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Proton Zemach Radius

Spatial distribution of charge and spin

o Defined by a convolution of the charge distribution with a
magnetic moment distribution.

Ry = /dST/dBT‘/,OE(T/),OM(T—T/)

A. C. Zemach, Phys. Rev. 104, 1771 (1956).

o Can be obtained by measuring the hyperfine splitting.

EHFS — EF(l + 5QED + 5Proton) (EF=1 32.443 meV)

5Rec 1.060 meV

i 5]_:)01 O 084 mev R. N. Faustov and A. P. Martynenko,

J. Exp. Theor. Phys. 98, 39 (2004).
+ omvp  0.004 meV

- 6Zemach -1.36 meV <«— 5Zemach — _QCVmupRZ

5Proton
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Three up-HFS Projects

Independent approaches at RAL, PSI, and J-PARC
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Laser Spectroscopy of up-HFS

Method of our experiment

>

o Laser induced hyperfine transition

. : Laser shot
and muon spin flip
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o Parity violating muon decay
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Project Timeline

Since the experimental proposal

2013 2014 2015 2016 2017 2018 2019
Target R&D RAL Test1| |RAL Test2| |RAL Test3
The Proposal
Puzzle Submitted Detector R&D J-PARC Test

Target Cell Cryostat Detector

Pump Laser

Seed Laser




Experimental Setup

Cryogenic hydrogen target

4 Y beam
/

High pulse energy mid-IR laser
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Tm,Ho: YAG Ceramic Laser

for a pump beam
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o 2.09 um light is necessary for 6.8 um light generation via an OPO.

o LD pumped, Q-switching, Tm3+,Ho3+ co-doped YAG ceramic laser was
developed.

o Sufficient performance as a pumping beam for the ZGP-OPO was achieved
(E>20 mJ, Width<150 ns).

S. Kanda et al., RIKEN Accelerator Progress Report 51, 214 (2018).
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Quantum Cascade Laser

for a seed beam
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Laser diode current (A)

o Quantum cascade laser (QCL) for a seeder was developed.

o Oscillationat 1473.03 cm-1 = 6.778 um was confirmed.
o Radiant output power was 25 mW at 6.778 um (high enough).

o Spectral linewidth measurement is in preparation.

9



Optical Parametric Oscillator

for frequency conversion

Mirror ZnGeP; crystal Mirror

209 um pump

A
11 1" BN
A‘ : 11 1 1 11 l.l .l 1 l.l l=l 11 “ 11 1 1 111 1 | I | | I .
b A D A 1 A 2 A2 R R SV

Output light wavelength (um)

4 Phase matching angle (deg.)

o Optical parametric oscillator provides two lower frequency lights
from a pumping light via non-linear optical effect.

o ZGP is an optimum from viewpoints of the damage threshold and
non-linear optical coefficient.
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Optical Parametric Oscillator

for frequency conversion
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o The ZGP-OPO was demonstrated with Cr:ZnSe laser (2.4 um).

o Similar performance is expected with 2.09 um pump.

o The conversion efficiency of 13% or above is achievable.
S. Aikawa, Master Thesis, Tokyo Institute of Technology (2016).
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Cryogenic hydrogen gas target

Non-resonant multipass-cell
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Hydrogen Gas Target

at cryogenic temperatures

o Target is cooled down to 20 K by using a pulse-tube cryostat.
o (as density is monitored by a Baratron pressure gauge.

o Target cell is made of tungsten for background suppression.
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Electron Detector

for a muon spin measurement
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o A segmented scintillation counter consisting of scintillator bars and silicon
photomultipliers (SiPMs). A fast frond-end electronics for SiPM readout is used.

o Coincidence analysis for signal-to-noise ratio improvement.
o Tested at RIKEN-RAL muon facility and sufficient performance was confirmed.

