Some questions about *ep* scattering and the proton radius

Egle Tomasi-Gustafsson CEA, IRFU, DPhN et Université Paris-Saclay, France

In collaboration with: Simone Pacetti (INFN & Università di Perugia, Italia)

<u>2205.09171</u> [nucl-th]; Eur.Phys.J.A 57 (2021) 2, 72; Eur.Phys.J.A 56 (2020) 3,

PREN 2022, June 20-23, 2022

Questions

- *Fact: different analysis (choice of data, range, method of analysis..) lead to different results: 'small' (0.84 fm) or 'large' (0.87 fm) radius*
- limit to small Q^2 of a (logarithmic) derivative: (the error blows up - Δq^2 at the denominator)
- the scattering formalism is derived for a two-body process: extrapolation to 'compound nucleus' ? (electroproduction versus photoproduction)
- at $Q^2 < 10^{-3}$ GeV², the wavelength of the photon > 15 fm

Kinematical variable Q2

The elastic *ep* cross section diverges as $1/(Q^2)^2$ when $Q^2 -> 0$

When $Q^2 > 0$? $Q^2 = -4EE'sin^2(\theta/2)$ [neglects lepton mass]

- E'=0: capture process, compound hydrogen atom -> <u>the scattering formalism does not apply</u>
- 2) $\theta=0$: the incident electron does not 'see' the target

In general the extrapolation of electron to photon induced processes is not straightforward

Mainz ep elastic scattering

 $\mathcal{F}_E(Q^2)$ 10 $10^{\overline{-2}}$ 10^{-1} -3 10 $Q^2 \; (\mathrm{GeV}^2)$

<u>Spline:</u> Q2>0.0005 GeV² G_E from a global fit of $s(Q^2, e)$, based on a pre-defined function

<u>Rosenbluth:</u> Q2>0.0152 GeV² G_E and G_M from the slope and intercept of s_{red} (e), at fixed (Q²,e). (larger errors, Q² interval)

<u>The choice of a pre-defined function imposes</u> <u>serious constraints to the radius through the derivative!</u>

Mainz & CLAS11

Mainz & CLAS11 Constrained Linear Fit

Mainz & CLAS11- at first sight

Rough estimation from a constrained linear fit

$$\left\langle r_{E/M}^{2}\right\rangle =-\frac{6\hbar^{2}}{G_{E/M}\left(0\right)}\left.\frac{\mathrm{d}G_{E/M}\left(Q^{2}\right)}{\mathrm{d}Q^{2}}\right|_{Q^{2}=0}$$

 $R_E = 0.81 \pm 0.08$ $R_E = 0.82 \pm 0.09$

and from Mainz data: R_E =0.7 ± 0.02

Mainz ep elastic scattering

Cea

Mainz ep elastic scattering-derivative

Ratio of relative errors

Mainz Data – Fitting Procedure

- 4 sets of data:
 - 2 G_E data: Rosenbluth and Spline
 - 2 discrete derivatives

$$\left\{\overline{Q}_{j}^{2S}, \Delta G_{E,j}^{S}, \delta \Delta G_{E,j}^{S}\right\}_{j=1}^{N_{S}-1} \left\{\overline{Q}_{j}^{2R}, \Delta G_{E,j}^{R}, \delta \Delta G_{E,j}^{R}\right\}_{j=1}^{N_{R}-1}$$

- 4 Q² ranges,
- polynomes up to 12 degree

Radius – Fitting discrete derivative dG_E (R &S)

Radius – Fitting $G_E \& dG_E (R \& S)$

Rosenbluth

Spline

Stability of the results Very small errors Very small χ^2

Functions – $dG_E(R \& S)$

Rosenbluth

Spline

Cea

14

Functions – Fitting $G_E \& dG_E(R \& S)$

<u>Spline</u>

Large errors Error bands on the data Stability of the results Very small $\chi 2$

Mainz – Fitting Procedure

		Rosenbluth		Spline	
		$\chi^2/N_{\rm d.o.f.}$	$R_E (\mathrm{fm})$	$\chi^2/N_{\rm d.o.f.}$	$R_E (\mathrm{fm})$
$Q^2 \le 0.3 \text{ GeV}^2$	dG_E/dQ^2	1.50	0.9411 ± 0.2310	0.19	0.8754 ± 0.0059
	$G_E \cup dG_E/dQ^2$	1.55	1.0088 ± 0.0809	0.11	0.8749 ± 0.0026
$Q^2 \le 0.4 \ { m GeV}^2$	dG_E/dQ^2	1.43	0.9568 ± 0.1309	0.14	0.8749 ± 0.0048
	$G_E \cup dG_E/dQ^2$	1.60	0.8070 ± 0.0164	0.09	0.8751 ± 0.0023
$Q^2 \le 0.5 \text{ GeV}^2$	dG_E/dQ^2	1.46	1.0681 ± 0.1848	0.13	0.8754 ± 0.0047
	$G_E \cup dG_E/dQ^2$	1.82	0.8786 ± 0.0229	0.09	0.8756 ± 0.0020
$Q^2 \le 0.6 \ { m GeV}^2$	dG_E/dQ^2	1.45	0.9927 ± 0.1453	0.12	0.8763 ± 0.0046
	$G_E \cup dG_E/dQ^2$	1.76	0.8811 ± 0.0253	0.10	0.8761 ± 0.0019

- S- Errors << R-data (x 5-10)
- S- Values very stable, R-values depend on fitting scheme
- Discrepancy on the central R- and S- values
- Very small $\chi 2$ and stability of S-results derive from the large constraint due to the pre-imposed function

Our final values from Mainz data Q²<0.6 GeV²

<u>Rosenbluth</u>	<u>Spline</u>	
$R_E^{R,1C} = 0.99 \pm 0.15 \mathrm{fm},$	$R_E^{S,1C} = 0.876 \pm 0.005 \mathrm{fm},$	
$R_E^{R,2C} = 0.88 \pm 0.03 \mathrm{fm},$	$R_E^{S,2C} = 0.876 \pm 0.002 \mathrm{fm}$	
1C: derivative only		

2C: 1 constraint -> derivative and radius

SL- the most precise ruler

Proton radius

Data from Mainz, PRC 90, 015206 (2014)

Proton radius

Data from Mainz, CLAS...

Cea

Conclusions

- at Q²<<10⁻³ GeV², the wavelength of the photon is much too large to 'see' dimensions of fractions of fm
- the scattering formalism is derived for a two-body process: the extrapolation to 'compound nucleus' is dangerous
- limit of a (logarithmic) derivative: the error blows up $(\Delta q^2 at the denominator)$

Fact: *the extrapolation* for different series of data, for different functions, for different Q² ranges *gives different results*

The error from ep elastic scattering may be much larger !

Mainz & CLAS

Mainz & CLAS

R(MAINZ) = (0.879+-0.005stat +-0.004syst+-0.002model+-0.004group) fm. R(CLAS) = (0.831+-0.007stat +- 0.012syst)

Mainz & CLAS (summary)

R(MAINZ) = (0.879 + -0.005 stat + -0.004 syst + -0.002 model + -0.004 group) fm.

R(*CLAS*) = (0.831+-0.007stat +- 0.012syst)

