

Simone Salvatore Li Muli

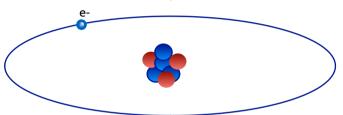
Sonia Bacca

Image credit: Oak Ridge National Laboratory, US department of energy; Conceptual art by LeJean Hardin and Andy Sproles

Muonic atoms

Hydrogen-like systems

Ordinary atoms



Muonic atoms

The muon is more sensitive to the nucleus

Excellent precision probe for the nucleus

Experimental program at **PSI** of the **CREMA** collaboration

Muonic Hydrogen

- Pohl et al., Nature (2010)
- Antognini et al., Science (2013)

Muonic Deuterium

- Pohl et al., Science (2016)

Muonic Helium-4

- Krauth et al., Nature (2021)

$$\delta_{LS} = \delta_{QED+NR} + \delta_{NS}^{(4)} \times r_c^2 + \delta_{NS}^{(5)} + \delta_{NS}^{(6)} + \dots$$

$$\delta_{LS} = \delta_{QED+NR} + \delta_{NS}^{(4)} \times r_c^2 + \delta_{NS}^{(5)} + \delta_{NS}^{(6)} + \dots$$

$$\delta_{
m QED} =$$
 + ...

$$\delta_{LS} = \delta_{QED+NR} + \delta_{NS}^{(4)} \times r_c^2 + \delta_{NS}^{(5)} + \delta_{NS}^{(6)} + \dots$$

$$\delta_{\mathrm{NR}} =$$
 + ...

$$\delta_{LS} = \delta_{QED+NR} + \delta_{NS}^{(4)} \times r_c^2 + \delta_{NS}^{(5)} + \delta_{NS}^{(6)} + \dots$$

$$\delta_{
m NS} =$$
 + ...

A matter of precision

$$\delta_{LS} = \delta_{QED+NR} + \delta_{NS}^{(4)} \times r_c^2 + \delta_{NS}^{(5)} + \delta_{NS}^{(6)} + \dots$$

For the muonic Helium-4 ion

The Uncertainty is largely dominated by the nuclear structure effects.

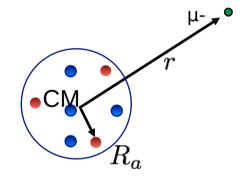
Outline

Theory

$$H = H_N + H_\mu + \Delta V$$

The Nuclear Hamiltonian is included or not depending on whether we look for nuclear sizes or polarizability corrections

$$H_{\mu} = \frac{\mathbf{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

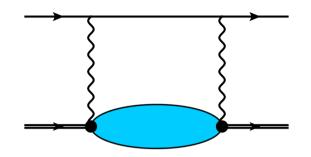


The corrections to the bulk coulomb interactions are included in perturbation theory

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\mathbf{r} - \mathbf{R}_a|} \right)$$

$$\delta_{\rm NS} = \delta_{\rm FS} + \delta_{\rm pol}$$

$$\delta_{\text{pol}}^{(5)} = \langle N_0 \mu | \Delta V G \Delta V | N_0 \mu \rangle$$



$$\begin{split} \delta_{\mathrm{NS}} &= \delta_{\mathrm{FS}} + \delta_{\mathrm{pol}} \\ \delta_{\mathrm{pol}}^{(5)} &= \langle N_0 \mu | \, \Delta V \, G \, \Delta V \, | N_0 \mu \rangle \\ &= \sum_{N \neq N_0} \int d^3 R \, d^3 R' \, \, \rho_N^p(\mathbf{R}) \, \, W(\mathbf{R}, \mathbf{R}', \omega_N) \, \, \rho_N^p(\mathbf{R}') \end{split}$$

$$\begin{split} \delta_{\mathrm{NS}} &= \delta_{\mathrm{FS}} + \delta_{\mathrm{pol}} \\ \delta_{\mathrm{pol}}^{(5)} &= \langle N_0 \mu | \, \Delta V \, G \, \Delta V \, | N_0 \mu \rangle \\ &= \sum_{N \neq N_0} \int d^3 R \, d^3 R' \, \, \rho_N^p(\mathbf{R}) \, W(\mathbf{R}, \mathbf{R}', \omega_N) \, \, \rho_N^p(\mathbf{R}') \\ &= C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3 R \, d^3 R' \, \, \rho_N^p(\mathbf{R}) \, \left[\eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \ldots\right] \, \rho_N^p(\mathbf{R}') \end{split}$$

