Theoretical status of the proton radius

Vladimir Pascalutsa

Institute for Nuclear Physics University of Mainz, Germany

Vaguely based on recent review papers

REVIEWS OF MODERN PHYSICS, VOLUME 94, JANUARY-MARCH 2022

The proton charge radius

H. Gaolo

Department of Physics, Duke University and the Triangle Universities Nuclear Laboratory, Science Drive, Durham, North Carolina 27708, USA

M. Vanderhaeghen

Institut für Kernphysik and PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany

Annu. Rev. Nucl. Part. Sci. 2022. 72:1–31

The Proton Structure in and out of Muonic Hydrogen

Aldo Antognini,^{1,2} Franziska Hagelstein,^{1,3} and Vladimir Pascalutsa³

@ PREN2022 Workshop, Paris June 20-23, 2022

Present status of the proton charge radius

Proton radius puzzle: what could it mean ?

4

is presently the best theory of (nearly) everything

Approaches to low-energy QCD

BERMUDA TRIANGLE

EFTS ChPT SCET

> **Dispersive** data-driven

LATTICE QCD

Proton charge radius from lattice QCD

- > Lattice QCD results at (or near) physical pion mass
- Control of excited state contaminations
- > Proton electromagnetic FFs require disconnected contributions (found to be ~1%)
- > Low Q² -> very large lattice volumes, radius extraction requires extrapolation using FF fit

Proton charge radius in hydrogens

Hydrogens sensitive to proton structure

$$\delta V^{(1\gamma)} = -\frac{4\pi\alpha}{\vec{q}^2} [G_E(-\vec{q}^2) - 1] = \frac{2}{3}\pi\alpha r_E^2 + O(\vec{q}^2)$$

$$\Delta E_{nl}^{(FS)} = \left\langle nlm | \,\delta V^{(1\gamma)} | nlm \right\rangle = \delta_{l0} \frac{2}{3}\pi\alpha r_E^2 \frac{\alpha^3 m_r^3}{\pi n^3} + O(\alpha^5)$$
wave function at origin

Subleading proton effects in the Lamb shift

μH Lamb shift: summary of corrections

Two-photon exchange: hadronic corrections

- > Two-photon exchange (TPE): lower blob contains both elastic (nucleon) and inelastic states
- > Lamb shift: described by unpolarized amplitudes T_1 , T_2 : functions of energy v and Q^2
- > Hyperfine splitting: described by polarized amplitudes S_1 , S_2
- > Imaginary parts: directly proportional to nucleon structure functions F_1 , F_2 resp. g_1 , g_2
- Real parts: obtained as dispersion integral over the imaginary parts modulo a subtraction function in case of T₁

Two-Photon Exchange (TPE) in Lamb shift

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \int \frac{d\mathbf{q}}{(2\pi)^3} \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$
dispersion relation
& optical theorem
$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \frac{xF_1(x, Q^2)}{1 - x^2(\nu/\nu_{el})^2 - i0^+}$$

$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2(\nu/\nu_{el})^2 - i0^+}$$

data-driven dispersive calculations:

low-energy expansion: $\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2) / Q^2 = 4\pi \beta_{M1}$

e.g., Pachucki modeled Q² behavior as:

 $\overline{T}_1(0,Q^2) = 4\pi\beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$

the subtraction function can be calculated in ChPT

forward TPE in muonic hydrogen

Lamb shift

LO: J. M. Alarcon, V. Lensky & V.P., Eur. Phys. J. C **74** (2014) 2852 NLO: F. Hagelstein, V. Lensky & V.P., in prep.

HFS LO: F. Hagelstein & V.P., PoS (2015) NLO: F. Hagelstein, V. Lensky & V.P., in prep.

Lamb shift: subtraction function

New measurement of proton polarizabilities

Measurement of Compton scattering at MAMI for the extraction of the electric and magnetic polarizabilities of the proton

E. Mornacchi,¹ P.P. Martel,^{1,2} S. Abt,³ P. Achenbach,¹ P. Adlarson,¹ F. Afzal,⁴ Z. Ahmed,⁵ J.R.M. Annand,⁶ H.J. Arends,¹ M. Bashkanov,⁷ R. Beck,⁴ M. Biroth,¹ N. Borisov,⁸ A. Braghieri,⁹ W.J. Briscoe,¹⁰ F. Cividini,¹ C. Collicott,¹ S. Costanza,⁹ A. Denig,¹ A.S. Dolzhikov,⁸ E.J. Downie,¹⁰ P. Drexler,¹ S. Fegan,⁷ S. Gardner,⁶ D. Ghosal,³ D.I. Glazier,⁶ I. Gorodnov,⁸ W. Gradl,¹ M. Günther,³ D. Gurevich,¹¹ L. Heijkenskjöld,¹ D. Hornidge,² G.M. Huber,⁵ A. Käser,³ V.L. Kashevarov,^{1,8} S.J.D. Kay,⁵ M. Korolija,¹² B. Krusche,³ A. Lazarev,⁸ K. Livingston,⁶ S. Lutterer,³ I.J.D. MacGregor,⁶ D.M. Manley,¹³ R. Miskimen,¹⁴ M. Mocanu,⁷ C. Mullen,⁶ A. Neganov,⁸ A. Neiser,¹ M. Ostrick,¹ D. Paudyal,⁵ P. Pedroni,⁹ A. Powell,⁶ T. Rostomyan,³ V. Sokhoyan,¹ K. Spieker,⁴ O. Steffen,¹ I. Strakovsky,¹⁰ T. Strub,³ M. Thiel,¹ A. Thomas,¹ Yu.A. Usov,⁸ S. Wagner,¹ D.P. Watts,⁷ D. Werthmüller,^{7,15} J. Wettig,¹ M. Wolfes,¹ and N. Zachariou⁷ (A2 Collaboration at MAMI)

