Towards High-Precision Spectroscopy of the 1S–2S Transition in He⁺

Akira Ozawa

Fabian Schmid Jorge Moreno Johannes Weitenberg Theodor. W. Hänsch Thomas Udem

Max Planck Institute of Quantum Optics, Germany

Spectroscopy of the 1S–2S Transition in He⁺

Difference from Hydrogen spectroscopy:

- Trapped and cooled target \rightarrow smaller systematics
- QED test for Z=2 system
- Frequency comb spectroscopy in XUV (extreme ultraviolet) wavelength

QED for He⁺

Uncertainty due to QED theory for He⁺ 1S-2S transition

[1] Physics Letters B 795, 432–437 (2019)
[2] Phys. Rev. A 100, 032515 (2019).
[3] Phys. Rev. A 98, 022522 (2018)
[4] Physics Letters B 800, 135137 (2020).
[5] Annalen der Physik 531, 1800324 (2019).
[6] Phys. Rev. A 94, 060501 (2016).
[7] Phys. Rev. A 93, 062514 (2016).

Total QED uncertainty : $40 \text{ kHz} = 4 \times 10^{-12}$ (preliminary)

He⁺ spectroscopy for testing QED

• Measuring the 1S-2S transition

better than 400kHz (4x10⁻¹¹)

 \longrightarrow Determine R_{∞} and contribute to the proton charge radius puzzle

better than 60 kHz (6x10⁻¹²)

 \rightarrow Determine charge radius, which can be compared with μ -He measurement

better than 40 kHz $(4x10^{-12})$

 \rightarrow QED theory uncertainty will be a limitation

- Measuring other transitions in ⁴He⁺ \longrightarrow QED test more independent from μ -He and Hydrogen
- Measuring ³He⁺ Charge radii difference, which can be compared with neutral He spectroscopy

⁴He⁺ Nuclear charge radius

 $r_{\alpha} = 1.681(4)$ Scattering I.Sick (2008)

 $r_{\alpha} = 1.67824(13)_{exp}(82)_{theo}$ μ -He spectroscopy J. Krauth et al. (2021)

r_α uncertainty J. Krauth et al. (2021)		Contribution to He ⁺ 1S-2S uncertainty
QED (r-independent)	0.04 am	2.9x10 ⁻¹³
2PE	0.70 am	5.2x10 ⁻¹² =52 kHz
3PE	0.42 am	3.1x10 ⁻¹²
1PE	0.06 am	4.5x10 ⁻¹³
Theory Total:	0.82 am	6.1x10 ⁻¹²
Experiment (statistics) :	0.13 am	9.7x10 ⁻¹³ = 9.6 kHz

4x10⁻¹²: He⁺ QED theory uncertainty

He⁺ spectroscopy setup: overview

H3 H5 H7 ... Frequency

Direct frequency comb spectroscopy

61nm Laser system

Enhancement Resonator for HHG

Enhancement Resonator for HHG

~30 μ W at 60.8 nm (preliminary) ~ ~ 0.1 Hz signal rate (ionization)

Stabilization of frequency comb

Stabilization of frequency comb

Stabilization of frequency comb

- ➢ 80% of power in carrier at XUV
- Less than 20% of signal loss due to phase noise

XUV beam delivery to trapped He⁺

Sympathetically cooled He⁺ in mixed ion crystal (He⁺/Be⁺)

Doppler-free Anti-collinear excitation

Be⁺/He⁺ ion trap

Ion crystals and sympathetic cooling

Spectroscopy signal

Spectroscopy signal: Secular excitation detection

Testing secular excitation detection

H₂⁺: Same charge-to-mass ratio as He²⁺

$$\mathrm{H}_2^+ + \mathrm{H}_2 \Rightarrow \mathrm{H}_3^+ + \mathrm{H}$$

Single event sensitive detection

Achieved:

- Generation of 61nm comb
- Trapped and cooled He⁺
- Demonstrated sensitive He²⁺ detection

Plans :

- Optimization of 61nm comb (power, spectrum)
- Testing spectroscopy setup with easier transition (Two-photon transition at 204 nm with Be⁺)
- Finding He⁺ 1S-2S signal:

QED predication: ~ 70 kHz Expected linewidth of signal: ~ 1 kHz

The He⁺ team

Fabian Schmid

Jorge Moreno

Johannes Weitenberg

Theodor W. Hänsch

Thomas Udem

