

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

STATUS OF THE MUSE EXPERIMENT

Dr. Tigran Armand Rostomyan

PREN-2022

June 20 – 23, 2022 Paris, France

THE PROTON RADIUS PUZZLE (2010)

Muonic and electronic measurements give different proton charge radii

Today some tension between experiments persists...

I. Sick, PLB 576, 62 (2003); P.J. Mohr et al., Rev. Mod. Phys. 80, 633 (2008); J.C Bernauer et al., PRL 105, 242001 (2010); R. Pohl et al., Nature 466, 213 (2010)

・ロット (母) ・ ヨ) ・ コ)

DISAGREEMENT OF DIFFERENT DATA

According to *Domínguez, Alarcón and Weiss* dispersion + effective field theory calculations (**radius** is treated as a **free parameter**): these **1,5%** disagreement between **PRAD** and **Mainz** form factor values leads to **3,0%** discrepancy in cross-sections, and those to \sim **0,04 fm** divergence in extraction of the radius.

MUSE COLLABORATION

Funded by 5 Agencies

~63 MUSE collaborators from 24 institutions in 5 countries:

A. Afanasev^a, A. Akmal^b, J. Arrington^c, H. Atac^d, C. Ayerbe-Gayoso^e, F. Bennekhar^l, N. Bernauer^a, E. Brash¹, W.J. Brisco^a, T. Caoⁱ, D. Ciofi^a, E. Clineⁱ, D. Cohn^k, E.O. Cohen^l, C. Collicott^a, K. Deiters^m, J. Diefenbachⁿ, B. Dongwi^j, E.J. Downie^a, L. El Fassi^a, S. Gilad^a, R. Gilman ^j, K. Gnanvo^a, R. Gottar, S. Gilad^a, R. Gilman ^j, K. Gnanvo^a, R. Gottar, J. Liefenbachⁿ, B. Jongwi^j, E.J. Downie^a, L. El Fassi^a, S. Gilad^a, R. Gilman ^j, G. Kumbartzki ^j, I. Lavrukhin^a, L. Li^a, J. Lichtenstadt^l, W. Lin^j, A. Liyanage^j, N. Liyanage^a, W. Lorenzon^t, Z.-E. Meziani^d, P. Monaghan^h, K.E. Mesick^u, P. Mohan Murthy^a, J. Nazeer^j, T. O'Connor^c, C. Perdrisat^e, E. Piasetzsky^j, R. Ransome ^j, R. Raymond^t, D. Reggiani^m, P.E. Reimer^c, A. Richter^v, G. Ron^k, T. Rostomyan ^j, A. Sarty^w, Y. Shamai^j, N. Sparveris^d, S. Strauch^q, V. Sulkosky^p, A.S. Tadepalli ^j, M. Taragin^s, and L. Weinstein^o

Technical Design Report: arXiv:1709.09753 [physics.ins-det]

^aGeorge Washington University, ^bMontgomery College, ^cArgonne National Lab, ^dTemple University, ^eCollege of William & Mary, ¹Duquesne University, ^aMassachusetts Institute of Technology, ^bChristopher Newport University, ¹Hampton University, ¹Rutgers University, ^bHebrew University of Jerusalem, ¹Tel Aviv University, ^mPaul Scherrer Institut, ⁿJohannes Gutenberg-Universität, ^eOld Dominion University, ^pUniversity of Virginia, ^eUniversity of South Carolina, ¹Jefferson Lab, ^sUniversity of Basel, ¹University of Michigan, ^eLos Alamos National Laboratory, ^eTechnical University of Darmstadt, ^eSL Mary's University, ^sWeizmann Institute (Oct. 2016)

PAUL SCHERRER INSTITUT, VILLIGEN, SWITZERLAND

- Proton accelerator HIPA: World's most powerful 590 MeV Proton beam (2.2 mA, 1.3 MW beam, 50.6 MHz RF frequency [20 ns bunch separation])
- πM1:
 - $e^{\pm}, \mu^{\pm}, \pi^{\pm}$ in Secondary beam-lines
 - Plux to be used: 3.3 3.5 MHz
 - Particle species are separated by timing relative to beam RF

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

MUON SCATTERING EXPERIMENT MUSE

Direct comparison of *ep* and μp scatterings at sub-percent level precision at 3 different beam momenta: 115 MeV/c, 153 MeV/c, 210 MeV/c in $\pi M1$ area at PSI:

- I Higher (similar) precision for muons (electrons) than previously
- 2 Low Q² kinematics for sensitivity to the proton charge radius
- Simultaneous cross-section measurements for e[±]p and μ[±]p elastic scattering reactions
- Independent and combined determination of charge form factor and Proton Charge Radius in $e^{\pm}p$ and $\mu^{\pm}p$ elastic scatterings tests lepton universality
- Solution With μ^+, μ^- and $e^+, e^- \rightarrow$ study **Two-Photon Exchange** (TPE) mechanisms
- Tests of initial-state radiative corrections

