

Measuring Hadron Charge Radii with AMBER

18.5.2022

Stephan Paul Technische Universität München and CERN

> June 2022 Paris

Stephan Paul

Proton Radius Measurements

Proton Radius Measurements

Alternative techniques

- MUSE: low energy μ and e beams of both polarities
- COMPASS: high energy μ beams of both polarities (x 500 beam energy of MUSE!!)
 - beam energy irrelevant.. Q² is important variable (see details later)
 - COMPASS has demonstrated excellent Q² resolution with Primakoff reactions
 - Coulomb peak from πA scattering $\pi + Z$ -
 - well performing spectrometer and well understood apparatus

$$\rightarrow \pi + \gamma + Z_{recoil} - \Delta Q^2 \approx 5 \times 10^{-4} (GeV/c)^2$$

Proposal of a New Measurement

$$< r_p^2 > = -6\hbar^2 \cdot \left. \frac{dG_E(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \qquad \frac{\mathrm{d}_{\mathcal{O}}^{\mu p \to \mu p}}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4} R\left(\frac{\epsilon G_E^2 + \tau G_M^2}{Q^4} \right)$$

- Measure close to $Q^2 \rightarrow 0$
- \rightarrow suppress influences from higher order terms (fit)
- \rightarrow high-energy $\mathcal{O}(10 100 \text{ GeV}) \text{Cross-section} \propto (G_E^P(Q^2))$
- Sufficient Q² range to determine radius:
- \rightarrow Aimed precision better 1 %
- \rightarrow Aimed Q²-range: 0.001 0.04 (GeV/c)²
- Below $Q^2 = 0.001 \text{ GeV}^2/c^2$:
- \rightarrow Deviation from point-like proton level of $\mathcal{O}(10^{-3})$
- \rightarrow systematic effects e.g. Q² resolution
- Above $Q^2 = 0.04 \ (GeV/c)^2$
- \rightarrow Non-linearity of the cross section
- \rightarrow Predominant source of uncertainty

Stephan Paul

Beamline for High-Energy Muon Beams

M2 beamline at CERN's SPS North Area of CERN : M2 beamline provides a unique high-intensity muon beam

- Muon momenta up to 200 GeV/c flux up to 107 µ/s
- PRM: beam momentum of 100 GeV/c and 2 MHz beam rate
- AMBER as successor at COMPASS location starting from 2021 with the first pilot run in October 2021
 → broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams

/s

The AMBER µP measurement

- Choose scattering of high energy muons o gaseous hydrogen
- k high energy muons have little multiple scattering good measurement of scattering angle high energy muons do not radiate (little)
- P muon energy loss very small - basically no useable information from muon momentum \Rightarrow need to measure recoil proton

low energy recoil protons carry information about Q² \Rightarrow measure their energy via an active target

keep the advantages and circumvent the disadvantage by excellent instrumentation

Proton Radius from Muon-Proton Elastic Scattering at High Energy

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂
- goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$
- Precision on the proton radius ~0.01 fm

Proton Radius from Muon-Proton Elastic Scattering at High Energy

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂
- Precision on the proton radius ~0.01 fm

• goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$

Proton Radius from Muon-Proton Elastic Scattering at High Energy

- 100 GeV muon beam
- Active-target TPC with high-pressure H₂
- Precision on the proton radius ~0.01 fm

• goal: 70 million elastic scattering events in the range $10^{-3} < Q^2 < 4 \cdot 10^{-2} (GeV/c)^2$

Layout of Proton-Radius Measurement in 2023

Measurement of low-Q² elastic-scattering coincidence of low-energy recoil-protons and scattered muons at small scattering-angles.

- TPC as an active target to measure recoil protons
- Silicon pixel detectors (ALPIDE) along long leaver-arm measure small scattering-angles
- Scintillating fibers for timing and tracking (10x10 cm²)
- \rightarrow Unified Tracking Station (UTS)
- New free-running DAQ and spectrometer upgrades

- AMBER spectrometer:
- \rightarrow Momentum measurement of scattered muon
- \rightarrow Radiative events using electromagnetic calorimeter
- \rightarrow Muon identification with muon filter and hodoscope 22.6.2022

Detection of Low-Q² Recoil-Protons

Pressurised hydrogen active-target TPC Direct recoil-proton energy measurement with active target.

