HH AT FUTURE COLLIDERS

Roberto Contino EPFL & CERN

'Higgs Pair Production at Colliders', Mainz, 27-30 April 2015

Processes for double Higgs production

pp colliders (HL-LHC, FCC-hh)

e⁺e⁻ colliders (ILC, FCC-ee, CLIC)

• EFT ideal framework for low-energy machines with high precision (e⁺e⁻, HL-LHC)

probe their tail effects with high-precision measurements

• EFT ideal framework for low-energy machines with high precision (e⁺e⁻, HL-LHC)

• Primary goal of a 100TeV pp collider (FCC-hh) is to open produce new states

Cannot use EFT in general, need to explicitly include the new states in the calculations

EFT ideal framework for low-energy machines with high precision (e⁺e⁻, HL-LHC)

Cannot access directly _____

probe their tail effects with high-precision measurements

• Primary goal of a 100TeV pp collider (FCC-hh) is to open produce new states

Cannot use EFT in general, need to explicitly include the new states in the calculations

Exception: study of Higgs properties near threshold (low energy)

EFT useful to give universal effective description of the contribution from new states in terms of a few local operators

No need of complete and accurate knowledge of mass spectrum, couplings etc.

• Going above threshold helps extracting the NP contribution

Effects from heavy New Physics scale like:

on-shell single production

$$\frac{\delta c}{c} \sim \frac{g_*^2}{g_{SM}^2} \, \frac{m_h^2}{m_*^2}$$

 $m_* = \text{ scale of NP}$

 $g_* = \text{coupling strength of new}$ states with the Higgs boson

 $2 \rightarrow 2$ processes

$$\frac{\delta \mathcal{A}}{\mathcal{A}} \sim \frac{g_*^2}{g_{SM}^2} \frac{E^2}{m_*^2}$$

• Going above threshold helps extracting the NP contribution

Effects from heavy New Physics scale like:

on-shell single production

$$\frac{\delta c}{c} \sim \frac{g_*^2}{g_{SM}^2} \frac{m_h^2}{m_*^2}$$

 $m_* = \text{ scale of NP}$

 $g_* = \text{coupling strength of new}$ states with the Higgs boson

 $2 \rightarrow 2$ processes

 $\frac{\delta \mathcal{A}}{\mathcal{A}} \sim \frac{g_*^2}{g_{SM}^2} \, \frac{E^2}{m_*^2}$

Making use of differential distributions (exclusive analysis) is key to maximize the sensitivity on New Physics

Region of interest: $m_h \ll E \ll m_*$

Effective Lagrangian for a Higgs doublet

Buchmuller and Wyler NPB 268 (1986) 621 : Giudice et al. JHEP 0706 (2007) 045 Grzadkowski et al. JHEP 1010 (2010) 085

 $\mathcal{L} = \mathcal{L}_{SM} + \Delta \mathcal{L}_{(6)} + \Delta \mathcal{L}_{(8)} + \dots$ \downarrow $\supset \frac{\bar{c}_H}{2v^2} [\partial_\mu (H^{\dagger} H)]^2 + \frac{\bar{c}_u}{v^2} y_u H^{\dagger} H \bar{q}_L H^c u_R - \frac{\bar{c}_6}{v^2} \frac{m_h^2}{2v^2} (H^{\dagger} H)^3 + \frac{\bar{c}_g g_S^2}{m_{H^*}^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}$

5

Effective Lagrangian for a Higgs doublet

Buchmuller and Wyler NPB 268 (1986) 621

Giudice et al. JHEP 0706 (2007) 045 Grzadkowski et al. JHEP 1010 (2010) 085

In the unitary gauge:

$$\mathcal{L} \supset \left(m_W^2 W_{\mu}^2 + \frac{m_Z^2}{2} Z_{\mu}^2 \right) \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} \right) - m_t \,\overline{t}t \left(1 + c_t \frac{h}{v} + c_{2t} \frac{h^2}{2v^2} \right) - c_3 \frac{m_h^2}{2v} h^3 + \frac{g_s^2}{4\pi^2} \left(c_g \frac{h}{v} + c_{2g} \frac{h^2}{2v^2} \right) G_{\mu\nu}^a G^{a\,\mu\nu}$$

