MonteCarlos for HH production in the SM

Marco Zaro
LPTHE - UPMC
HPPC20I5 Workshop @ Mainz

Definition

- MonteCarlo: a (public) tool that provides differential distributions for any observable or unweighted events, beyond LO/lowest-multiplicity

Beyond total rates

- More than total rates needed for realistic pheno studies
- Selection/acceptance cuts are imposed on particles in the final state
- One may want to look to specific differential distributions
- Accurate (i.e. including QCD effects beyond LO) and realistic (i.e. matched with PS) fully differential predictions are necessary!

What is on the market?

Production channels:

VHH tot xsec also known at NNLO (Baglio, Djouadi, Grober, Muhlleitner, Quevillon, Spira, arXiv:I2|2:558।)

MadGraph5_aMC@NLO

J.Alwall, R. Frederix, S. Frixione, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, V. Hirschi, MZ arXiv:I405.030|

HH differential observables

$\lambda_{H H H}$ dependence in $g g \rightarrow H H$

$\lambda_{\text {ннн }}$ dependence in VBF

$\lambda_{H H H}$ dependence in $t \bar{t} H H$

IIAI SORBONNE UNIVERSITÉS

$\lambda_{\text {vvнн }}$ dependence inVBF

- λ_{VVHH} changed in a custodial way (same scaling factor for W and Z)

$\lambda_{\text {vVHH }}$ dependence in VBF

- λ_{VVHH} changed in a custodial way (same scaling factor for W and Z)

HH in MadGraph5_aMC@NLO

- All sub-leading HH production modes can be simulated automatically in MadGraph5_aMC@NLO at NLO+PS
- $\mathrm{gg} \rightarrow \mathrm{HH}$ needs special care:
- The top-quark effective theory breaks down for HH production

Dolan, Englert, Spannowsky, arXiv: I 206.500 I
Dolan, Englert, Greiner, Spannowsky, arXiv:I3I0.1084

HH in MadGraph5_aMC@NLO

- All sub-leading HH production modes can be simulated automatically in MadGraph5_aMC@NLO at NLO+PS
- $\mathrm{gg} \rightarrow \mathrm{HH}$ needs special care:
- The top-quark effective theory breaks down for HH production

Dolan, Englert, Spannowsky, arXiv: I 206.500 I

Dolan, Englert, Greiner, Spannowsky, arXiv: I 3 I 0.1084 | | effective theory $\cdots-\cdots \cdots$ |
| ---: | :--- |
| full theory | |

Top mass effects must be included

Inclusion of top mass effects

(see also afternoon talks)

MLM merging

Li, Yan, Zhao, arXiv: I 3 I 2.3830
Maierhofer, Papaefstathiou, arXiv:I40I. 0007

MLM merging
Li, Yan, Zhao, arXiv: I 3 I 2.3830
Maierhofer, Papaefstathiou, arXiv:I40I. 0007

- Include exact one-loop born and real-emission ME

MLM merging

Li, Yan, Zhao, arXiv: I 3 I 2.3830
Maierhofer, Papaefstathiou, arXiv:I40I. 0007

- Include exact one-loop born and real-emission ME
- Use a merging scale (arbitrary) to separate soft and hard emissions (shower vs ME driven)

－Include exact one－loop born and real－emission ME
－Use a merging scale（arbitrary）to separate soft and hard emissions（shower vs ME driven）
－Improved description of shapes，but formally LO

$g g \rightarrow H H @ N L O:$ HPAIR

Dawson, Dittmaier, Spira, arXiv:hep-ph/9805244

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

$\mathrm{gg} \rightarrow \mathrm{HH} @ \mathrm{NLO}:$ HPAIR

Dawson, Dittmaier, Spira, arXiv:hep-ph/9805244

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-ioop born matrix-element

$g g \rightarrow H H @ N L O:$ HPAIR

Dawson, Dittmaier, Spira, arXiv:hep-ph/9805244

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-ioop born matrix-element
- Approximate real and virtuals with the born-rescaled EFT