Detectors Error estimations

DETECTOR SETUP

- Liquid hydrogen target
- TIMING: Beam-Hodoscope (BH), Scattered Particle Scintillators (SPS) and Beam Monitor (BM)
 - **PID** for Beam-particle ID
 - **2** TOF for scattered (BH→SPS) reaction type
 - STOF for unscattered (BH→BM) particles for Beam Momentum determination
- TRACKING: GEMs + Straw-Tube Tracker (STT) to determine scattering angle
- Calorimeter for Radiative corrections

Detectors Error estimations

BEAM HODOSCOPE (BH) PLANES

- 5 BH-Planes built: 16 (13) paddles per plane
- 2 (3) mm thick x 4&8 mm wide x 100 mm long **BC404** + Hamamatsu **S13360-3075PE**
- **BH** counts the total incident beam **flux** and provides precise **timing** and **position** information for beam particles

Detectors Error estimations

BH PLANES: RESULTS

- For all paddles: $\sigma_T < 100 ps$ (Best: $\sigma_T = 55 ps$); $\epsilon \ge 99.9\%$
- **RF** time to **BH** → beam-particle ID

Exceed requirements!

・ロト ・回 ト ・ヨ ト ・

э

Detectors Error estimations

GEM AS INCIDENT-PARTICLE TRACKER

- Set of 3x 10cm x 10cm **GEM** detectors (from OLYMPUS) measure trajectories into the target to reconstruct the scattering kinematics
- Gas mixture: Ar:CO2 70:30

- Successful operation of DAQ with MPD v4 digitizer modules
- 70 μm (100 μm) spatial resolution
- $\epsilon = 97 99\%$ (98.0%)

Projected beam-particle distribution at the target (p = 210 MeV/c)

Meets requirements!

Status of the MUSE experiment

・ロ・ ・ 四・ ・ 回・ ・ 日・

4000

3000 2000

Detectors Error estimations

VETO DETECTOR

- Annular 8-element VETO detector, surrounding target entrance window
- Eliminates upstream scattering and beam decays, reduces trigger rate from background events by $\sim 25\%$
- $\sigma_{ au} \leq$ 200 ps (1 ns); ϵ > 99.0%

Meets requirements! < -> < -> < -> < -> < ->

Dr. Tigran Armand Rostomyan

Status of the MUSE experiment

э

Detectors Error estimations

LIQUID HYDROGEN TARGET

- 280 ml LH2 target
- Target T = 20.67 K, stable at σ_{τ} = 0.01 K level
- **Density = 0.070 g/cm³**, stable at 0.02% level
- Safety review passed (PSI; Aug.2018)

(日)

Meets requirements!

Detectors Error estimations

BEAM MONITOR (BM)

- 3 mm x 12 mm x 300 mm BC404 + S13360-3075PE
- 6 mm shifted 2 planes: 16 paddles per plane (all σ_τ < 100ps; €≥ 99.9%) + 4 front scintillator bars (σ_τ ≈ 30ps)
- BM determines particle flux downstream of the target
- BM monitors beam stability

Meets requirements!

・ロ・ ・ 四・ ・ 回・ ・ 日・

Detectors Error estimations

RADIATIVE CORRECTIONS

Radiative Corrections are significant for *e*'s. Greatest sensitivity is to pre-radiation. Photon flies forward. $ep \rightarrow e'p\gamma$ Cross section in MUSE kinematics

Status of the MUSE experiment

Detectors Error estimations

IMPROVEMENTS USING CALORIMETER

Detectors Error estimations

MUSE FORWARD-ANGLE CALORIMETER

- 64x (4 cm x 4 cm x 30 cm) Lead-Glass crystals
- Removes events with high-energy γ in beam direction

・ロト ・回ト ・ヨト

Detectors Error estimations

CALORIMETER CALIBRATION

- Found 2 crystals with lose **PMT**s. Replaced!
- All 64 crystals are gain matched
- Took Energy scan data for Energy calibration (To be analyzed)

(日)

Detectors Error estimations

STRAW TUBE TRACKER (STT)

- STT provides high-resolution and high-efficiency tracking of the scattered from the target particles
- Based on PANDA STT-design
- 2 chambers, 5 planes each in x and y
- In total 2850 Straws
- Readout \rightarrow PASTTREC/TRB3
- STT all planes are ready, wire mapping in process
- Gas manifold improvement in progress

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Detectors Error estimations

TRACKING

Dr. Tigran Armand Rostomyan Status of the MUSE experiment

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Detectors Error estimations

SCATTERED PARTICLE SCINTILLATOR (SPS)

- Based on Jefferson Lab CLAS12 FTOF12 system
- 2 walls on each side of beam. 92 bars, double-ended readout
- Determines Energy and Time of the scattered off the target particles
- Muon Decays in flight can be removed with TOF (BH \rightarrow SPS)

Front wall: 18 bars (6cm x 3cm x 120cm) Rear wall: 28 bars (6cm x 6cm x 220cm)

Peak: particles going through the bar Low energy tail: particles going out the side of the bar

• For all particles: 2-wall coincidence $\epsilon \ge 98\%$

Meets requirements!