6

HH at future Hadron Colliders

References (for FCC₁₀₀):

Baglio, Djouadi, Groeber, Muehlleitner, Quevillon, Spira JHEP 1304 (2013) 151
W. Yao arXiv:1308.6302 (Snowmass Summer Study 2013)
Barr, Dolan, Englert, de Lima, Spannowsky arXiv:1412.7154
Azatov, R.C., Panico, Son arXiv:1502.00539

Benchmark scenarios:	LHC ₁₄ :	$\sqrt{s} = 14 \mathrm{TeV}, \ L = 300 \mathrm{fb}^{-1}$
	HL-LHC:	$\sqrt{s} = 14 \mathrm{TeV}, \ L = 3 \mathrm{ab}^{-1}$
	FCC100:	$\sqrt{s} = 100 \mathrm{TeV}, \ L = 3 \mathrm{ab}^{-1}$

Double Higgs production via gluon fusion

Results from: Azatov, R.C., Panico, Son arXiv:1502.00539

• various contributions scale differently at large $\sqrt{\hat{s}} = m_{hh}$

• triangle diagram with Higgs trilinear coupling suppressed at high energies

Two main differences occur when going from 14TeV to 100TeV:

1. Larger boost of the (hh) system \longrightarrow

Higher fraction of Higgs decay products goes outside detector region

Two main differences occur when going from 14TeV to 100TeV:

1. Larger boost of the (hh) system \rightarrow

Higher fraction of Higgs decay products goes outside detector region

5

6

Fraction of Higgs decay products with $|\eta| > 2.5$: 13% at LHC $\longrightarrow 30\%$ at 100TeV

Two main differences occur when going from 14TeV to 100TeV:

channel

2. Larger invariant mass of the (hh) system

-	requiring	at	least	5	events
---	-----------	----	-------	---	--------

 including 10% efficiency due to kinematic cuts

Cross section	$> 0.05 { m ~fb}$	$> 0.067 { m ~fb}$	$> 0.227 { m ~fb}$	$> 6.31 { m ~fb}$
$m_{hh} \; [\text{GeV}]$	< 1340 (4290)	< 1280 (4170)	< 1039 (3235)	< 558 (1552)
$p_T(h)$ [GeV]	< 575 (2000)	< 550 (1890)	< 440 (1430)	< 210 (664)

 $b\bar{b}b\bar{b}$ (33.3%) | $b\bar{b}WW^*$ (24.9%) | $b\bar{b}\tau^+\tau^-$ (7.35%) | $\gamma\gamma b\bar{b}$ (0.264%)

Assumed luminosity: $L = 3 \text{ ab}^{-1}$. Numbers in parenthesis are for a 100TeV collider

Two main differences occur when going from 14TeV to 100TeV:

2. Larger invariant mass of the (hh) system

-	requiring	at	least	5	events
---	-----------	----	-------	---	--------

- including 10% efficiency due to kinematic cuts

channel	$b\bar{b}b\bar{b}$ (33.3%)	$b\bar{b}WW^{*}$ (24.9%)	$b\bar{b}\tau^{+}\tau^{-}$ (7.35%)	$\gamma\gamma bar{b}~(0.264\%)$
Cross section	$> 0.05 { m ~fb}$	$> 0.067 { m ~fb}$	$> 0.227 { m ~fb}$	$> 6.31 { m ~fb}$
$m_{hh} \; [\text{GeV}]$	< 1340 (4290)	< 1280 (4170)	< 1039 (3235)	$< 558 \ (1552)$
$p_T(h)$ [GeV]	< 575 (2000)	< 550 (1890)	< 440 (1430)	< 210 (664)

Assumed luminosity: $L = 3 \text{ ab}^{-1}$. Numbers in parenthesis are for a 100TeV collider

Higgs couplings from the $b\overline{b}\gamma\gamma$ channel

• Precision on couplings c_3, c_{2t}, c_{2g} (accessible only through double-Higgs production)

Higgs couplings from the $b\overline{b}\gamma\gamma$ channel

• Precision on couplings c_3, c_{2t}, c_{2g} (accessible only through double-Higgs production)