- 4 x 40 cm drift cells each with segmented readout
- Direct energy measurement without amplification (deposited energy through ionization of H_2)
- Segmented readout plane:
- \rightarrow Spacial and angular resolution (both θ and ϕ)
- \rightarrow Beam induced ionisation noise reduced
- use low noise preamps to collect signal
- Integration (drift) time of TPC: 68 μs

 \rightarrow limits beam intensity to $2 \cdot 10^6/s$

Detection of Low-Q² Recoil-Protons

Pressurised hydrogen active-target TPC Direct recoil-proton momentum measurement with active target

- Requires proton to stop in target¹
 - Q²-range affects range of recoil proton: \rightarrow Recoil-proton ranges of 2 - 300 mm (and more)
- large Q²-range requires two pressure settings:
- \rightarrow 20 bar (0.0025 GeV²/c² < Q² < 0.04 GeV²/c²)
- \rightarrow 4 bar (Q² < 0.0025 GeV²/c²)
- \rightarrow Two overlapping datasets
- \rightarrow Low-pressure region to correct noise at small Q2-events
- \rightarrow Relative energy resolution: $\sigma(E_{kin}) / E_{kin} < 0.06$ required for aimed precision < 1 %

¹ stopping actually not quite necessary if set-in of Bragg curve in differential energy loss can be detected

d more) gs:

all Q²-events 06 required for aimed precision < 1 %

Control of Systematic Effects

Absolute calibration, inefficiencies, and background Understanding of systematic effects is crucial for precision

- Absolute calibration of the TPC recoil-proton energy-scale
- Inefficiencies in recoil-proton measurement
- Cross check of TPC measurement with (μ, μ')

Redundant measurement to control systematics → measurement of scattered muon kinematics

- Lepton-proton scattering accompanied by bremsstrahlung
 - \rightarrow NLO process on $\mathcal{O}(10^{-4})$ level for $E_{\gamma} > 500 \text{ MeV}$
 - \rightarrow distortion of Q²-spectrum
- $\varepsilon = 1 \rightarrow$ no contribution of 2γ
 - Use of *AMBER* spectrometer tracking and calorimetry \rightarrow understanding of background
 - \rightarrow muon momentum measurement

Feasibility test-measurement in 2018

Using a simple setup with TPC, silicon tracking-detectors and beam trigger.

- General issue: combination of "slow" TPC with "fast" tracking detectors
- Goal: Proof-of-principle working setup as in this "simple" manner
- Synchronisation of two dedicated DAQ systems based on common timestamp
- Association of muon tracks with recoil-proton events in the TPC

- Beam-noise studies in a high-rate muon beam with this active target
- Setup made use of parasitic COMPASS beam at a downstream test location

Stephan Paul

Proton Radius Measurement Key results from first feasibility study 2018

Resolution along beam of muon scattering in hydrogen (without using TPC information)

beam energy from angles alone

22.6.2022

Reconstruction of elastic muon-electron scattering and

2021 IKAR TPC performance

Linear increase of noise with beam intensity lacksquare

22.6.2022

Ongoing: alpha calibration (~40 keV energy resolution) ullet

Radiative corrections for electron and muon scattering

QED radiative corrections

• for soft bremsstrahlung photon energies $(E_{\gamma}/E_{beam} \sim 0.01)$, QED radiative corrections amount to \sim 15-20% for electrons, and to \sim 1.5% for muons • important contribution to the uncertainty of elastic scattering intensities: change of this correction over the kinematic range of interest

Proton Radius Measurements

What About the Target TPC ?

- New target TPC being developed together with GSI/PNPI St. Petersburg
- owing to political and financial issues foresee usage of old IKAR TPC in 2022 (2023?)
- consequences:
 - Count rates
 - reduced target pressure (20bar max ⇒ 8bar max)
 - reduced target thickness: 4x40cm > 2x40cm
 - kinematic range ____
 - reduced radius 34cm ⇒ 20 cm ⇒ reduced proton range : $= 4 \cdot 10^{-2} (GeV/c)^2 \rightarrow 8 \cdot 10^{-3} (GeV/c)^2$ $\boldsymbol{\varkappa}_{max}$

Start data taking for low Q²

High-energy elastic muon-proton scattering — PRM@AMBER Preparations are ongoing with promising developments so far.