Phys.Rev.Lett. 128 (2022) 13, 132503 arXiv: <u>2110.15691</u> [nucl-ex]

EUCLIDEAN SUBTRACTION FUNCTION

- Once-subtracted dispersion relation for $\overline{T}_1(\nu, Q^2)$ with subtraction at $\nu_s = iQ$
- Dominant part of polarizability contribution:

$$\Delta E_{nS}^{'(\text{subt})} = \frac{2\alpha m}{\pi} \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{2 + v_l}{(1 + v_l)^2} \,\overline{T}_1(iQ, Q^2) \text{ with } v_l = \sqrt{1 + 4m^2/Q^2}$$

- Inelastic contribution for $\nu_s = iQ$ is order of magnitude smaller than for $\nu_s = 0$
- Prospects for future lattice QCD and EFT calculations

Hagelstein & VP, Nucl. Phys. A 1016 (2021) 122323

based on Bosted-Christy parametrization:

$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = 0\right) \simeq -12.3 \,\mu\text{eV}$$
$$\Delta E_{2S}^{\text{(inel)}} \left(\nu_s = iQ\right) \simeq 1.6 \,\mu\text{eV}$$

HYPERFINE SPLITTING IN μ H

$$\Delta E_{\rm HFS}(nS) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm structure}\right] E_F(nS)$$

with
$$\Delta_{\text{structure}} = \Delta_Z + \Delta_{\text{recoil}} + \Delta_{\text{pol}}$$

Zemach radius:

$$\Delta_Z = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_r R_Z$$

experimental value: $R_Z = 1.082(37) \,\mathrm{fm}$

A. Antognini, et al., Science **339** (2013) 417–420

- Measurements of the µH ground-state HFS planned by the CREMA, FAMU and J-PARC / Riken-RAL collaborations
- Very precise input for the 2γ polarizability effect needed to find the μ H ground-state HFS transition in experiment
- Zemach radius involves magnetic properties of the proton

Proton Zemach radius from hyperfine splittings

THEORY OF HYPERFINE SPLITTING

Antognini, Hagelstein & VP, Ann. Rev. Nucl. Part. 72 (2022)

The hyperfine splitting of μ H (theory update):

$$E_{1S-hfs} = \left[\underbrace{182.443}_{E_{\rm F}} \underbrace{+1.350(7)}_{QED+weak} \underbrace{+0.004}_{hVP} \underbrace{-1.30653(17)\left(\frac{r_{\rm Zp}}{\rm fm}\right) + E_{\rm F}\left(1.01656(4)\,\Delta_{\rm recoil} + 1.00402\,\Delta_{\rm pol}\right)}_{2\gamma \text{ incl. radiative corr.}}\right] \text{meV}_{2\gamma \text{ incl. radiative corr.}}$$

The hyperfine splitting of H (theory update):

$$E_{1S-hfs}(H) = \left[\underbrace{1418840.082(9)}_{E_{F}} \underbrace{+1612.673(3)}_{QED+weak} \underbrace{+0.274}_{\mu VP} \underbrace{+0.077}_{h VP} \\ -54.430(7) \left(\frac{r_{Zp}}{fm}\right) + E_{F} \left(0.99807(13) \Delta_{recoil} + 1.00002 \Delta_{pol}\right)\right] kHz$$

 2γ incl. radiative corr.