- Huge improvement of the precision on the Higgs trilinear c_3 at 100TeV
- Much better precision on c_{2t}, c_{2g}

Higgs couplings from the $b\overline{b}\gamma\gamma$ channel

• Precision on couplings c_3, c_{2t}, c_{2g} (accessible only through double-Higgs production)

Naive (SILH) estimates: $(c_3 - 1), c_{2t} \sim \frac{v^2}{f^2}$ $c_{2g} \sim \frac{v^2}{f^2} \times \frac{\lambda^2}{g_*^2}$ $f \equiv \frac{m_*}{g_*}$

• Exclusive vs inclusive analysis (with traditional jet reconstruction)

Exclusive analysis is crucial at 100TeV

<u>Notice</u>: even setting $c_{2t} = 0$ exclusive analysis required to remove degenerate solution for c_3

category	$m_{hh}^{ m reco} [{ m TeV}]$			
	Traditional	Boosted		
1	0.25 - 0.40	1.0 - 1.2		
2	0.40 - 0.55	1.2 - 1.4		
3	0.55 - 0.70	1.4 - 1.6		
4	0.70 - 0.85	1.6 - 1.8		
5	0.85 - 1.00	1.8 -		

Jet substructure key to extract c_{2g} but not crucial to determine c_3 and c_{2t} • Constraining dim-6 operators: \bar{c}_u vs \bar{c}_6

 $(\bar{c}_6 = c_3 - 1)$

• Constraining dim-6 operators: \bar{c}_u vs \bar{c}_6

 $(\bar{c}_6 = c_3 - 1)$

68% probability intervals on \overline{c}_6 :

(obtained by marginalizing over the other parameters)

LHC_{14}	HL-LHC	FCC_{100}
[-1.2, 6.1]	$[-1.0, 1.8] \cup [3.5, 5.1]$	[-0.33, 0.29]

• Constraining dim-6 operators: \overline{c}_u vs \overline{c}_6

 $(\bar{c}_6 = c_3 - 1)$

68% probability intervals on \overline{c}_6 :

(obtained by marginalizing over the other parameters)

• Impact of the statistical treatment (marginalization)

Marginalization over $\bar{c}_H, \bar{c}_u, \bar{c}_d, \bar{c}_g$ has significant impact on the precision on \bar{c}_6

	with marginalization	without marginalization
Precision on $ar{c}_6$ at FCC $_{100}$:	[-0.33, 0.29]	[-0.18, 0.18]

Impact of the statistical treatment (marginalization)

Marginalization over $\bar{c}_H, \bar{c}_u, \bar{c}_d, \bar{c}_g$ has significant impact on the precision on \bar{c}_6

0.05

0.10

 $\sigma(\overline{c}_u)$

0.20

68% probability interval on \overline{c}_6

-0.4

0.02

Example: uncertainty on \bar{c}_6 from \bar{c}_u

<u>Notice</u>: for a Higgs doublet the uncertainty on the top Yukawa coupling (ttH) reflects on an uncertainty on ttHH

Impact of the statistical treatment (marginalization)

Marginalization over $\bar{c}_H, \bar{c}_u, \bar{c}_d, \bar{c}_g$ has significant impact on the precision on \bar{c}_6

Example: uncertainty on \bar{c}_6 from \bar{c}_u

Notice: for a Higgs doublet the uncertainty on the top Yukawa coupling (ttH) reflects on an uncertainty on ttHH • Constraining dim-6 operators: \bar{c}_u vs \bar{c}_g

Orange region: single Higgs incl. $t\bar{t}h$

Blue region: single+double Higgs • Constraining dim-6 operators: \bar{c}_u vs \bar{c}_g

• Constraining dim-6 operators: \bar{c}_u vs \bar{c}_g

Breaking the degeneracy of single Higgs: tth vs double Higgs ($hh \rightarrow bb\gamma\gamma$)

68% probability intervals

Results from: R.C. and J. Rojo, work in progress (see also: Bondu et al. proceeding of Les Houches 2013)

