ) \to (b\overline{b})(4\ell)$

- branching ratio (incl. taus) = **0.016%** (!),
- for σ(100 TeV) ~ 0.26 fb. (c.f. σ(14 TeV) ~ 0.006 fb)
- ~ 780 events at 3000/fb.
- can reconstruct **hh** final state: sensitivity to new effects in the process over a wide range of phase space.

 $hh \to (b\overline{b})(ZZ) \to (b\overline{b})(4\ell)$

• backgrounds:

 $t\bar{t}h, t\bar{t}Z, b\bar{b}h, ZZh, ZZZ, b\bar{b}ZZ$ (irreducible), ZZ, hZ (reducible, 2 mis-tagged b-jets), $W^{\pm}Zh, W^{\pm}ZZ$ (reducible, 1 mis-tagged lepton),

[+ > 1 mis-tagged leptons: will **not** consider.]

Monte Carlo simulation:

• signal (LO): OpenLoops + Herwig++,

[1401.0007 <u>AP</u>, Maierhoefer]

 backgrounds (NLO): MG5/aMC@NLO + Herwig++.
 [1405.0301, Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

A. Papaefstathiou

 $hh \to (b\bar{b})(ZZ) \to (b\bar{b})(4\ell)$

before analysis

channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$
$\mathbf{hh} \to (b\bar{b})(\ell^+\ell^-\ell^{'+}\ell^{'-})$	0.26
$t\bar{t}h \rightarrow (\ell^+ b\nu_\ell)(\ell'^- \bar{b}\bar{\nu}_{\ell'})(2\ell)$	193.6
$\mathbf{t}\overline{\mathbf{t}}\mathbf{Z} \to (\ell^+ b\nu_\ell)(\ell'^- \overline{b}\overline{\nu}_{\ell'})(2\ell)$	256.7
$\mathbf{b}\mathbf{\bar{b}h} \to b\overline{b}(4\ell), p_{T,b} > 15 \text{ GeV}$	0.26
$\mathbf{ZZh} \to (4\ell)(b\overline{b})$	0.12
$\mathbf{Z}\mathbf{Z}\mathbf{Z} \to (4\ell)(b\overline{b})$	0.53
$\mathbf{ZZ} \to (4\ell) + \text{mis-tagged } b\overline{b}$	781.4
$hZ \rightarrow (4\ell) + mis-tagged b\bar{b}$	68.2
$\mathbf{W} \pm \mathbf{Z}\mathbf{Z} \to (\ell\nu_{\ell})(\ell^+\ell^-)(b\overline{b}) + \text{mis-tagged }\ell$	7.5
$\mathbf{W}^{\pm}\mathbf{Z}\mathbf{h} \to (\ell\nu_{\ell})(\ell^{+}\ell^{-})(b\bar{b}) + \text{mis-tagged }\ell$	1.4

note:
$$\ell \in \{e, \mu\}$$

 $hh \to (b\bar{b})(ZZ) \to (b\bar{b})(4\ell)$

- a simple analysis, asking for:
 - 4 isolated leptons with $p_T > (35, 30, 25, 20)$ GeV, crucial!
 - two R=0.4 anti- k_T b-jets with $p_T > 40$ GeV,
 - MET < 100 GeV,
 - veto events with two on-shell Zs,
 - $\Delta R(lepton, lepton) < 1.0$,
 - construct M_{bb} , M_{4I} [and after cuts: M_{bb4I}].

 $hh \to (b\bar{b})(ZZ) \to (bb)(4\ell)$ M_{41} Mbb

 $hh \to (b\overline{b})(ZZ) \to (b\overline{b})(4\ell)$

• 4 isolated leptons with $p_T > (35, 30, 25, 20)$ GeV.

A. Papaefstathiou

 $hh \to (b\bar{b})(ZZ) \to (bb)(4\ell)$

results: # of events @ 3 ab⁻¹.

