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Alternative	techniques

• MUSE:	low	energy	µ	and	e	beams	of	both	polarities	

• COMPASS:	high	energy	µ beams	of	both	polarities	(	x	500	beam	energy	of	MUSE!!) 
– beam	energy	irrelevant..		Q2	is	important	variable	(see	details	later)	

– COMPASS	has	demonstrated	excellent	Q2		resolution	with	Primakoff	reactions		

– Coulomb	peak	from	 	scattering	 		-	 	

– well	performing	spectrometer	and	well	understood	apparatus	

………………

πA π + Z → π + γ + Zrecoil ΔQ2 ≈ 5 × 10−4(GeV/c)2
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Proposal of a New Measurement

•Measure close to Q2 → 0 
→ suppress influences from higher order terms (fit) 
→ high-energy 𝓞(10 - 100 GeV) — Cross-section  

•Sufficient Q2  range to determine radius: 
→ Aimed precision better 1 % 
→ Aimed Q2-range: 0.001 - 0.04 (GeV/c)2 

• Below Q2 = 0.001 GeV2/c2: 
→ Deviation from point-like proton level of 𝓞(10-3) 

→ systematic effects e.g. Q2 resolution 
• Above Q2 = 0.04  (GeV/c)2 
→ Non-linearity of the cross section 
→ Predominant source of uncertainty
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Beamline for High-Energy Muon Beams

• Muon momenta up to 200 GeV/c  - flux up to 107 µ/s  
• PRM: beam momentum of 100 GeV/c and 2 MHz beam rate 

• AMBER as successor at COMPASS location starting from 2021 with the first pilot run in October 2021 
→ broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams

M2 beamline
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AMBER

M2 beamline at CERN’s SPS 
North Area of CERN :  M2 beamline provides a unique high-intensity muon beam



The	AMBER	μP	measurement	

Choose scattering of high energy muons o gaseous hydrogen
👍 high energy muons have little multiple scattering - good measurement of scattering angle
👍 high energy muons do not radiate (little)
👎    muon energy loss very small - basically no useable information from muon momentum 
        ⇒ need to measure recoil proton 

👎   low energy recoil protons carry information about Q2 
        ⇒ measure their energy via an active target

👍 keep the advantages and circumvent the disadvantage by excellent instrumentation  
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• 100 GeV muon beam  
• Active-target TPC with high-pressure H2  
• goal: 70 million elastic scattering events in the range  
• Precision on the proton radius ~0.01 fm

10−3 < Q2 < 4 ⋅ 10−2 (GeV/c)2

Proton	Radius	from 
	Muon-Proton	Elastic	Scattering	at	High	Energy
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• 100 GeV muon beam  
• Active-target TPC with high-pressure H2  
• goal: 70 million elastic scattering events in the range  
• Precision on the proton radius ~0.01 fm

10−3 < Q2 < 4 ⋅ 10−2 (GeV/c)2

Proton	Radius	from 
	Muon-Proton	Elastic	Scattering	at	High	Energy
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Layout of Proton-Radius Measurement in 2023

Measurement of low-Q2 elastic-scattering  coincidence of 
low-energy recoil-protons and scattered muons at small  
scattering-angles. 

• TPC as an active target to measure recoil protons 

• Silicon pixel detectors  (ALPIDE) along long leaver-arm  
measure small scattering-angles 

• Scintillating fibers for timing and tracking (10x10 cm2) 

→ Unified Tracking Station (UTS) 

• New free-running DAQ and spectrometer upgrades
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• AMBER spectrometer: 
→ Momentum measurement of  scattered muon 
→ Radiative events using  electromagnetic calorimeter 
→ Muon identification with muon  filter and hodoscope
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Detection of Low-Q2 Recoil-Protons

• 4 x 40 cm drift cells each with segmented readout 
• Direct energy measurement without amplification (deposited energy through ionization of H2) 
• Segmented readout plane: 
→ Spacial and angular resolution (both θ and φ) 
→ Beam induced ionisation noise reduced 

• use low noise preamps to collect signal 
• Integration (drift) time of TPC: 68 µs 
→ limits beam intensity to 2 ⋅ 106/s

Pressurised hydrogen active-target TPC 
Direct recoil-proton energy measurement with active target.