$$\delta_{\rm pol}^{(5)} = C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3R \ d^3R' \ \rho_N^p(\mathbf{R}) \ \left[\eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \ldots\right] \ \rho_N^p(\mathbf{R}')$$
 LO NLO N2LO

$$\eta = \sqrt{2m_r \omega_N} |\mathbf{R} - \mathbf{R}'| \approx \sqrt{\frac{m_r}{m_N}} \approx 0.33$$

... Some more algebra ...

$$\delta_{\mathrm{pol}}^{(5)} = \sum_{i} \left[C_{i}(Z\alpha, m_{r}) \int_{0}^{\infty} \mathcal{F}_{i}(\omega/m_{r}) S_{O_{i}}(\omega) d\omega \right]$$
Nuclear response function

Ab-initio Nuclear Theory

Ab-initio methods: Solutions of the time-independent Schrödinger equation for the nuclear states

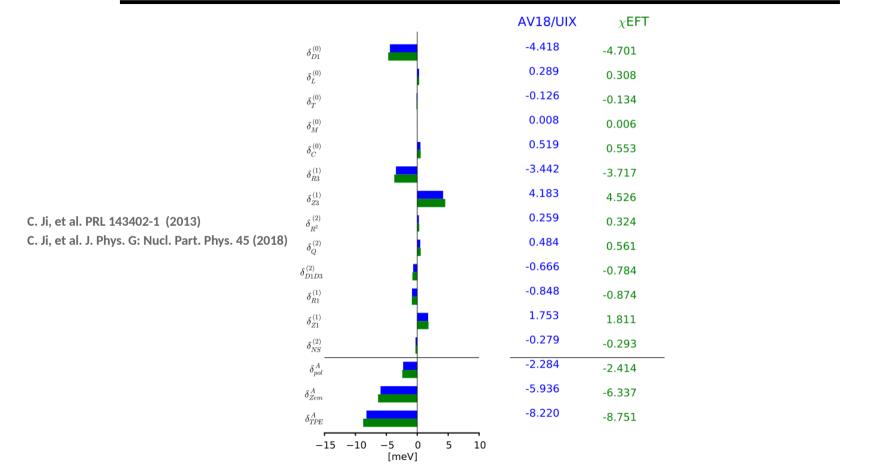
$$\widehat{H}_{N}\Psi_{N} = E_{N}\Psi_{N}$$

With controlled approximations.

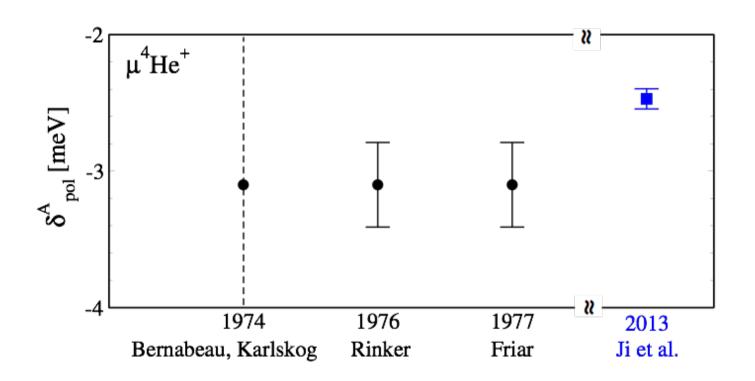
Solutions of Schrödinger Eq.
$$S_{O_i}(\omega) \longrightarrow \delta_{\mathrm{pol}}^{(5)}$$

The nuclear Hamiltonian is an input and a big source of uncertainty.

Previous work on Helium-4



Impact of ab-initio theory



The Hamiltonians

	2N force	3N force	4N force
LO	X +-+		
NLO	X		
N2LO		 	
N3LO		<u> </u>	

Interactions derived from the Chiral effective field theory and written in coordinate space.