• Sensitivity on c_3 mainly from events at threshold. Events with large m_{hh} crucial to extract c_{2V}

Results from: R.C. and J. Rojo, work in progress (see also: Bondu et al. proceeding of Les Houches 2013)

• Sensitivity on c_3 mainly from events at threshold. Events with large m_{hh} crucial to extract c_{2V}

Higher rate due to higher WW luminosity

	14 Tev	$100\mathrm{Tev}$
$\sigma(pp \to hhjj) \text{ [SM]}$	1.5 fb	$54\mathrm{fb}$

Results from: R.C. and J. Rojo, work in progress (see also: Bondu et al. proceeding of Les Houches 2013)

• Sensitivity on c_3 mainly from events at threshold. Events with large m_{hh} crucial to extract c_{2V}

Study of double Higgs via VBF at 100TeV requires a dedicated detector in the very forward region

Results from: R.C. and J. Rojo, work in progress (see also: Bondu et al. proceeding of Les Houches 2013)

• Sensitivity on c_3 mainly from events at threshold. Events with large m_{hh} crucial to extract c_{2V}

~67% of signal events at 100TeV has $|\eta(j)_{max}| > 4.5$

Study of double Higgs via VBF at 100TeV requires a dedicated detector in the very forward region

Ν	Number of events with 3ab ⁻¹ after cuts								
			m	(hh) [GeV]		SLIMIN			
	$14\mathrm{TeV}$	250 - 500	500 - 750 7	750 - 1000	1000 - 1500	> 1500	Pr		
	$hh \rightarrow 4b \; [SM]$	6.6	4.1	1.6	0.68	0.18			
	4b2j	9.8×10^{3}	557	203	101	15			
		$m(hh) \; [\text{GeV}]$							
	$100{\rm TeV}$	250 - 1000	1000 - 2500	2500 - 350	3500 - 50	000 > 5000			
	$hh \rightarrow 4b$ [SM]	413	144	10	2.1	1.1			
	4b2j	$5.9\!\times\!10^5$	$3.4\!\times\!10^4$	$6.2\!\times\!10^3$	2.3×10	3 2.3×10 ³			

N	Number of events with 3ab ⁻¹ after cuts								
			n	$n(hh) \; [\text{GeV}]$		'ELIN	IN		
	$14\mathrm{TeV}$	250 - 500	500 - 750	750 - 1000	1000 - 1500	> 1500	APY		
	$hh \rightarrow 4b \; [SM]$	6.6	4.1	1.6	0.68	0.18			
	4b2j	9.8×10^{3}	557	203	101	15			
		$m(hh) \; [\text{GeV}]$							
	$100{\rm TeV}$	250 - 1000	1000 - 2500	2500 - 350	00 3500 - 50	000 > 5000			
-	$hh \rightarrow 4b \text{ [SM]}$	413	144	10	2.1	1.1	-		
	4b2j	$5.9\!\times\!10^5$	$3.4\!\times\!10^4$	6.2×10^3	2.3×10	3 2.3×10 ³			

Number of events with 3ab ⁻¹ after cuts							
		m(hh) [GeV]					
	$14\mathrm{TeV}$	250 - 500	500 - 750 7	750 - 1000 1	000 - 1500	> 1500 MAP	
	$hh \rightarrow 4b \text{ [SM]}$	6.6	4.1	1.6	0.68	0.18	
	4b2j	9.8×10^{3}	557	203	101	15	
				$m(hh) \; [\text{GeV}]$			
	$100{\rm TeV}$	250 - 1000	1000 - 2500	2500 - 3500	3500 - 50)00 > 5000	
	$hh \rightarrow 4b \; [SM]$	413	144	10	2.1	1.1	
	4b2j	$5.9\!\times\!10^5$	$3.4\!\times\!10^4$	$6.2\!\times\!10^3$	2.3×10	3 2.3×10 ³	

68% probability intervals on $\Delta c_{2V} \equiv c_{2V} - 1$:

(uncertainties included: 50% systematic on background, 10% on $BR(hh \rightarrow 4b)$)

 LHC_{14}	HL-LHC	FCC_{100}	
 [-0.18, 0.22]	[-0.08, 0.12]	[-0.01, 0.03]	