- New approach based on elastic muon-protons scattering at E_{μ} = 100 GeV
- \rightarrow Redundant measurement to control systematic effects
- \rightarrow Radiative corrections smaller compared to electron-proton scattering
- \rightarrow Additional dataset to contribute to a solution of the puzzle
- Test runs in agreement with expectations

Challenging time schedule

- \rightarrow New detector systems with novel triggerless DAQ beam tests this year
- \rightarrow Main physics run foreseen in 2023? (2024)

Hadron Charge Radii Through Elastic Lepton Scattering at low Q²

Protons in hydrogen target (or other stable nuclei): Measurement via elastic electron or muon scattering Cross section:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_A^2\right)$$

Charge radius from the slope of G_E

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2 \to 0}$$

For unstable particles, electron scattering can only be realised in *inverse kinematics*

electron

Hadron Radius Measurements

From: EPJC 8	(1999)	59, The	WA89	Collaboration	(measu
--------------	--------	---------	------	---------------	--------

Measured $\langle r_{ch}^2 \rangle$ in fm^2 of various hadrons

	Experiment	Soliton	Skyrme	non-relat.	Skyrme	Cloudy Bag	experiment
		[7]	[8]	quark [12]	[9]	[11]	year
р	$\approx 0.84 - 0.87$	0.78	1.20	0.67	0.775	0.714	2020
n	-0.1101 ± 0.0086	-0.09	-0.15		-0.308	-0.121	2021
Σ^{-}	$0.61 \pm 0.12 \pm 0.09$	0.75	1.21	0.55	0.751	0.582	2001
π^-	$0.439\pm0.008[5]$	S. R. Am	iendolia,	et al., Nucl	. Phys. I	B 277 , 168 (19	86) 1986
K^-	$0.34 \pm 0.02 \ [6]$	S. R. Am	nendolia,	et al., Phys	s. Lett. I	3 178 , 435 (198	86) 1986

	Experiment	Soliton	Skyrme	non-relat.	Skyrme	Cloudy Bag	experiment
		[7]	[8]	quark $[12]$	[9]	[11]	year
р	$\approx 0.84 - 0.87$	0.78	1.20	0.67	0.775	0.714	2020
n	-0.1101 ± 0.0086	-0.09	-0.15		-0.308	-0.121	2021
Σ^{-}	$0.61 \pm 0.12 \pm 0.09$	0.75	1.21	0.55	0.751	0.582	2001
π^-	$0.439\pm0.008[5]$	S. R. An	iendolia,	et al. , Nuc	l. Phys. l	B 277 , 168 (198	36) 1986
K^-	$0.34\pm0.02[6]$	S. R. An	iendolia,	et al. , Phy	s. Lett. E	3 178 , 435 (198	6) 1986
K_L^0	$-0.077 \pm 0.007 \pm 0$	0.011	$K_L^0 \to \pi^-$	$\pi^+e^+e^-$			1998

comparatively good accuracies (pion radius ~1%) stem from assuming a theoretical shape of the form factor Stephan Paul

urement of Σ^- charge radius) updated 21.6.2022

$$+e^{+}e^{-}$$

Pion and Kaon Form Factor Measurements by NA7

S.R. Amendolia et al. / Pion electromagnetic form factor

Fig. 17. The square of the pion form factor, $|F_{\pi}|^2$ versus q^2 , with statistical error bars only. The line

~380,000 pion-electron scattering events

S. R. Amendolia, et al., Phys. Lett. B 178, 435 (1986)

Fig. 3. The measured kaon form factor squared. The line corresponds to the pole fit with $\langle r^2 \rangle = 0.34 \text{ fm}^2$.

~400,000 kaon triggers (~30,000 kaon-electron scatterings)

Measuring Hadron Charge Radii in **Inverse Kinematics**

Why using inverse kinematics ?