channel	$N_{3 \text{ ab}^{-1}}(\text{cuts, ideal})$	$N_{3 \text{ ab}^{-1}}(\text{cuts, LHC})$
$\mathbf{h}\mathbf{h} o (b\bar{b})(\ell^+\ell^-\ell^{'+}\ell^{'-})$	13.0	4.1
$\mathbf{t}\mathbf{\bar{t}}\mathbf{h} \to (\ell^+ b\nu_\ell)(\ell'^- \overline{b}\overline{\nu}_{\ell'})(2\ell)$	30.4	10.9
$\mathbf{t}\mathbf{\bar{t}}\mathbf{Z} \to (\ell^+ b\nu_\ell)(\ell'^- \bar{b}\bar{\nu}_{\ell'})(2\ell)$	6.6	2.5
$\mathbf{bbh} \to bb(4\ell), \ p_{T,b} > 15 \text{ GeV}$	$\mathcal{O}(1)$	$\mathcal{O}(10^{-1})$
$\mathbf{ZZh} \to (4\ell)(b\bar{b})$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-3})$
$\mathbf{ZZZ} \to (4\ell)(b\overline{b})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10^{-1})$
$\mathbf{ZZ} \to (4\ell) + \text{mis-tagged } b\bar{b}$	$O(10^{-2})$	$\mathcal{O}(10^{-2})$
$hZ \rightarrow (4\ell) + mis-tagged \ b\bar{b}$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-3})$
$\mathbf{W} \pm \mathbf{Z}\mathbf{Z} \to (\ell\nu_{\ell})(\ell^{+}\ell^{-})(b\bar{b}) + \text{mis-tagged }\ell$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$
$\mathbf{W}^{\pm}\mathbf{Z}\mathbf{h} \to (\ell\nu_{\ell})(\ell^{+}\ell^{-})(b\bar{b}) + \text{mis-tagged }\ell$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-3})$

"ideal" S ~ 13, B ~ 37

\Rightarrow definitely one to look out for!

hh final states

 $\begin{aligned} & \text{BR}[(b\bar{b})(b\bar{b})] = 33.3\% \\ & \text{BR}[(b\bar{b})(WW) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 1.7\% \\ & \text{BR}[(b\bar{b})(\tau\bar{\tau}) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 0.9\% \\ & \text{BR}[(b\bar{b})(\mu\bar{\mu})] = 0.025\% \end{aligned}$

 $BR[(WW)(WW) \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\prime\mp} + E^{\text{miss}} + j] = 0.016\%$

 $BR[(b\bar{b})(\gamma\gamma)] = 0.263\%$ $BR[(b\bar{b})(ZZ) \rightarrow (b\bar{b}) + 4\ell] = 0.016\%$ $BR[(b\bar{b})(Z\gamma) \rightarrow (b\bar{b}) + 2\ell + \gamma] = 0.013\%$

 $hh \to (b\overline{b})(Z\gamma) \to (b\overline{b})(\ell^+\ell^-\gamma)$

• backgrounds: $t\bar{t}\gamma$, $b\bar{b}Z\gamma$ + mis-tag backgrounds:

channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$
$\mathbf{h}\mathbf{h} o (b\overline{b})(\ell^+\ell^-\gamma)$	0.21
$\mathbf{b}\mathbf{\bar{b}}\mathbf{Z}\gamma \to b\bar{b}(\ell^+\ell^-)\gamma, \ p_{T,b} > 30 \text{ GeV}$	26.00×10^{3}
$t\bar{t}\gamma \to (L^+ b\nu_L l)(L^- \bar{b}\bar{\nu}_L)\gamma$	7.94×10^{3}
$\mathbf{b}\overline{\mathbf{b}}\mathbf{Z} \to b\overline{b}(\ell^+\ell^-) + \text{mis-tagged } \gamma , p_{T,b} > 30 \text{ GeV}$	107.36×10^{3}
$\mathbf{t}\overline{\mathbf{t}} \to (\ell^+ b\nu_\ell)(\ell'^- \overline{b}\overline{\nu}_{\ell'}) + \text{mis-tagged } \gamma$, [generation-level	cuts] 25.08×10^3

irreducible backgrounds much larger than in 4 lepton case.

 $hh \to (b\overline{b})(Z\gamma) \to (b\overline{b})(\ell^+\ell^-\gamma)$

- a simple analysis, asking for:
 - 2 isolated leptons with $p_T > (40, 35)$ GeV,
 - 1 isolated photon with $p_T > 40$ GeV,
 - R=0.4 anti- k_T b-jets with $p_T > (60, 40)$ GeV,
 - MET < 80 GeV,
 - **M**_{bb} in (100, 150) GeV,
 - **M_{IIy}** in (110, 140) GeV,
 - [+ some other cuts taking into account distances between reconstructed objects.]