HH at future e⁺e⁻ Colliders

Double Higgs-strahlung (DHS) vs VBF

Double Higgs-strahlung (DHS) vs VBF

Double Higgs-strahlung (DHS) vs VBF

	com Energy	Precision	Process	Reference
	$500 { m GeV}$ $[L = 500 { m fb}^{-1}]$	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
ILC	$1 \mathrm{TeV}$ $[L = 1 \mathrm{ab}^{-1}]$	$\Delta c_3 \sim 28\%$ $\Delta c_{2V} \sim 20\%$	VBF DHS	ILC TDR, Volume 2, arXiv:1306.6352 RC, Grojean, Pappadopulo, Rattazzi and Thamm, JHEP 1402 (2014) 006
CLIC	$1.4 \mathrm{TeV}$ $[L=1.5\mathrm{ab}^{-1}]$ $3\mathrm{TeV}$ $[L=2\mathrm{ab}^{-1}]$	$\Delta c_3 \sim 24\%$ $\Delta c_{2V} \sim 7\%$ $\Delta c_3 \sim 12\%$ $\Delta c_{2V} \sim 3\%$	VBF	P. Roloff (CLICdp Coll.), talk at LCWS14

		com Energy	Precision	Process	Reference
		$500{ m GeV}$ $[L=500{ m fb}^{-1}]$	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
IL	.C	$1 \mathrm{TeV}$ $[L = 1 \mathrm{ab}^{-1}]$	$\Delta c_3 \sim 28\%$ $\Delta c_{2V} \sim 20\%$	VBF DHS	ILC TDR, Volume 2, arXiv:1306.6352 RC, Grojean, Pappadopulo, Rattazzi and Thamm, IHEP 1402 (2014) 006
	uump/σp	Black: $c_{2V} =$ Red: $c_{2V} = 0$ Solid: $\sqrt{s} = 5$ 400 600 m_{hh} in C	$=1 \qquad c_3 = 1$ Dashed: $\sqrt{s} = 1 \text{ TeV}$ 500 GeV $= 800 \qquad 1000$ GeV	500GeV 1 — с ₃	4 4 4 4 4 4 4 4 4 4 4 4 4 4
27		- process: $e^+e^- ightarrow hh$ - two m_{hh} categories t	$h(\rightarrow 4b)Z(\rightarrow ll,q\bar{q})$ to break the degeneracy		Red: $c_{2V} = c_3 = 0.75$ -1.0 -0.5 0.0 0.5 1.0 $1 - c_{2V}$

		com Energy	Precision	Process	Reference
		$500{ m GeV}$ $[L=500{ m fb}^{-1}]$	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
IL	C	$1 \mathrm{TeV}$ [$L = 1 \mathrm{ab}^{-1}$]	$\Delta c_3 \sim 28\%$	VBF	ILC TDR, Volume 2, arXiv:1306.6352
	[Thamm, JHEP 1402 (2014) 006
	d\sigma/dm _{hh}	Black: c_{2V} = Red: $c_{2V} = 0$ Solid: $\sqrt{s} = 5$ Region I	Region II Dashed: $\sqrt{s} = 1 \text{ TeV}$ 500 GeV	500GeV $1-c_3$	1 TeV 1 TeV 500GeV+1 TeV
	200	400 $500 600 \\ m_{\rm hh} \text{ in C}$	800 1000 GeV		-1 Blue: SM Bed: cov = co = 0.75
27	-	 process: $e^+e^- ightarrow hh$ two m_{hh} categories t 	$h(\rightarrow 4b)Z(\rightarrow ll,q\bar{q})$ to break the degeneracy		-1.0 -0.5 0.0 0.5 1.0 $1 - c_{2V}$

What can we learn from Double Higgs Production (DHP) ?

What can we learn from Double Higgs Production (DHP) ?