S. Kanda et al., RIKEN Accelerator Progress Report 52, 180 (2019).
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Electron Detector Upgrade

for a muon spin measurement
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o Segmented scintillation counter
consisting of 1152 tiles and SiPMs.
Developed for muonium spectroscopy.
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o Working well with high-intensity pulsed

muon beams. Ty L
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S.Kanda et al., Phys. Lett. B 815, 136154 (2021). Instantanecus.event rate (MEz)
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Multipass-Cell

for laser-light reflections
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o The reflective index of 99.95% is desirable.

o A pair of prototype mirrors were fabricated and tested.
o A precise measurement of the reflective index is in progress.
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Cascade De-excitation

of muonic atoms in a low-density gas

Mechanism Process (Hydrogen case) o When a nuclear C.oulomb potential
captures a negative muon, the
Radiative transition (up)i = (up)f + 7 muon forms an exotic bound state
External Auger effect | (up)i + Hz— (up)s +e + Hat called muonic atom.
Stark mixing (p)ni + H—>(up)n’ + H o Initial state is highly excited with
_ _ the principle quantum number
Elastic scattering (up)n + H=>(up)n + H n~14 (meu/me)_
Coulomb de-excitation | (up)i+p—>(up)r+p o Muon spin depolarization due to

Auger electrons.

o Acceleration by Coulomb de-

V. A. Markushin, excitations.

Phys. Rev. A 50, 1137

(1994) o Coulomb explosion of a molecule.

o Electron refilling from surrounding
atoms.

o Too fast to track one-by-one.
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Atomic Collisional Quenching

De-excitation of the hyperfine triplet

o Collisional quenching of the HFS triplet state
o Inelastic scattering up(F=1)+p -> up(F=0)+p

o Only theoretical predictions are known and no measurement had been performed.

1000
900f;
800
700
600
500
400
300
200
100

o Quenching rate depends on collision
energy and gas pressure.

| o Expected lifetime at 20 K, 0.06 atm is
Values from:J:'S:‘Cohen, ]
Phys. Rev. A 43,3460 (1991).-|  approximately 50 ns.
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o A new experiment for direct
| measurement of the quenching rate
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Collisional Quenching Measurement

at RIKEN-RAL Muon Facility

(@) ] (b)

Experimental setup CHRONUS spectrometer
o Initial muon spin is polarized along the beam axis.
o Muon forms a muonic atom after stopping in the target.
o Muon spin rotates under a static magnetic field.

o Angular asymmetry in electron emission from muon decay is measured.
S. Kanda et al., J. of Phys. Conf. Ser., 1138 (2018).
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Negative Muon Spin Rotation

of muonic carbon and muonic deuterium
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o Muon spin rotation in graphite was measured to calibrate the beam
polarization and detector acceptance. The uSR amplitude was 0.045%+
0.002, the beam polarization was estimated to be 95%.

o Using a deuterium gas target, an oscillation amplitude of 0.017+0.003
was obtained, then the residual polarization was 8.3%. Relaxation was

too slow to evaluate.
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Muonic Protium Spin Rotation

at RIKEN-RAL Muon Facility
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o Muon spin rotation with a low-density hydrogen gas target was
performed using a new target chamber for better B-field uniformity.

o The low gas pressure of 0.1 atm was necessary, so the signal-to-
noise ratio is small. Nevertheless, a spin rotation-like signal is
visible, so careful analysis and detailed simulations are underway.
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Atomic Parity Violation

a spin-off project from wp-HFS spectroscopy

Initial states ——, Electron tracker = Target gas cell
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o A new measurement of the Weinberg angle using muonic atoms.

o Parity-violating mixing between 2S-2P states results in anisotropic
single-photon emission (M1).

o Muonic X-rays are measured by a scintillator-based calorimeter.
S. Kanda, EPJ Web Conf. 262, 01010 (2022).
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Feasibility of the Experiment

expectation on the statistical precision
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o The beam flux is 1x106 w/s with the momentum of 40 MeV/c. About 0.05% of muons stop
between the multipass-cell mirrors.

o The laser light is injected 1 us after the muon pulse arrival. The averaged muon spin polarization
will be 2% with the pulse energy of 20 mJ.

o The signal counting rate will be 0.14/s. A week of measurement is required for frequency scan.

o Completion of the high pulse-energy laser system is necessary. Improvement in the OPO and
OPA is essential. Technically possible, mainly a matter of budget.

S. Kanda et al., Proceeding of Science, POS(NUFACT2017)122 (2018).
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Summary

and outlooks

o For a deeper understanding of the proton radius,
a new measurement of the ground-state hyperfine
splitting in muonic hydrogen is in preparation.

o In the experiment, the angular asymmetry of muon
decay electrons is to be measured for detection of
the state transition.

o The hydrogen gas target and electron detector
are ready for the experiment.

o We are working to complete the laser system and
realize the experiment.
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