 $hh \to (b\bar{b})(Z\gamma) \to (b\bar{b})(\ell^+\ell^-\gamma)$

results: # of events @ 3 ab⁻¹.

channel	$N_{3 \text{ ab}^{-1}}(\text{cuts, ideal})$	$N_{3 \text{ ab}^{-1}}(\text{cuts, LHC})$
$\mathbf{h}\mathbf{h} o (b\bar{b})(\ell^+\ell^-\gamma)$	14	8
$\mathbf{b}\mathbf{\bar{b}}\mathbf{Z}\gamma \to b\bar{b}(\ell^+\ell^-)\gamma, p_{T,b} > 30 \text{ GeV}$	266	203
$t\bar{t}\gamma \to (L^+ b\nu_L l)(L^- \bar{b}\bar{\nu}_L)\gamma$	78	79
$b\bar{b}Z \rightarrow b\bar{b}(\ell^+\ell^-) + \text{mis-tagged } \gamma , p_{T,b} > 30 \text{ GeV}$	20	21
$\mathbf{t}\overline{\mathbf{t}} \to (\ell^+ b \nu_\ell) (\ell'^- \overline{b} \overline{\nu}_{\ell'}) + \text{mis-tagged } \gamma$	14	10

"ideal" S ~ 14, B ~ 378.

⇒ most likely does not qualify for the podium...

hh final states

 $BR[(b\bar{b})(b\bar{b})] = 33.3\%$ $BR[(b\bar{b})(WW) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 1.7\%$ $BR[(b\bar{b})(\tau\bar{\tau}) \to (b\bar{b}) + 2\ell + E^{\text{miss}}] = 0.9\%$ $BR[(b\bar{b})(\mu\bar{\mu})] = 0.025\%$

 $BR[(WW)(WW) \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\prime\mp} + E^{\text{miss}} + j] = 0.016\%$

$$\checkmark BR[(b\bar{b})(\gamma\gamma)] = 0.263\%$$
$$\checkmark BR[(b\bar{b})(ZZ) \rightarrow (b\bar{b}) + 4\ell] = 0.016\%$$
$$BR[(b\bar{b})(Z\gamma) \rightarrow (b\bar{b}) + 2\ell + \gamma] = 0.013\%$$

 $hh \rightarrow (bb)(\ell^+\ell^- + E)$

- fairly large signal cross section at 100 TeV, contribution from two different Higgs boson decays.
- but: top pairs and bbZ constitute large backgrounds.

channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$
$\overline{\mathbf{hh}} \to (b\overline{b})(W^+W^-) \to (b\overline{b})(\ell'^+\nu_{\ell'}\ell^-\overline{\nu}_{\ell})$	27.16
$\mathbf{h}\mathbf{h} \to (b\bar{b})(\tau^+\tau^-) \to (b\bar{b})(\ell'^+\nu_{\ell'}\bar{\nu}_{\tau}\ell^-\bar{\nu}_{\ell}\nu_{\tau})$	14.63
$t\bar{t} \to (\ell^+ b\nu_\ell)(\ell'^- \bar{b}\bar{\nu}_{\ell'})$, cuts as in Eq. 1	25.08×10^{3}
$\mathbf{b}\mathbf{\bar{b}}\mathbf{Z} \to b\overline{b}(\ell^+\ell^-), p_{T,b} > 30 \text{ GeV}$	107.36×10^{3}
$\mathbf{b}\mathbf{\bar{b}}\mathbf{h} \to b\overline{b}(\ell^+\ell^-), \ p_{T,b} > 30 \text{ GeV}$	26.81
$\overline{\mathbf{b}}\overline{\mathbf{b}}W^{\pm} \to b\overline{b}(\ell^{\pm}\nu_{\ell}), p_{T,b} > 30 \text{ GeV + mis-tagged } \ell$	1032.6
$\ell^+\ell^- + \text{jets} \to (\ell^+\ell^-) + \text{mis-tagged } b\overline{b}$	2.14×10^{3}

 [note: could also consider M_{T2}, but top pairs turns out to be the second most important background.]

A. Papaefstathiou

32 [1309.6318, Barr, Dolan, Englert, Spannowsky]

 $hh \to (b\bar{b})(\tau^+\tau^-) \to (b\bar{b})(\ell^+\ell^- + \not\!\!E_T)$

 $hh \rightarrow (bb)(\mu^+\mu^-)$

- top pairs and bbZ still constitute large backgrounds.
- low missing energy could help eliminate top pairs.