• measure the Higgs trilinear coupling

- What can we learn from Double Higgs Production (DHP) ?
 - measure the Higgs trilinear coupling
 - (better) determine Higgs couplings to top and gluon:

- What can we learn from Double Higgs Production (DHP) ?
 - measure the Higgs trilinear coupling
 - (better) determine Higgs couplings to top and gluon:
 - break degeneracy of single Higgs production (DHP competitive with tth)

- What can we learn from Double Higgs Production (DHP) ?
 - measure the Higgs trilinear coupling
 - (better) determine Higgs couplings to top and gluon:
 - break degeneracy of single Higgs production (DHP competitive with tth)
 - access new couplings: c_{2t}, c_{2g}, c_{2V}

- What can we learn from Double Higgs Production (DHP) ?
 - measure the Higgs trilinear coupling
 - (better) determine Higgs couplings to top and gluon:
 - break degeneracy of single Higgs production (DHP competitive with tth)
 - access new couplings: c_{2t}, c_{2g}, c_{2V}
- Better more energy or more Luminosity ?

- What can we learn from Double Higgs Production (DHP) ?
 - measure the Higgs trilinear coupling
 - (better) determine Higgs couplings to top and gluon:
 - break degeneracy of single Higgs production (DHP competitive with tth)
 - access new couplings: c_{2t}, c_{2g}, c_{2V}
- Better more energy or more Luminosity ?

for e⁺e⁻ machines

• $\sqrt{s}\gtrsim 1\,{
m TeV}$ necessary to measure the Higgs trilinear through VBF

Better more energy or more Luminosity (continued) ?

for pp machines

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

- sufficient statistics to use m_{hh} distribution, hence: better precision on energy-growing interactions, degeneracies resolved

• Higher energy implies:

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

- Higher energy implies:
 - larger luminosity (through PDFs) !

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

- Higher energy implies:
 - larger luminosity (through PDFs) !
 - larger forward coverage needed to fully exploit VBF, beneficial also for GF

Better more energy or more Luminosity (continued) ?

for pp machines

• Higher luminosity implies:

- Higher energy implies:
 - larger luminosity (through PDFs) !
 - larger forward coverage needed to fully exploit VBF, beneficial also for GF
 - jet substructure techniques are key to fully exploit the larger boost

Sensitivity on EFT coefficients

•	Three benchmark		LHC_{14}	HL-LHC	FCC_{100}
	scenarios considered:	\sqrt{s}	$14\mathrm{TeV}$	$14\mathrm{TeV}$	$100{\rm TeV}$
		Luminosity	$L = 300 \text{fb}^{-1}$	$L = 3 \mathrm{ab}^{-1}$	$L = 3 \mathrm{ab}^{-1}$

 Bayesian probability for parameters of interest constructed by fixing or marginalizing on the remaining ones

 Flat prior assumed on EFT coefficients except when they are constrained by single-Higgs data. We use ATLAS projections for 300fb⁻¹ and 3ab⁻¹
 ATLAS note ATL-PHYS-PUB-2013-014 (2013)

No theoretical uncertainties on signal or systematic errors included

ATLAS projections at high luminosity (ATL-PHYS-PUB-2013-014)

$\Delta \mu / \mu$	300 fb ⁻¹		3000 fb ⁻¹	
	All unc. No theory unc		All unc.	No theory unc.
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.15	0.12
(incl.)	0.47	0.45	0.19	0.15
(<i>ttH</i> -like)	0.73	0.72	0.26	0.23
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.22	0.16	0.19	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.12	0.06	0.10	0.04
(VH-like)	0.32	0.31	0.13	0.12
(<i>ttH</i> -like)	0.46	0.44	0.20	0.16
(VBF-like)	0.34	0.31	0.21	0.16
(ggF-like)	0.13	0.06	0.12	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.09	0.05
(VBF-like)	0.21	0.20	0.12	0.09
(+1j)	0.36	0.17	0.33	0.10
(+0j)	0.20	0.08	0.19	0.05
$H \rightarrow Z\gamma$ (incl.)	1.47	1.45	0.57	0.54
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.14	0.09	0.10	0.04
(VH-like)	0.77	0.77	0.26	0.25
(<i>ttH</i> -like)	0.55	0.54	0.21	0.17
(VBF-like)	0.47	0.43	0.21	0.15
(+1j)	0.37	0.14	0.37	0.05
(+0j)	0.22	0.12	0.20	0.05

