PREN 2022

Positronium spectroscopy of the positronium n=2 fine structure Tamara J. Babij

Department of Physics and Astronomy University College London

UCL Ps Spectroscopy

- David Cassidy
- Stephen Hogan
- Tamara Babij
- Ross Sheldon
- Sam Reeder
- Lokesh Gurung

With thanks to:

- Jesús Pérez-Ríos
- Arthur Matveev
- Lianna Akopyan
- Gleb Gribakin
- Allen Mills, Jr.
- Greg Adkins
- Eric Hessels
- Laszlo Liszkay

Outline

- Positronium
- Previous experiments
- UCL positron beamline
- Measurement
- Experiments:
- Experiment 1: waveguide with large chamber + FEM simulations
- Experiment 2: Horn antenna
- Experiment 3: Waveguide with small chamber
- Conclusions

Positronium (Ps)

- Ps: positron bound to electron via Coulomb force
- Ps: purely leptonic, should be described by QED
- Reduced mass: $Ps = m_e/2$ (H = 0.9995m_e)
- Bohr energy levels are roughly half that of hydrogen
- The fine structure is different to hydrogen (spin-spin, annihilation)
- Should be able to calculate energy levels and decay rates to high precision
- n = 2 fine structure intervals have a theoretical uncertainty of 80 kHz

Previous Experiments:

electrostatic

lens system

lightguide

Pb-shielding

• Previous measurements are from 1993

- FIG. 1. Interaction region of Ps^{*} atoms (n=2) and microwave radiation.
- Previous measurements have uncertainties ranging from 1.4 MHz to 4 MHz.
- This is much larger than the theoretical uncertainty

Hagena et. Al. Phys. Rev. Lett. 71 2887 (1993)

n = 2 triple Ps levels

- Due to polarization of microwave guide radiation, excite $\Delta m_j = 0$ transitions
- Need to make measurement in a magnetic field in order for positron confinement, we measure a zeeman shifted lineshape

UCL Positron Beamline

UCL

Positronium excitation

Gurung et. Al. Phys. Rev. Lett. 125 073002 (2020)

2³S₁ Production

- Ps atoms irradiated with UV dye laser (243 nm)
- Laser excitation performed in electric field to Stark mix states with S and P character (2³P_J+2³S₁)
- Turning off the electric field causes states to adiabatically evolve into long lived 2³S₁
- These Ps atoms then fly through the microwave guide

Microwave region

• Rectangular waveguides used, 3 configurations:

Waveguide	Dimensions (mm)	Range (GHz)	Cutoff (GHz)
WR-51(v ₀)	$12.95\times 6.48\times 160$	15-22	11.58
WR-75 (v_1)	$19.05 \times 9.53 \times 160$	10-15	7.87
WR-112 (ν_2)	$28.5\times12.6\times160$	7-10	5.26

- Drive the 23S1 -> 23PJ $(\nu_{\rm J})$ transitions
- Ps admitted through high transmission (95%) tungsten mesh
- Microwave in TE₁₀ mode
- Kept constant power at all frequencies

Ps Transitions and detection

- µ-waves drive transition to the 2³P_J states
- This state has a mean radiative lifetime of 3.2 ns
- Spontaneous radiative decay may proceed via ΔMJ = 0, and ΔMJ = +/- 1
- These atoms will decay to the 1³S₁ ground state
- Then self-annihilation will occur with a mean lifetime of 142 ns

Ps Detection

- Annihilation gamma rays detected by LYSO detectors placed around chamber
- Generates a lifetime spectra
- LYSO: 40 ns response time and high quantum efficiency
- Connected to a high speed oscilloscope

Single Shot Positronium Annihilation Spectroscopy (SSPALS)

 Delayed fraction (f_d): given by the changes in the spectra (events happening later in time)

 $\mathbf{f}_{d} = \int_{B}^{C} V(t) \Big/ \int_{A}^{C} V(t),$

 $S = (f_d(off) - f_d(on)) / f_d(off)$

Different lifetime spectra for different processes

Microwave Signal

- Laser on + μ -waves off: Background signal in which the 2^3S_1 atoms proceed through chamber until selfannihilation ($\tau = 1.1 \ \mu s$) or collision with chamber wall, signal is late compared to ground state
- Laser on + μ -waves on: $2^{3}S_{1} \rightarrow 2^{3}P_{2,}$ these then transition to ground state (T = 3.2 ns) -> $1^{3}S_{1}$ (T = 142 ns)