160 cm (4-cells) - 220 cm totalCERN-SPSC-2019-022; SPSC-P-360
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Detection of Low-Q2 Recoil-Protons

• Q2-range affects range of recoil proton: 
→ Recoil-proton ranges of 2 - 300 mm (and more)

• large Q2-range requires two pressure settings:

→ 20 bar (0.0025 GeV2/c2 < Q2 < 0.04 GeV2/c2) 
→ 4 bar (Q2 < 0.0025 GeV2/c2) 
→ Two overlapping datasets 
→ Low-pressure region to correct noise at small Q2-events 
→ Relative energy resolution: σ(Ekin) / Ekin < 0.06 required for  aimed precision < 1 %

Pressurised hydrogen active-target TPC 
Direct recoil-proton momentum measurement with active target 

• Requires proton to stop in target1

160 cm (4-cells) - 220 cm total
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1	stopping	actually	not	quite	necessary	if	set-in	of	Bragg	curve	in	differential	energy	loss	can	be	detected



Control of Systematic Effects

• Absolute calibration of the TPC recoil-proton 
energy-scale

• Inefficiencies in recoil-proton measurement
• Cross check of TPC measurement with ( ) μ, μ′�

• Lepton-proton scattering accompanied by bremsstrahlung 
→ NLO process on 𝓞(10-4) level for Eγ > 500 MeV 
→ distortion of Q2-spectrum 

• ε = 1 → no contribution of 2γ

Absolute calibration, inefficiencies, and background 
Understanding of systematic effects is crucial for precision

pµ

pp

p̓µ

p̓p

 γ (Q2)

Redundant measurement to control systematics 
→ measurement of scattered muon kinematics

Use of AMBER spectrometer — tracking and calorimetry 
→ understanding of background 
→ muon momentum measurement
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First Test Measurement performed in 2018 + 2021 

• Beam-noise studies in a high-rate muon beam with this active target 

• Setup made use of parasitic COMPASS beam at a downstream test location

Feasibility test-measurement in 2018 
Using a simple setup with TPC, silicon tracking-detectors and beam trigger. 
• General issue: combination of “slow” TPC with “fast” tracking detectors 
• Goal: Proof-of-principle — working setup as in this “simple” manner 
• Synchronisation of two dedicated DAQ systems based on common timestamp 
• Association of muon tracks with recoil-proton events in the TPC
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Proton	Radius	Measurement 
Key	results	from	first	feasibility	study	2018

15

• Resolution along beam of muon 
scattering in hydrogen (without 
using TPC information)

• Reconstruction of elastic muon-electron scattering and 
beam energy from angles alone

Stephan Paul22.6.2022



2021	IKAR	TPC	performance	
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• Ongoing: alpha calibration (~40 keV energy resolution)• Linear increase of noise with beam intensity
Stephan Paul22.6.2022
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Radiative	corrections	for	electron	and	muon	scattering
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Proton	Radius	Measurements
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What	About	the	Target	TPC	?

• New	target	TPC	being	developed	together	with	GSI/PNPI	St.	Petersburg		
• owing	to	political	and	financial	issues	-	foresee	usage	of	old	IKAR	TPC	in	2022	

(2023	?)	
• consequences:	

– Count	rates	

• reduced	target	pressure	(20bar	max			➩ 8bar	max)	

• reduced	target	thickness:	4x40cm	➩	2x40cm		

– kinematic	range	

• reduced	radius	34cm	➩	20	cm	➩	reduced	proton	range	:		
	

Start	data	taking	for	low	Q2

Q2
max = 4 ⋅ 10−2 (GeV/c)2 → 8 ⋅ 10−3 (GeV/c)2
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Summary and Outlook 

High-energy elastic muon-proton scattering — PRM@AMBER 
Preparations are ongoing with promising developments so far. 
• New approach based on elastic muon-protons scattering at Eµ = 100 GeV 
→ Redundant measurement to control systematic effects 
→ Radiative corrections smaller compared to electron-proton scattering 
→ Additional dataset to contribute to a solution of the puzzle 

• Test runs in agreement with expectations 

Challenging time schedule 
→ New detector systems with novel triggerless DAQ — beam tests this year 
→ Main physics run foreseen in 2023 ? (2024) 