0 0.2 0.4

Δμ/μ

_		$300{\rm fb}^{-1}$	$3 \mathrm{ab}^{-1}$
	$\sigma(\bar{c}_H)$	7.9%	5.4%
	$\sigma(\bar{c}_u)$	$5.9\%({ m w}/tar{t}h)$	$5.4\%({ m w}/t\overline{t}h)$
		$20\%(t\bar{t}h)$	$7.7\%(tar{t}h)$
	$\sigma(\bar{c}_d)$	6.3%	4.4%

Growth of Parton Luminosity with Energy

from: J. Rojo, talk at FCC workshop, CERN 27.1.2014

Our analysis at 14TeV in a nutshell

Simulation: Parton level + Showering + Hadronization events clustered into R=0.5 anti-k_T jets

> Signal: our own code at 1-loop Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included: $b\overline{b}\gamma\gamma$, $jj\gamma\gamma$ (non resonant) $b\bar{b}h$, Zh, $t\bar{t}h$ (resonant)

Our analysis at 14TeV in a nutshell

Simulation:

Parton level + Showering + Hadronization events clustered into R=0.5 anti-k_T jets

Signal: our own code at 1-loop

Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included:

Matched up to 1 extra parton at the ME level

Our analysis at 14TeV in a nutshell

Simulation:

Parton level + Showering + Hadronization events clustered into R=0.5 anti-k_T jets

Signal: our own code at 1-loop

Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included:

Matched up to 1 extra parton at the ME level

Found large k-factor for $bb\gamma\gamma:\ k\!\sim\!2$

Mainly from real emissions, full NLO simulation with MadGraph5_aMC@NLO gives similar cross section (virtual corrections small)

Our analysis in a nutshell

Simulation:

Parton level + Showering + Hadronization events clustered into R=0.5 anti-k_T jets

Signal: our own code at 1-loop

Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included:

No matching, cross section rescaled to NLO value

Our analysis in a nutshell

Simulation:

Parton level + Showering + Hadronization events clustered into R=0.5 anti- k_T jets

Signal: our own code at 1-loop

Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included:

No matching, cross section rescaled to NLO value

not included: fake b-jets from charm, fake photons

Our analysis in a nutshell

Simulation:

Parton level + Showering + Hadronization events clustered into R=0.5 anti-k_T jets

Signal: our own code at 1-loop

Backgrounds: MadGraph5_aMC@NLO (working in LO mode)

Backgrounds included:

No matching, cross section rescaled to NLO value

not included: fake b-jets from charm, fake photons

Selected events with:

2 b-tagged jets + 2 photons

efficiencies: $\epsilon_b = 0.7, \ \epsilon_{j \rightarrow b} = 0.01, \ \epsilon_{\gamma} = 0.8$

Kinematic selection for the 14TeV LHC:

basic object reconstruction:

 $p_T(j) > 25 \,\mathrm{GeV}, \quad |\eta(j)| < 2.5$ veto on isolated leptons with $p_T(\gamma) > 25 \,\mathrm{GeV}, \quad |\eta(\gamma)| < 2.5$ $p_T(l) > 20 \,\mathrm{GeV}, \quad |\eta(l)| < 2.5$

Kinematic selection for the 14TeV LHC:

basic object reconstruction:	$p_T(j) > 25 \mathrm{GeV},$ $p_T(\gamma) > 25 \mathrm{GeV},$	$ \eta(j) < 2.5$ $ \eta(\gamma) < 2.5$	veto on isolated leptons with $p_T(l) > 20 \text{GeV}, \eta(l) < 2.5$
first selection:	$p_{T>}(b), p_{T>}(\gamma) >$ $p_{T<}(b), p_{T<}(\gamma) >$	50 GeV 30 GeV	$\begin{array}{l} 60 < m_{b\bar{b}}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \\ \\ 60 < m_{\gamma\gamma}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \end{array}$

Kinematic selection for the 14TeV LHC:

basic object reconstruction:

 $p_T(j) > 25 \,\text{GeV}, \quad |\eta(j)| < 2.5$ $p_T(\gamma) > 25 \,\text{GeV}, \quad |\eta(\gamma)| < 2.5$

veto on isolated leptons with $p_T(l) > 20 \,\text{GeV}, \quad |\eta(l)| < 2.5$

first selection:

 $p_{T>}(b), p_{T>}(\gamma) > 50 \text{ GeV}$ $p_{T<}(b), p_{T<}(\gamma) > 30 \text{ GeV}$

 $60 < m_{b\bar{b}}^{\rm reco} < 200 \,\,{\rm GeV}$ $60 < m_{\gamma\gamma}^{\rm reco} < 200 \,\,{\rm GeV}$

Kinematic selection for the 14TeV LHC:

basic object reconstruction:	$p_T(j) > 25 \text{GeV}, \eta(j) < 2.5$ $p_T(\gamma) > 25 \text{GeV}, \eta(\gamma) < 2.5$	veto on isolated leptons with $p_T(l) > 20 \mathrm{GeV}, \eta(l) < 2.5$
first selection:	$p_{T>}(b), p_{T>}(\gamma) > 50 \text{ GeV}$ $p_{T<}(b), p_{T<}(\gamma) > 30 \text{ GeV}$	$\begin{array}{l} 60 < m_{b\bar{b}}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \\ 60 < m_{\gamma\gamma}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \end{array}$

angular cuts:

 $\Delta R(b,b) < 2 \ , \quad \Delta R(\gamma,\gamma) < 2 \ , \quad \Delta R(b,\gamma) > 1.5$

Kinematic selection for the 14TeV LHC:

basic object reconstruction:	$p_T(j) > 25 \text{GeV}, \eta(j) < 2.5$ $p_T(\gamma) > 25 \text{GeV}, \eta(\gamma) < 2.5$	veto on isolated leptons with $p_T(l) > 20 \text{GeV}, \eta(l) < 2.5$
first selection:	$p_{T>}(b), p_{T>}(\gamma) > 50 \text{ GeV}$ $p_{T<}(b), p_{T<}(\gamma) > 30 \text{ GeV}$	$\begin{array}{l} 60 < m_{b\bar{b}}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \\ 60 < m_{\gamma\gamma}^{\mathrm{reco}} < 200 \ \mathrm{GeV} \end{array}$
angular cuts:	$\Delta R(b,b) < 2 \;, \Delta R(\gamma,\gamma) < 2 \;,$	$\Delta R(b,\gamma) > 1.5$
Higgs reconstruction:	$105 < m_{b\bar{b}}^{ m reco} < 145 { m ~GeV}, 120 < 120$	$m_{\gamma\gamma}^{ m reco} < 130 { m ~GeV}$

Number of events (SM signal and background) with L=3ab⁻¹

$\sqrt{s} = 14 \text{ TeV}$	hh	$b\overline{b}\gamma\gamma$	$\gamma\gamma j j$	$t\bar{t}h$	$b\overline{b}h$	Zh
After first selection	25.8	6919	684	130	7.2	25.4
After angular cuts	17.8	1274	104	29	1.2	15.8
After Higgs reco.	12.8	24.2	2.21	9.9	0.40	0.41

Subdividing events in bins of m_{hh} (6 categories)

$m_{hh}^{ m reco} \ [{ m GeV}]$	250 - 400	400 - 550	550 - 700	700 - 850	850 - 1000	1000-
hh	2.14	6.34	2.86	0.99	0.33	0.17
$\gamma\gamma b\overline{b}$	7.69	10.1	3.35	1.38	1.18	0.59
$\gamma\gamma j j$	0.66	0.95	0.31	0.16	0.08	0.045
$t ar{t} h$	3.33	4.53	1.41	0.41	0.16	0.043
$b\overline{b}h$	0.20	0.16	0.03	0.0054	0.0022	0.00054
Zh	0.13	0.19	0.067	0.021	0.009	0.0009

Only modest improvement of signal significance from veto on extra hadronic activity

Examples:

$$N(jets) < 4$$
 removes 80% of $t ar{t} h$ keeping 70% of signal

 $N(W_{had}) = 0$ removes 50% of $t\bar{t}h$ keeping 90% of signal