$g g \rightarrow \mathrm{HH} @ \mathrm{NLO}:$ HPAIR

Dawson, Dittmaier, Spira, arXiv:hep-ph/9805244

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-ioop born matrix-element
- Approximate real and virtuals with the born-rescaled EFT
- Only inclusive NLO cross-section

$$
\begin{aligned}
\sigma_{\mathrm{LO}}= & \int_{\tau_{0}}^{1} d \tau \frac{d \mathcal{L}^{g g}}{d \tau} \hat{\sigma}_{\mathrm{LO}}\left(Q^{2}=\tau s\right) \\
\Delta \sigma_{\mathrm{virt}}= & \frac{\alpha_{s}(\mu)}{\pi} \int_{\tau_{0}}^{1} d \tau \frac{d \mathcal{L}^{g g}}{d \tau} \hat{\sigma}_{\mathrm{LO}}\left(Q^{2}=\tau s\right) C \\
\Delta \sigma_{g g}= & \frac{\alpha_{s}(\mu)}{\pi} \int_{\tau_{0}}^{1} d \tau \frac{d \mathcal{L}^{g g}}{d \tau} \int_{\tau_{0} / \tau}^{1} \frac{d z}{z} \hat{\sigma}_{\mathrm{LO}}\left(Q^{2}=z \tau s\right)\left\{-z P_{g g}(z) \log \frac{M^{2}}{\tau s}\right. \\
& \quad-\frac{11}{2}(1-z)^{3}+6\left[1+z^{4}+(1-z)^{4}\right]\left(\frac{\log (1-z)}{1-z}\right)
\end{aligned}
$$

$g g \rightarrow \mathrm{HH} @ N L O$ with aMC@NLO

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

$g g \rightarrow \mathrm{HH} @ N L O$ with aMC@NLO

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-loop born and real emission ME

gg $\rightarrow \mathrm{HH} @ \mathrm{NLO}$ with aMC@NLO

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-loop born and real emission ME
- Two-loop virtual ME is currently unknown
- Approximate with the born-rescaled EFT

$g g \rightarrow \mathrm{HH} @ N L O$ with aMC@NLO

$$
d \sigma_{N L O}^{n}=d \sigma_{L O}^{n}+d \sigma_{V}^{n}+\int d \Phi_{1} d \sigma_{R}^{n+1}
$$

- Include exact one-loop born and real emission ME
- Two-loop virtual ME is currently unknown
- Approximate with the born-rescaled EFT
- In practice m_{t} effects included by reweighting (straightforward in the (a)MC@NLO formalism)

$$
\begin{array}{rlrl}
d \sigma^{(\mathbb{H})} & =d \phi_{n+1}\left(\mathcal{R}-\mathcal{C}_{M C}\right), & & \text { reweigh with Born } \\
d \sigma^{(\mathbb{S})} & =d \phi_{n+1}\left[\left(\mathcal{B}+\mathcal{V}+\mathcal{C}^{i n t}\right) \frac{d \phi_{n}}{d \phi_{n+1}}+\left(\mathcal{C}_{M C}-\mathcal{C}\right)\right] & \text { reweigh with real }
\end{array}
$$

aMC@NLO vs merging

- Disclaimer: not tuned comparison
- Different scales ($\mathrm{m}_{\mathrm{r}} / 2$ vs $\hat{\text { s. }}$)
- Same shower (Herwig++) but different shower scales

Thoughts and open questions \#I

- We can simulate quite precisely (NLO+PS) all production channels. Will we ever observe them all?
$\bullet \mathrm{gg} \rightarrow \mathrm{HH}$: inclusion of top mass effects is crucial for meaningful differential distributions. Still, exact NLO is missing
- How good/bad is the aMC@NLO approximation?
- Quite good ($<5 \%$) if there were no box
- For loop-experts: how far is the exact double box?

Thoughts and open questions \#2

- LO-merging: do we need $\mathrm{HH}+2 \mathrm{j}$?
- Do we need (Can we compute) EW corrections for $\mathrm{gg} \rightarrow \mathrm{HH}$?
- Taking "inspiration" from $\mathrm{gg} \rightarrow \mathrm{H}$ (triangle vs $\sigma\left(\mathrm{m}_{\mathrm{H}}\right)$) may be misleading

Actis, Passarino, Sturm,Uccirati, 0803.I30I (gg $\rightarrow \mathrm{H})$

- $\sigma\left(\mathrm{m}_{\mathrm{H}}\right)$ has no Sudakov enhancement