20
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Hadron	Charge	Radii	 
Through	Elastic	Lepton	Scattering	at	low	Q2

Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

For unstable particles, electron scattering can only be realised 
in inverse kinematics

lepton

proton

electron

meson
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Hadron	Radius	Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

comparatively good accuracies (pion radius ~1%) stem from 
assuming a theoretical shape of the form factor

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated	21.6.2022

−0.077 ± 0.007 ± 0.011K0
L

1986

K0
L → π−π+e+e−

2020

1986

2021
2001

1998

experiment	
year
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Pion	and	Kaon	Form	Factor	Measurements	by	NA7

~400,000 kaon triggers 
(~30,000 kaon-electron scatterings)

~380,000 pion-electron 
scattering events

22.6.2022



Measuring	Hadron	Charge	Radii	in		
Inverse	Kinematics

Why	using	inverse	kinematics	?	
‣ with	no	stable	meson	target	existing	-	use	stable	lepton	target	

- hadron	is	beam	particle	—>	reaction	in	inverse	kinematics	

‣ kinematic	range	experimentally	„unreachable“	
- make	use	of	„easily“	measurable	quantities	to	address	„difficult	regime“	(mostly	low	Q2)	

• electron	initially	at	rest	—>	no	initial	external	Bremsstrahlung	
• final	electron	is	accelerated	—>	external	Bremsstrahlung	for	outgoing	electron	

- impact	on	particle	momentum	
- Impact	on	particle	trajectory	

• internal	Bremsstrahlung	effects	independent	of	reference	system	(vertex	corrections)

24Stephan Paul22.6.2022



Getting	Familiar	with	Kinematic	Regimes
• Which	beam	energies	do	we	need	for	which	hadron	?	
• Which	momentum	transfer	can	we	get	?	
• What	are	the	equivalent	electron	energies	in	„conventional“	kinematics	?	
Remember:	 		—>	hit	a	ping	pong	ball	with	a	bowling	sphere		
—>	inefficient	in	terms	of	cm	energy	 	and	momentum	transfer	

mπ ≈ 275 × melectron
s −Q2

25

RF	separated	 RF	separated	

Emax
Emax
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	Kinematics
 𝐾− 𝑒−𝑡𝑎𝑟𝑔𝑒𝑡 →  𝐾− 𝑒−

𝑠 = 2𝐸𝑏𝑚𝑒 + 𝑚2
𝑏 + 𝑚2

𝑒  

Q2 ≈ 2me ⋅ Ee

Q2
max =

4 ⋅ m2
e ⋅ p2

b

s
= 4 ⋅ p2

cm

Beam Ebeam	 
[GeV] [GeV2] [GeV]

CM	momenta		

π 190 0,176 17.2 173 0,210

K 190 0,086 105.2 84.7 0,147
K 80 0,021 59.7 20.2 0,072
K 50 0,009 41.3 8.7 0,047
p 190 0,035 155.3 34.3 0,094

Q2
max

Q2
max Emin

scatter
Q2

max

Eelectron
max

	[GeV]

	[GeV]

	[GeV]
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What	is	the	role	of	Q2
max

• large	values	of	Q2:	higher	sensitivity	to	charge	distribution	—>	 	

• small	values	of	Q2:	smaller	extrapolation	uncertainties	to	Q2	=	0	and		

< r2
E >

dF(Q2)
dQ2

|Q2=0

27

Beam Ebeam	 
[GeV] [GeV2]

Relative	charge-radius		

effect	on	σ(Q2)
π 190 0,176 ~40%

K 190 0,086 ~20%
K 80 0,021 			~5%
K 50 0,009 ~2-3%
p 190 0,035 ~18%

Q2
maxEbeam	=	190	GeV
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The	Kaon	Case

• Only	scattering	data:	NA	7	
• 250	GeV	beam	
• 23	cm	LH2		target	
• Beam	intensity:	4.5	x	104/s

28

from	Physics	Letters	B	822	(2021)	136631

[(GeV/c)2]
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Measurements	with	AMBER

• Forward	Spectrometer	with	2	EM	calorimeters	

• Dedicated	target	station	
• 4	x	40cm	target	cells	(20	bar)	or	40cm	LH2	target	

• beam	rates:		 	(duty	cycle	 )	