$\sigma(100 \text{ TeV}) \text{ (fb)}$
0.42
25.08×10^{3}
107.36×10^{3}
26.81
1032.6
2.14×10^{3}

 design two signal regions to handle the two channels depending on amount of missing energy.

 $hh \rightarrow (bb)(\ell^+\ell^-) + (\not \!\!E_T)$

 design two signal regions to handle the two channels depending on amount of missing energy.

observable	$\mathrm{SR}_{ ot\!$	SR_μ
E_T	> 100 GeV	< 40 GeV
p_{T,ℓ_1}	$> 60 { m GeV}$	$> 90 { m GeV}$
p_{T,ℓ_2}	$> 55 { m GeV}$	$> 60 { m GeV}$
$\Delta R(\ell_1, \ell_2)$	< 0.9	$\in (1.0, 1.8)$
$M_{\ell\ell}$	$\in (50, 80) \text{ GeV}$	$\in (120, 130) \text{ GeV}$
p_{T,b_1}	> 90 GeV	>90 GeV
p_{T,b_2}	$> 80 { m GeV}$	$> 80 { m GeV}$
$\Delta R(b_1, b_2)$	$\in (0.5, 1.3)$	$\in (0.5, 1.5)$
$M_{bb\ell\ell}$	$> 350 { m ~GeV}$	$> 350 { m ~GeV}$
M_{bb}	$\in (110, 140) \mathrm{GeV}$	$\in (110, 140) \mathrm{GeV}$
$M_{\rm reco.}$	> 600 GeV	none

 $hh \to (b\overline{b})(\mu^+\mu^-)$

results: # of events @ 3 ab-1.

channel	$N_{3 \text{ ab}^{-1}}(\text{cuts, ideal})$	$N_{3 \text{ ab}^{-1}}$ (cuts, LHC param.)
$\overline{\mathbf{hh}} \to (b\overline{b})(\mu^+\mu^-)$	8.6	1.8
$\overline{\mathbf{t}} \overline{\mathbf{t}} \to (\ell^+ b \nu_\ell) (\ell'^- \overline{b} \overline{\nu}_{\ell'}), \text{ cuts as in Eq. 1}$	$32.0^{+25.3}_{-9.3}$	$24.5^{+19.3}_{-7.1}$
$\mathbf{b}\mathbf{\overline{b}}\mathbf{Z} \to b\overline{b}(\ell^+\ell^-), \ p_{T,b} > 30 \text{ GeV}$	< 73.5	$49.4^{+113.4}_{-14.4}$
$\mathbf{b}\mathbf{\bar{b}h} \to b\bar{b}(\ell^+\ell^-), p_{T,b} > 30 \text{ GeV}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\overline{\mathbf{b}}\overline{\mathbf{b}}W^{\pm} \to b\overline{b}(\ell^{\pm}\nu_{\ell}), p_{T,b} > 30 \text{ GeV + mis-tagged } \ell$	$\mathcal{O}(10^{-2})$	$O(10^{-2})$
$\frac{\ell^+\ell^- + \text{jets} \to (\ell^+\ell^-) + \text{mis-tagged } b\bar{b}}{2}$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$

- very few events after analysis with fairly large backgrounds.
- possible improvement by better muon resolution?

 $hh \to (b\overline{b})(\ell^+\ell^- + E)$

results: # of events @ 3 ab⁻¹.

channel	$N_{3 \text{ ab}^{-1}}(\text{cuts, ideal})$	$N_{3 \text{ ab}^{-1}}(\text{cuts, LHC param.})$
$\overline{\mathbf{hh}} \to (b\overline{b})(W^+W^-) \to (b\overline{b})(\ell'^+\nu_{\ell'}\ell^-\overline{\nu}_{\ell})$	20.9	19.9
$\mathbf{h}\mathbf{h} \to (b\bar{b})(\tau^+\tau^-) \to (b\bar{b})(\ell'^+\nu_{\ell'}\bar{\nu}_{\tau}\ell^-\bar{\nu}_{\ell}\nu_{\tau})$	38.5	24.3
$\overline{\mathbf{t}} \overline{\mathbf{t}} \to (\ell^+ b \nu_\ell) (\ell'^- \overline{b} \overline{\nu}_{\ell'})$, cuts as in Eq. 1	$16.0^{+21.1}_{-5.1}$	$6.1^{+14.1}_{-1.8}$
$\mathbf{b}\mathbf{\bar{b}}\mathbf{Z} \to b\bar{b}(\ell^+\ell^-), \ p_{T,b} > 30 \text{ GeV}$	$257.9^{+203.7}_{-74.6}$	$493.7^{+224.9}_{-113.4}$
$\mathbf{b}\mathbf{\bar{b}h} \to b\bar{b}(\ell^+\ell^-), \ p_{T,b} > 30 \text{ GeV}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\overline{\mathbf{b}}\overline{\mathbf{b}}W^{\pm} \to b\overline{b}(\ell^{\pm}\nu_{\ell}), p_{T,b} > 30 \text{ GeV + mis-tagged } \ell$	$O(10^{-2})$	$O(10^{-2})$
$\ell^+\ell^- + \text{jets} \to (\ell^+\ell^-) + \text{mis-tagged } b\overline{b}$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$