- with no stable meson target existing use stable lepton target
 - hadron is beam particle —> reaction in inverse kinematics
- kinematic range experimentally "unreachable"
 - make use of "easily" measurable quantities to address "difficult regime" (mostly low Q²)
- electron initially at rest —> no initial external Bremsstrahlung
- final electron is accelerated —> external Bremsstrahlung for outgoing electron
 - impact on particle momentum
 - Impact on particle trajectory
- internal Bremsstrahlung effects independent of reference system (vertex corrections)

Getting Familiar with Kinematic Regimes

- Which beam energies do we need for which hadron?
- Which momentum transfer can we get ?
- What are the equivalent electron energies in "conventional" kinematics ? Remember: $m_{\pi} \approx 275 \times m_{electron} \longrightarrow hit a ping pong ball with a bowling sphere$

-> inefficient in terms of cm energy \sqrt{s} and momentum transfer $-Q^2$

Beam	E _{beam}	Q_{max}^2	$E_{scatter}^{min}$	$E_{max}^{electron}$	CM momenta
	[GeV]	[GeV ²]	[GeV]	Q_{max}^2 [GeV]	[GeV]
π	190	0,176	17.2	173	0,210
K	190	0,086	105.2	84.7	0,147
K	80	0,021	59.7	20.2	0,072
K	50	0,009	41.3	8.7	0,047
р	190	0,035	155.3	34.3	0,094

22.6.2022

Kinematics

$$K^{-} e_{target}^{-} \rightarrow K^{-} e^{-}$$
$$Q^{2} \approx 2m_{e} \cdot E_{e}$$
$$s = 2E_{b}m_{e} + m_{b}^{2} + m_{e}^{2}$$
$$Q_{max}^{2} = \frac{4 \cdot m_{e}^{2} \cdot p_{b}^{2}}{s} = 4 \cdot p_{cm}^{2}$$

What is the role of Q_{max}^2

- large values of Q²: higher sensitivity to charge distribution —> $< r_E^2 >$
- small values of Q²: smaller extrapolation uncertainties to Q² = 0 and $\frac{dF(Q^2)}{dQ^2}$

Beam	Ebeam	Q_{max}^2	Relative charge-radiu
	[GeV]	[GeV ²]	effect on σ(Q²)
π	190	0,176	~40%
K	190	0,086	~20%
K	80	0,021	~5%
K	50	0,009	~2-3%
р	190	0,035	~18%

- Only scattering data: NA 7 \bullet
- 250 GeV beam
- 23 cm LH₂ target
- Beam intensity: 4.5 x 10⁴/s

The Kaon Case

- assume for now: passive target cells

Setup for solid target

- solid target (e.g. 1mm Be) offers large acceptance for outgoing electron
- reduce lever arm of downstream telescope

COMPARISON to NA7 - Kaons

- Technology has advanced !!
- use 40cm length LH₂ target/1mm Beryllium
- resolution (scattered hadron): $\Delta p/p \approx 3 \cdot 10^{-3} (flat..), \delta\theta \approx 30 \mu rad$
- NA7: $\Delta p/p \approx 10^{-2}$

separation from hadronic interaction is important: $\sigma(Ke^{-}) \approx 10^{-3} \sigma(hadronic)$

item

target

π beam [Hz

K beam [Hz

trigger rate [

Q² acceptan

beam ene

	NA7	AMBER	Ratio	
	$23 \text{ cm } LH_2$	40 cm LH ₂ or 1mm Be	> 2	
z] z]	$5 \cdot 10^5/s$ $4.5 \cdot 10^4/s$	$4 \cdot 10^6/s$ $8 \cdot 10^4/s$	4 2	
Hz]	350	105	> 30	
ice	> 0,014	> 10-4		
rgy π K	300 GeV 250 GeV	50-190 GeV		
	1			

in spill

Stephan Paul

Full Event Reconstruction

If angle of scattered hadron and outgoing lepton are measured

- geometrical acceptance cuts into Q² range (any cryogenic or pressurized target)
- two scenarios: $\theta_e < 30mr$ and $\theta_{\rho} < 10mr$ •

- CEDAR leaves Kaon beam with large pion contamination (about 3%)
- Can we separate kaon and pion induced reactions through kinematics?
- yes.. but only for $Q^2 > \approx 5 10 \cdot 10^{-3}$ (may jeopardize radiative tail detection)

Separation of Kaon and Pion Induced Reactions

Pion-Electron scattering

from Physics Letters B 822 (2021) 136631

Proton-Electron scattering

Why p-e-scattering ?

- complementary measurement to Mainz, JLAB and PSI
- very different kinematics and twofold reconstruction of Q²
 - scattered proton (multiple scattering of little issue)
 - outgoing electron (Bremsstrahlung corrections and multiple scattering of low energy electron) • high beam quality (small divergence, small beam spot size)

What is the equivalent for electron-proton scattering?