• SciFi	(fibre	tracker):	10cm	x	10cm	(±	10mrad)	
• assume	for	now:	passive	target	cells

4 ⋅ 106/s ≈ 1/7
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Setup	for	solid	target
• solid	target	(e.g.	1mm	Be)	offers	large	acceptance	for	outgoing	electron	
• reduce	lever	arm	of	downstream	telescope
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COMPARISON	to	NA7	-	Kaons

• Technology	has	advanced	!!	
• use	40cm	length	LH2	target/1mm	Beryllium	

• resolution	(scattered	hadron):	 ,	 	

• NA7:	 	

• separation	from	hadronic	
interaction	is	important:	

	

Δp/p ≈ 3 ⋅ 10−3( flat . . ) δθ ≈ 30μrad
Δp/p ≈ 10−2

σ(Ke−) ≈ 10−3σ(hadronic)
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item NA7 AMBER Ratio

target 23	cm	LH2
40	cm	LH2	
or	1mm	Be

>	2

π	beam	[Hz]	
K	beam	[Hz]

4	
2

trigger	rate	[Hz] 350 105 >	30

Q2		acceptance >	0,014 >	10-4

beam	energy	π	
K

300	GeV	
250	GeV

50-190	GeV

5 ⋅ 105/s 4 ⋅ 106/s
4.5 ⋅ 104/s 8 ⋅ 104/s in	spill
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Full	Event	Reconstruction

If	angle	of	scattered	hadron	and	outgoing	lepton	are	measured		
• geometrical	acceptance	cuts	into	Q2	range	(any	cryogenic	or	pressurized	target)		

• two	scenarios:	 	and	θe < 30mr θe < 10mr

32Stephan Paul22.6.2022



Separation	of	Kaon	and	Pion	Induced	Reactions	

• CEDAR	leaves	Kaon	beam	with	large	pion	contamination	(about	3%)	
• Can	we	separate	kaon	and	pion	induced	reactions	through	kinematics	?	

• yes..	but	only	for	 	(may	jeopardize	radiative	tail	detection)Q2 > ≈ 5 − 10 ⋅ 10−3

33

1.5	mrad
300	μrad｝
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Pion-Electron	scattering

34

from	Physics	Letters	B	822	(2021)	136631

from	Physics	Letters	B	822	(2021)	136631
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Proton-Electron	scattering

Why	p-e-	scattering	?	
• complementary	measurement	to	Mainz,	JLAB	and	PSI	
• very	different	kinematics	and	twofold	reconstruction	of	Q2		
• scattered	proton	(multiple	scattering	of	little	issue)	
• outgoing	electron	(Bremsstrahlung	corrections	and	multiple	scattering	of	low	energy	electron)		
• high	beam	quality	(small	divergence,	small	beam	spot	size)	

What	is	the	equivalent	for	electron-proton	scattering	?	
• assume	pproton=190	GeV/c	
• equivalent	normal	kinematics	using	proton	at	rest:	pelectron=103.5	MeV/c	
• calculate	internal	Bremsstrahlung	for	the	equivalent	kinematics	
• variation	of	beam	energy	easy

35Stephan Paul22.6.2022



Reaction	Kinematics	for	Protons

• complementary	to	stable	proton	target		-	use	stable	lepton	target	
• reaction	in	inverse	kinematics

36Stephan Paul22.6.2022



Acceptance	Impact

• large	impact	on	Q2	range	due	to	acceptance	cut	for	electron	
– Long	LH2	target	-	narrow	pressure	window	strongly	limit	acceptance	for	scattered	electron	

– required	to	cleanly	identify	elastic	scattering	

• regain	physics	if	larger	angular	range	can	be	covered

37Stephan Paul22.6.2022



• for	small	Q2:	use	thin	solid	target	
– determination	of	Q2	through	hadron	scattering	angle	