- 220 cm BC404 bars:
 σ_{av.} = 52ps ± 4ps
- **120 cm** BC404 bars: $\sigma_{av.} = 46ps \pm 4ps$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

TOF

Detectors Error estimations

2 TOF measurements (1 BH-Plane → SPS) with **50 cm** difference in detector spacing, compared to Geant4 (Horizontal scale has arbitrary offset)

E. Cline *et al.*, **Physical Review C 105 (2022) 055201** Characterization of μ and *e* beams in the PSI PiM1 channel:

- Average momentum of particles passing through the channel agrees with the central set momentum to within **0.03%**
- The positions of the different particle species were observed to be consistent at roughly **2 mm** level, indicating their momenta are consistent to within approximately **0.02%**
- RF time measurements of particles propagating through the channel showed approximately **0.1%** agreement with the set momentum
- Muon and electron beams have quite similar properties to the pion beam and to each other: knowing p_π or p_μ means we know p_e quite precisely

Detectors Error estimations

SUMMARY OF DETECTORS

Detector	$\sigma_{T}(ps) / \sigma_{S}(\mu m)$	E (%)	Material Thickness
1 BH Plane	\sim 70 ps	> 99.5	2 mm BC404
2-4 BH Planes	50 – 35 ps	> 99.5	4 – 8 mm BC404
GEMs	7 0 μ m	pprox 98	0.5% Radiation Length
VETO	pprox 200 ps	> 99	4 mm BC404
BM	59 ps	pprox 99.9	3 mm BC404
STT	120 µ <i>m</i>	pprox 99	30 μ <i>m</i> mylar
SPS	55	> 99	3 – 6 cm BC404

While some improvements, testing remains, data shows that all requirements are met!!!

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Detectors Error estimations

MUSE TRIGGER

Detectors Error estimations

MUSE DIRECT COMPARISON OF $\mu + \rho$ AND $e + \rho$

Projected relative statistical uncertainties in the ratio of μp to ep elastic **cross sections**. Systematics $\approx 0.5\%$.

The relative statistical uncertainties in the **form factors** are half as large.

The MUon Scattering Experiment at PSI (MUSE), MUSE technical Design Report, arXiv:1709.09753 [physics.ins-det]

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

MUSE DIRECT COMPARISON OF $\mu^+ + \rho$ and $\mu^- + \rho$

Projected relative statistical uncertainties in the ratio of $\mu^+ p$ to $\mu^- p$ elastic **cross sections**. Systematics $\approx 0.2\%$.

The MUon Scattering Experiment at PSI (MUSE), MUSE technical Design Report, arXiv:1709.09753 [physics.ins-det]

э

(日)

OUTLOOK

MUSE suited to verify 5.6 σ effect (CODATA 2014) with even higher significance:

- Uncertainties mostly well controlled: largest from **angle** and **radiative** corrections. Many uncertainties are common to all extractions in the experiment and cancel in $(e^+ + p)/(e^- + p)$, $(\mu^+ + p)/(\mu^- + p)$ and $(e + p)/(\mu + p)$ comparisons
- Compare e⁺p to e⁻p and μ⁺p to μ⁻p elastic cross sections for TPE. Charge ratio to determine TPE to 0.2 %
- Directly compare μ , *e* cross-sections, form factors and extract the radii.
- Each of the 4 sets of data will allow the extraction of the proton charge radius. Individual radius extractions from e[±]p, μ[±]p each to 0.01 fm
- From $(e + p)/(\mu + p)$ cross-section **ratios**: extract $R_e R_{\mu}$ radius difference with minimal truncation error to 0.005 fm $R_e - R_{\mu} = 0.034 \pm 0.006$ fm (5.6 σ), **MUSE**: $\delta_r = 0.005$ fm ($\sim 7\sigma$)
- If no difference, extract Proton radius to 0.007 fm (2nd-order fit)

MUSE ACTIVITIES

- 2011: Ron Gilman & Michael Kohl came up with an idea
- 2012-2017: MUSE experiment was built up
- 2018-2022: Completing technical upgrades and fine-tunings
- 2020-2022: Got delayed due to COVID-19
- 2021: Obtained first high statistics scattering data set at ±115 MeV/c.
- 2022: Implementing alignment data to Analysis and Simulation
- 2022-2024: Production data taking: 6 months / year
- 2024-2025: Data Analysis and Publications.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

THANK YOU FOR YOUR ATTENTION!

MUSE will be the first muon scattering measurement with the required precision to address the Proton Radius Puzzle!

MUSE publications:

- P. Roy et al., NIM A 949 (2020) 162874
- T. Rostomyan et al., NIM A 986 (2021) 164801
- E. Cline et al., Physical Review C 105 (2022) 055201