Hierarchy among different operators decided after specifying a power counting scheme.

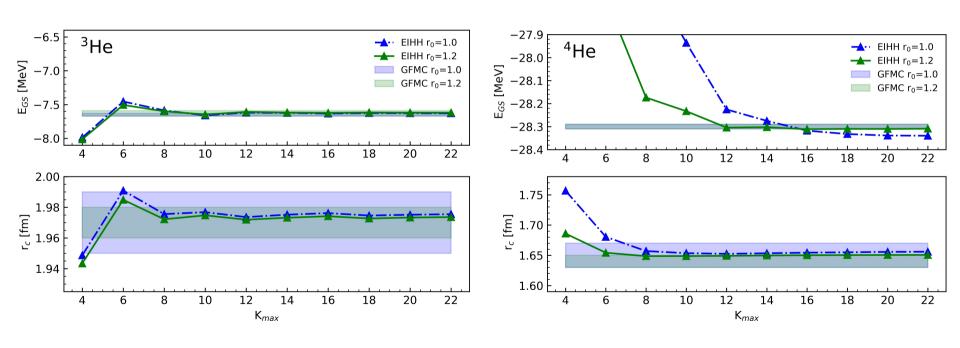
The separation of scales of the operators makes it possible to reliably quantify the uncertainties due to the truncation of the expansion (Ex. With Bayesian Statistics).

Outline

Results

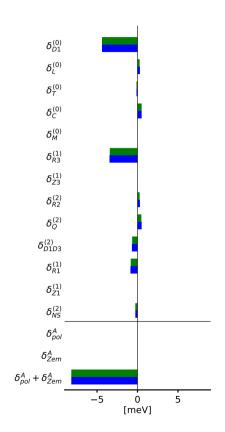
Benchmark tests

S.S. LM, S. Bacca, N. Barnea, Front. Phys. 9, 671869 (2021)

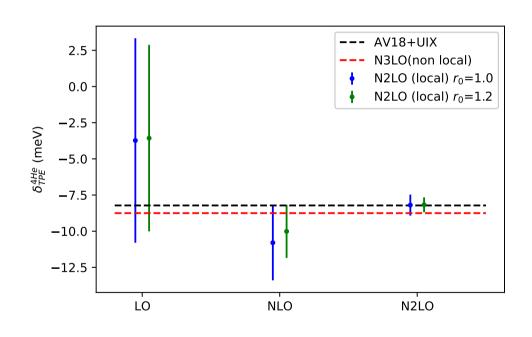


NS corrections in µ4He+ (EKM)

S.S.LM, et al. In preparation for 2022

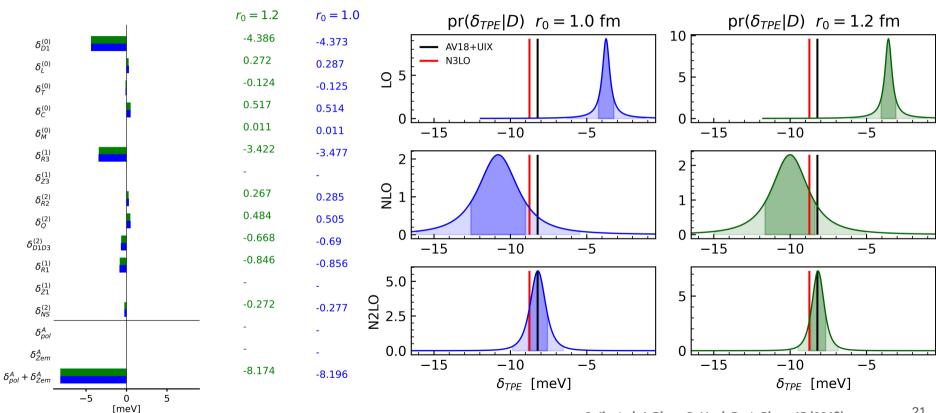


$r_0 = 1.2$	$r_0 = 1.0$
-4.386	-4.373
0.272	0.287
-0.124	-0.125
0.517	0.514
0.011	0.011
-3.422	-3.477
-	-
0.267	0.285
0.484	0.505
-0.668	-0.69
-0.846	-0.856
-	-
-0.272	-0.277
-	-
-	-
-8.174	-8.196