– use	50	GeV	for	higher	resolution	

– keep	multiple	scattering	low	-	1mm	Be	target	

– assume	1m	lever	arm	and	6μm	spatial	resolution	( )δθhadron ≈ 20 − 30μr

Acceptance	Impact	II

38

– 1mm	Be	target	
– 5	days	measuring	
– 107/s	max	flux	
– full	efficiency	

Q2 [(GeV/c)2]
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Q2	resolution	1-2	10-4	(GeV/c)2

rates	in	5	days



Inverse	kinematics	allows	easy	way	to	access	difficult	ep	kinematics	

• kinematic	variables	R,	ε,	τ	

• access	Rosenbluth	technique	through	variation	of	pbeam

Other	Physics	with	Inverse	Kinematics

39

dσ
dQ2

=
4πα2

Q4
R (ϵ ⋅ G2

E + τ ⋅ G2
M)

use	different	beam	momenta	to	access	 	G2
M(Q2)

high	energy	muon	scattering:		
little	sensitivity	to		 	G2

M(Q2) Stephan Paul22.6.2022



Gp
M(Q2)

• Rosenbluth	separation	allows	for	extract	 	at	low	Q2	!	

• presently	-	knowledge	data	only	for		 	(Mz)	

• Inverse	kinematics	could	add	kinematically	
	

• first	measurement	in	this	kinematic	range	for	this	quantity	!	
• equivalent	incoming	electron	energies:	30-105	MeV

Gp
M(Q2)

Q2 > 0.08(GeV/c)2

0.0004 > Q2 > 0.04(GeV/c)2

40

compilation	for	overview



Radiative	Corrections

• with	190	GeV	protons,	we	have	to	consider	the	case	of	incoming	e-	of	105	MeV	beam	energy	
• Vertex	correction	and	internal	Bremsstrahlung	enter	with	opposite	sign	
• Issue:	identification	of	p-e-	scattering	-	kinematic	correlation	of	outgoing	particles	

– cut	in	cm	on	2%	momentum	correlation	(2	MeV)				-			cut	in	cm	on	20%	momentum	correlation	(20	MeV)									
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Conclusions		p-e-	Scattering

• inverse	kinematics	allows	to	access	v	very	low	Q2	region	without	relying	on	very	low	energy	
electrons	

• comparison	to	high	energy	muon	scattering:	equivalent	incoming	lepton	energy	low	

• small	 	(inverse	kinematics)	:	stronger	contribution	of	 	

• high	 	(AMBER	proposal)	:	 	contribution	negligible		

• cross	section	w.r.t.	 	almost	independent	on	beam	momenta	(counting	rates	see	AMBER	
proposal)	

• radiative	corrections:	work	with	N.	Kaiser	ongoing

p2
μ G2

M

p2
μ G2

M

G2
E
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And	Now	?

• Disclaimer:	Many	ideas	arisen	within	the	last	weeks	
• As	with	all	new	ideas..		

– x-check	analytic	calculations	

– GEANT	simulations	must	back	analytical	calculations	

• ….	and	if	things	work	out	fine..	make	a	proposal	to	CERN
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Conclusions	-	Elastic	hadron-e-	Scattering	with	
Inverse	Kinematics

• very	interesting	alternative	to	classical	electron	scattering		
• Challenges:	

– high	values	of	Q2	(requires	high	beam	momentum)	

– very	low	values	of	Q2	

• angular	acceptance	for	electrons	

• determination	of	Q2	

• separation	of	K	vs.	π	induced	reactions	(only	important	for	kaons)	

• AMBER	advantages	
– high	density	LH2	target	(without	TPC	insert)	

– high	beam	intensity	

– high	resolutions	for	hadron	kinematics
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Summary

• Meson radii are of key interest in understanding their inner structure and the emergence of 
hadron mass 

• For pions, some deeper investigations would be needed to see whether and how the data of 
previous experiments can be challenged (statistics !!) 

• For kaons, a significant increase of the form factor knowledge in the range 
 (factor 10) 

• large Q2 range possible (in particular down to very small Q2) 
accessible Q2  range determined by detection requirements for outgoing electron 

•      Proton inverse kinematics allows low Q2 kinematics and Rosenbluth separation 

0.001 < 𝑄2 < 0.086 appears in reach

Gp
M(Q2)
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BACKUP



TPC	numbers

• TPC	windows:	
– 35mm	diameter	

– 1mm	thickness	Be	on	each	side	

– 1.4%	X0	

– total	thickness	tracking	+	TPX:	4.2%	X0

47



Variables	for	Inverse	Kinematics

• Compare	muon-proton	and	proton-electron	scattering
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