- assume p^{proton}=190 GeV/c
- equivalent normal kinematics using proton at rest: pelectron=103.5 MeV/c • calculate internal Bremsstrahlung for the equivalent kinematics
- variation of beam energy easy

Reaction Kinematics for Protons

- complementary to stable proton target use stable lepton target
- reaction in inverse kinematics

Stephan Paul

Acceptance Impact

- large impact on Q² range due to acceptance cut for electron
 - Long LH₂ target narrow pressure window strongly limit acceptance for scattered electron _____
 - required to cleanly identify elastic scattering
- regain physics if larger angular range can be covered

Acceptance Impact II

- for small Q²: use thin solid target

 - use 50 GeV for higher resolution
 - Q^2 resolution 1-2 10⁻⁴ (GeV/c)²

assume 1m lever arm and 6µm spatial resolution ($\delta \theta_{hadron} \approx 20 - 30 \mu r$)

Other Physics with Inverse Kinematics

Inverse kinematics allows easy way to access difficult *ep* kinematics

- ullet

22.6.2022

use different beam momenta to access $G_M^2(Q_0^2)$

Stephan Paul

- Rosenbluth separation allows for extract $G^p_M(Q^2)$ at low Q² !
- presently knowledge data only for $Q^2 > 0.08(GeV/c)^2$ (Mz)
- Inverse kinematics could add kinematically $0.0004 > Q^2 > 0.04(GeV/c)^2$
- first measurement in this kinematic range for this quantity !
- equivalent incoming electron energies: 30-105 MeV

 $G^p(O^2)$

Radiative Corrections

- with 190 GeV protons, we have to consider the case of incoming e- of 105 MeV beam energy
- Vertex correction and internal Bremsstrahlung enter with opposite sign
- Issue: identification of p-e⁻ scattering kinematic correlation of outgoing particles
 - cut in cm on 2% momentum correlation (2 MeV) cut in cm on 20% momentum correlation (20 MeV)

- electrons

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{Q^4 m_p^2 \,\vec{p}_\mu^2} \, \left[\left(G_E^2 + \tau \, G_M^2 \right) \frac{4E_\mu^2 m_p^2 - Q^2 (s - m_\mu^2)}{1 + \tau} - G_M^2 \frac{2m_\mu^2 Q^2 - Q^4}{2} \right]$$

- small \overline{p}_{μ}^2 (inverse kinematics) : stronger contribution of G_M^2
- high \overline{p}_{μ}^2 (AMBER proposal) : G_M^2 contribution negligible
- proposal)
- radiative corrections: work with N. Kaiser ongoing

Conclusions p-e- Scattering

inverse kinematics allows to access v very low Q² region without relying on very low energy

• comparison to high energy muon scattering: equivalent incoming lepton energy low

• cross section w.r.t. G_E^2 almost independent on beam momenta (counting rates see AMBER)

And Now ?

- Disclaimer: Many ideas arisen within the last weeks
- As with all new ideas..
 - x-check analytic calculations
 - GEANT simulations must back analytical calculations ____
- and if things work out fine.. make a proposal to CERN

Conclusions - Elastic hadron-e⁻ Scattering with **Inverse Kinematics**

- very interesting alternative to classical electron scattering
- Challenges:
 - high values of Q² (requires high beam momentum)
 - very low values of Q^2
 - angular acceptance for electrons
 - determination of Q²
 - separation of K vs. π induced reactions (only important for kaons)
- AMBER advantages
 - high density LH₂ target (without TPC insert)
 - high beam intensity
 - high resolutions for hadron kinematics _____

22.6.2022

- Meson radii are of key interest in understanding their inner structure and the emergence of hadron mass
- For pions, some deeper investigations would be needed to see whether and how the data of previous experiments can be challenged (statistics !!)
- For kaons, a significant increase of the form factor knowledge in the range \bullet $0.001 < Q^2 < 0.086$ appears in reach (factor 10)
- large Q^2 range possible (in particular down to very small Q^2) accessible Q² range determined by detection requirements for outgoing electron
- Proton inverse kinematics allows low Q² kinematics and Rosenbluth separation $G_M^p(Q^2)$ \bullet

BACKUP

TPC numbers

- TPC windows:
 - 35mm diameter
 - 1mm thickness Be on each side ____
 - $-1.4\% X_0$
 - total thickness tracking + TPX: 4.2% X₀

Variables for Inverse Kinematics

Compare muon-proton and proton-electron scattering