 $E_{1S-hfs}^{hadr}(H) = E_{F}(H) \left[b_{1S}(H) \Delta_{Z}(H) + c_{1S}(H) \Delta_{pol}(H) + \Delta_{hVP}(H) \right] = -54.823(71) \text{ kHz}$

• 2γ + radiative corrections \implies differ for H vs. μ H and IS vs. 2S

Pascalutsa @ PREN2022

High-precision measurement of the "21 cm line" in H:

$$5\left(E_{1S-hfs}^{\text{exp.}}(\text{H})\right) = 10 \times 10^{-13}$$

Hellwig et al., 1970

2γ EFFECT IN THE HFS

- Leverage radiative corrections:
 - I. Prediction for μ H HFS from empirical IS HFS in H

$$E_{nS-hfs}^{hadr}(\mu H) = \frac{E_{F}(\mu H) m_{r}(\mu H) b_{nS}(\mu H)}{n^{3} E_{F}(H) m_{r}(H) b_{1S}(H)} E_{1S-hfs}^{hadr}(H) - \frac{E_{F}(\mu H)}{n^{3}} \Delta_{pol}(\mu H) \left[c_{1S}(H) \frac{b_{nS}(\mu H)}{b_{1S}(H)} - c_{nS}(\mu H) \right]$$

$$= -6 \times 10^{-5} \text{ n} = 1$$

$$= -5 \times 10^{-5} \text{ n} = 2$$

2. Disentangle Zemach radius and polarizability contribution

POLARIZABILITY EFFECT IN THE HFS

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2 \right] \\ \Delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\frac{5+4v_l}{(v_l+1)^2} \left[4I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x,Q^2) \right. \\ & \left. \times \left\{ \frac{1}{(v_l+\sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})(1+v_l)} \left[4 + \frac{1}{1+\sqrt{1+x^2\tau^{-1}}} + \frac{1}{v_l+1} \right] \right\} \right) \\ \Delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x,Q^2) \left\{ \frac{1}{v_l+\sqrt{1+x^2\tau^{-1}}} - \frac{1}{v_l+1} \right\} \end{split}$$

- Polarizability effect on the HFS is completely constrained by empirical information
- ChPT calculation puts the reliability of dispersive calculations (and ChPT) to the test ?!

Tension between the BChPT prediction and data-driven dispersive results:

PROTON ZEMACH RADIUS

Changes Zemach radius (smaller, just like r_p)

Table 2 Determinations of the proton Zemach radius r_{Zp} , in units of fm.

ep scattering		$\mu { m H} \ 2S \ { m hfs}$		H 1 S hfs	
Lin et al. (26)	Borah $et al.$ (91)	Antognini et al. (2)	$B\chi PT$ (62)	Volotka et al. (92)	$B\chi PT$ (62)
$1.054\substack{+0.003\\-0.002}$	1.0227(107)	1.082(37)	1.041(31)	1.045(16)	1.012(14)

Vladimir Pascalutsa - Theinstatheronormatization. JAnva stope introduced as a function of

Ongoing and planned scattering experiments

Experiment	Beam	Laboratory	$Q^2 [(\mathrm{GeV}/c)^2]$	δr_p (fm)	Status
MUSE	e^{\pm},μ^{\pm}	PSI	0.0015-0.08	0.01	Ongoing
AMBER	μ^{\pm}	CERN	0.001-0.04	0.01	Future
PRad-II	e^{-}	Jefferson Lab	$4 \times 10^{-5} - 6 \times 10^{-2}$	0.0036	Future
PRES	e^-	Mainz	0.001-0.04	0.6% (relative)	Future
A1@MAMI (jet target)	<i>e</i> ⁻	Mainz	0.004-0.085		Ongoing
MAGIX@MESA	<i>e</i> ⁻	Mainz	$\geq 10^{-4} - 0.085$		Future
ULQ ²	е ⁻	Tohoku University	$3 \times 10^{-4} - 8 \times 10^{-3}$	$\sim 1\%$ (relative)	Future

Lower bound directly from e-p data

$$R_E^2(Q^2) = -\frac{6}{Q^2} \log G_E(Q^2) \xrightarrow[Q^2=0]{} R_E^2$$

This function sets a lower bound:

$$R_E^2(Q^2) \le R_E^2 \,, \quad \text{for } Q^2 \ge 0$$

Hagelstein & VP, Phys. Lett. B (2019).

Data points from A1 Coll.: Bernauer et al (2010) Mihovilovic et al (2017)

No extrapolation required

Various extractions

Lower bounds based on: Bernauer et al (2010) Mihovilovic et al (2017)

Lower bound from PRad data – uncertain?

PRad data: 1.1 GeV and 2.2 GeV

M. Horbatsch, Phys. Lett. B 804 (2020) 135373

IMPACT MUONIC ATOMS

Antognini, Hagelstein & VP, Ann. Rev. Nucl. Part. 72 (2022) [arXiv:2205.10076]

Backup

hange

Proton polarizability in muonic-H Lamb shift

Čan be computed with dispersion th. + data

But subtraction term is needed — model dependent

vs. Chiral perturbation theory predictive at LO

Compiled by: Hagelstein, Miskimen & VP, Prog. Part. Nucl. Phys. (2016)

DISCREPANCY IN THE HFS

- Empirical information on spin structure functions is limited
- Low-Q region is very important (cancelation between $I_1(Q^2)$ and $F_2(Q^2)$)

New data JLab Spin Physics Programme, e.g., g2p 2204.10224.