Experiment 1: waveguide in large chamber

Microwave Signal - Lineshape

- By scanning across the μ-wave frequency, ν, can produce a lineshape
- Fit a Lorentzian
- At 32 G: $\nu_0{=}$ 18500.65 +/- 1.28 MHz
- Theory at 32 G: 18498.88 +/- 0.08 MHz
- Linewidth: ~60 MHz

UCL

Lineshapes

- See asymmetry in ν_1 and ν_2 lineshapes
- Fit Fano function
- This gives different directions of asymmetry
- Cannot really extract meaningful centroid value
- v_0 is not asymmetric (large q value for Fano fit)

Asymmetry

- Could this be due to driving multiple transitions?
- Asymmetry was consistent for different values of magnetic field

Positronium (Ps)

- The Zeeman effect is quadratic
- Fit a quadratic to the centroid values at each magnetic field (aB²+c)
- Extrapolate to zero field in order to get zero field transition value
- Compare Fano fit to Lorentz fit: both are shifted from theory

Systematic Error

- Use of 50 meV atoms vs (1993) 2 eV beam can eliminate the following systematics: Zeeman and motional Stark effects eliminated by extrapolation
- Lower microwave power used < + 10 kHzac Stark shift
- Stray electric fields cause Stark shifts, also < +10 kHz
- Largest source of systematic error: possible laser and waveguide misalignment which causes a Doppler shift. Estimate for a misalignment of +/- 2° causes +/- 100, 150, and 215 kHz for $v_{2,}v_{1}$ and v_{0}

UCI

Final Result

- Systematics, quantum interference effects not enough to account for difference
- Significant improvement in precision on previous measurements (1993)

Conclusions, first iteration of Microwave experiment

- Saw asymmetric lineshapes
- Could not extract meaningful centroid values
- Fano and Lorentz fits both gave values shifted from theory
- v_0 was not asymmetric, (Fano and Lorentz were equivalent), could extract a zero field transition frequency of 18501.02 +/- 0.66 MHz
- This is shifted from the theoretical value of 18498.25 +/- 0.08 MHz
- This gives a difference of 2.77 MHz, which corresponds to 4.2 σ

FEM microwave simulations

 Used CST studio suite software to simulate the microwave field in chamber

FEM microwave simulations

- The quantum state evolution of the atoms is computed using the masterequation approach
- These lineshapes consider the simulated fields within the waveguides
- Asymmetric behaviour seems to be explained by reflections of the microwave fields within the chamber

Experiment 2: Horn Antenna

Experiment 2: Horn Antenna

- Horn is external to chamber
- Drives the $2^{3}S_{1-}^{2}P_{2}^{3}$ transition
- Microwave radiation should fill chamber – drives transition in free space

Experiment 2: Horn Antenna

• Microwave field is susceptible to reflections of the field due to chamber

(a)

 $\theta_H = -10^{\circ}$

Lorentzian Fit: $v_R = 8618.77 \pm 1.21 \text{ MHz}$

Data

 $\Gamma = 58.42 \pm 3.48 \text{ MHz}$

Experiment 2: Horn Antenna

- Took lineshapes for multiple angles
- The centroid depended on angle
- Not suitable for precision measurements

- Two antennas, one at either side
- Can reverse direction of microwaves

- This new data is not asymmetric
- Currently being taken

Conclusions – 1st experiment

- Have measured v_0, v_1 , and v_2 transitions in a 6 way cross
- v_1 and v_2 : Asymmetric lineshapes
- v_0 : Significant disagreement with theory
- Simulations suggested that asymmetric lineshapes was due to reflections in the chamber

Conclusions – 2nd experiment

- Measured v_2 interval using a horn antenna
- Horn antenna was external to vacuum chamber
- Generated microwave radiation in free space
- Produced symmetric lines, but transition frequency was found to be dependent on angle of the antenna relative to chamber

Conclusions – 3rd experiment

- Modified vacuum chamber design to limit microwave relfections in chamber
- Measured v_2 interval using a waveguide
- No asymmetric lineshapes
- Final value: 8626.84 +/- 0.44 MHz
- Theory: 8626.71 +/- 0.08 MHz

Future experiments

- Eliminate Zeeman shift and measure at zero field requires positronium beam to be extracted outside of confining field for positron beam
- Use Rydberg helium to characterise waveguides (stray fields)
- Use Ramsey spectroscopy (SOF/FOSOF) methods

Thanks for listening!