"ideal" S ~ 60, B ~ 273" [* background uncertainty due to limited MC samples]

$$hh \to (W^+W^-)(W^+W^-) \to \ell^{\pm}\ell^{\pm}\ell'^{\mp} + E^{\text{miss}} + j$$

[**1503.07611,** Li, Li, Yan, Zhao] [see also **hep-ph/0206024** Baur, Plehn, Rainwater for high-mass Higgs]

- same-sign di-leptons kills a lot of background (particularly ZW),
- their analysis finds good significance at 100 TeV:
 - S~160, B~523 for 3 ab⁻¹.
- but assumes p_T > (30,10,10) GeV for the three leptons: this may be a little optimistic @ 100 TeV.
- [note: 4r and 2r2W final states can generate the same final state.]

100 TeV: the story so far

$$\begin{array}{c} \text{SM hh discovery} \\ hh \rightarrow (b\bar{b})(b\bar{b}) & ? \\ hh \rightarrow (b\bar{b})(\gamma\gamma) & \checkmark \\ hh \rightarrow (b\bar{b})(ZZ) \rightarrow (b\bar{b})(4\ell) & \checkmark \\ hh \rightarrow (b\bar{b})(Z\gamma) \rightarrow (b\bar{b})(\ell^+\ell^-\gamma) & \swarrow \\ hh \rightarrow (b\bar{b})(\ell^+\ell^- + \not E) & \checkmark \\ hh \rightarrow (b\bar{b})(\ell^+\mu^-) & ? \\ hh \rightarrow (\ell^\pm\ell^\pm\ell'^\mp + \not E + j) & ? \end{array}$$

to do

- VBF/associated production @ 100 TeV.
- use of jet substructure techniques [particularly for high-invariant mass regions],
- include hadronic tau decays,
- extraction of self-coupling/D=6 EFT coefficients.
- examine details of the detector [...].

thanks for your attention!

A. Papaefstathiou

statistics for MC samples

- at 100 TeV, background cross sections are very large: we need to generate substantial Monte Carlo events samples.
- we can apply reasonable generation-level cuts.
- but: what if we are left with a low number of MC events?
- can still calculate a 1-σ uncertainty for the expectation values using Poisson statistics.

statistics for MC samples

 question: given that we have observed N Monte Carlo events after cuts, what are uncertainties ΔN₊ and ΔN₋, such that

$$N_{-\Delta N_{-}}^{+\Delta N_{+}}$$

defines a 68% confidence level (1- σ) interval?

this can be determined by integrating the Poisson distribution:

$$p(N + \Delta N_{+}) = \int_{N+\Delta N_{+}}^{\infty} d\lambda \frac{\lambda^{N} e^{-\lambda}}{N!} \left\{ p(N - \Delta N_{-}) = \int_{0}^{N-\Delta N_{-}} d\lambda \frac{\lambda^{N} e^{-\lambda}}{N!} \right\} = 15.9\% \text{ for } 1-\sigma.$$

A. Papaefstathiou

statistics for MC samples

$$p(N + \Delta N_{+}) = \int_{N + \Delta N_{+}}^{\infty} d\lambda \, \frac{\lambda^{N} e^{-\lambda}}{N!} \left\{ p(N - \Delta N_{-}) = \int_{0}^{N - \Delta N_{-}} d\lambda \, \frac{\lambda^{N} e^{-\lambda}}{N!} \right\} = 15.9\% \text{ for } 1\text{-}\sigma.$$

solve using standard gamma functions:

$$\frac{\Gamma(N+1, N+\Delta N_{+})}{N!} = 15.9\%$$
 (for N > 0)
$$\frac{\gamma(N+1, N-\Delta N_{-})}{N!} = 15.9\%$$