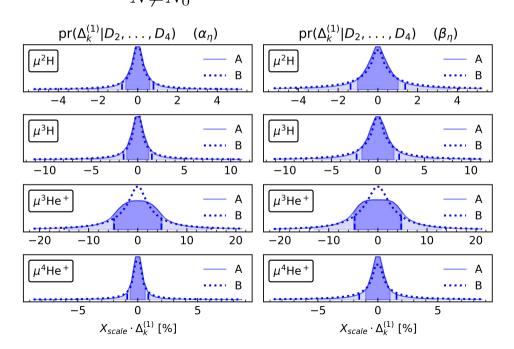
NS corrections in µ4He+ (Bayes)

S.S.LM, et al. In preparation for 2022



Eta-expansion uncertainty

$$\delta_{\text{pol}}^{(5)} = C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3R \ d^3R' \ \rho_N^p(\mathbf{R}) \left[\eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \dots\right] \rho_N^p(\mathbf{R}')$$

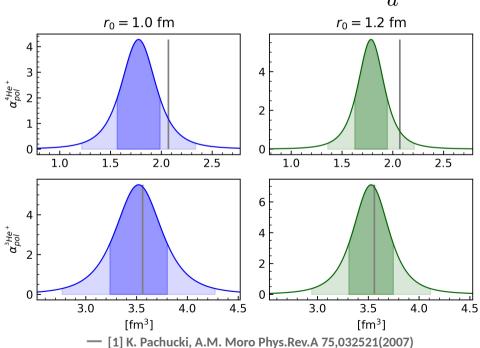


S.S.LM, et al. ArXiv:2203.10792

[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

NS effects in 3He+ and 4He+

$$\delta_{\text{pol}}^{(5)} = -m\alpha^4 \left\langle \sum_{a} \delta^3(r_a) \right\rangle (m^3 \alpha_{\text{pol}})$$



S.S.LM, et al. In preparation for 2022

1S-2S	$^{3}\mathrm{He}^{+}$	$^{4}\mathrm{He}^{+}$
[1]	48(5)kHz	28(3)kHz
This work	48(6)kHz	24(4)kHz

Conclusions

- Ab-initio theories represent an excellent framework to calculate nuclear structure effects in hydrogen-like atoms.
- We re-evaluated the uncertainties coming from the nuclear model and from the η -expansion using chiral perturbation theory and Bayesian techniques.
- The local chiral interaction at N2LO used here is not able to reduce the uncertainty of $\delta_{
 m NS}^{(5)}$ we need interactions at higher order.
- It is crucial to compute the nuclear structure effects at order $\,\delta_{
 m NS}^{(6)}$

Backup

Uncertainty

Uncertainty sources

- Numerical
- Nuclear model
- Nucleon model
- Truncation of EM multipoles
- η-expansion
- Expansion in (Za)

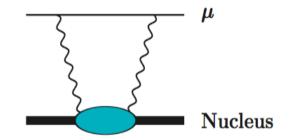
Evaluation of the TPE amplitude

Coulomb Distortion

Contribution coming from intermediate interactions between lepton and nucleus during the TPE process.

We include only the correction of order $(Z\alpha)^6log(Z\alpha)$

Since we work in the leading dipole approximation, the correction is related to the electric dipole response



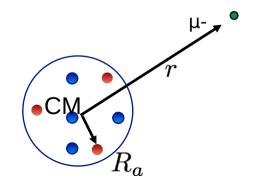
Relativistic effects

They are smaller by factors $\; rac{\omega_{th}}{m_r} \;$

Includes also first effects from electromagnetic currents. Are evaluated in the leading dipole approximation

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{th}}^{\infty} K_{L(T)} \left(\frac{\omega}{m_r}\right) S_{D1}(\omega)$$

Nucleon size effects



TPE in He-3

S.S. LM, et al. In preparation

