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Outline
• Introduction
• The FAMU experiment: principle of 

operation
• Apparatus setup & present status
• Summary
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Introduction
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FAMU: HFS of µ-p ground level

Study of the properties of the proton

1) scattering: electron experiments
2) scattering: elastic muon-proton

3) spectroscopy: electronic atoms and ions
4) spectroscopy: exotic atoms

HFS of muonic hydrogen 
ground level
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FAMU: a bumpy path... 
Data taking planned for March 2020 
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FAMU: a bumpy path... 
Data taking planned for March 2020 
Hit hard by pandemic!
… moved to September 2020
… then December 2020
… then June 2021
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FAMU: a bumpy path... 
Data taking planned for March 2020 
Hit hard by pandemic!
… moved to September 2020
… then December 2020
… then June 2021
Meanwhile a planned accelerator long shutdown began

ISIS long shutdown
Planned: 09/2020 → 09/2021
Planned: 01/2021 → 12/2021
Planned: 07/2021 → 07/2022
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The FAMU experiment
Fisica Atomi MUonici (Physics with muonic atoms)
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FAMU: μ-p spectroscopy

“Usual” spectroscopic flow:
1) create muonic hydrogen
2) shoot laser
3) count triplets
repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states?
Hyperfine splitting of (μ-p)1S ≈183 meV...
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HFS de-excitation: μ-p gains 
kinetic energy

“Usual” spectroscopic flow:
1) create muonic hydrogen
2) shoot laser
3) count triplets
repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states?
Hyperfine splitting of (μ-p)1S ≈183 meV...
… but in the triplet to singlet transition muonic hydrogen gains kinetic 
energy (≈120 meV, 0.12 eV) 
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μ- transfer rate to high-Z atoms 
is energy dependent

“Usual” spectroscopic flow:
1) create muonic hydrogen
2) shoot laser 
3) count triplets
repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states?
Hyperfine splitting of (μ-p)1S ≈183 meV...
… but in the triplet to singlet transition muonic hydrogen gains kinetic 
energy (≈120 meV, 0.12 eV) 
Key point:
The muon transfer rate to higher-Z atoms in collisions is (kinetic)
energy dependent at epithermal energies (≈100/200 meV)
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Key point:
The muon transfer rate to higher-Z atoms in collisions is (kinetic)
energy dependent at epithermal energies (≈100/200 meV)

μ- transfer rate to high-Z atoms 
is energy dependent

Oxygen transfer rate
C.Pizzolotto et al., Phys. Lett. A 403 (2021) 127401
E.Mocchiutti et al., Phys. Lett. A 384 (2020) 126667
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FAMU: μ-p spectroscopy

out of resonance
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FAMU: μ-p spectroscopy

Resonance!
Transfer to Oxygen is kinetic energy dependent
→ observable: distortion of the time distribution 
of delayed signal 
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UK - Didcot
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RIKEN – RAL muon facility 
Rutherford Appleton Laboratory – Oxfordshire UK

ISIS proton accelerator
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High intensity muon beam 

20 ms (50 Hz) 20 ms (50 Hz)

Tunable momentum: 20 – 120 MeV/c
Flux µ- : ≈105 muons/s
Double pulsed beam

UK - Didcot
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Apparatus setup & present status



Emiliano Mocchiutti, INFN Trieste, 21.06.2022 – FAMU

Main requirements:
- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H2 compatible

21

Target: a necessary trade-off



Emiliano Mocchiutti, INFN Trieste, 21.06.2022 – FAMU

Main requirements:
- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H2 compatible

- Very big (to improve statistics) and very small (to increase laser 
photon density, given a maximum laser power available)
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Target: a necessary trade-off
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Main requirements:
- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H2 compatible

- Very big (to improve statistics) and very small (to increase laser 
photon density, given a maximum laser power available)

- Made of very heavy materials (to minimize noise in the delayed 
phase) and of very light materials (to allow X-rays exit)

23

Target: a necessary trade-off

... and, of course, all the above within time and cost constraints!
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Target: the design

LN2 tank
Pressurized vessel

Muon beam gas line

CAD
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Target: GEANT4 simulation

Muon beam

laser beam

Cryostat

Vacuum flangeCryostat cap

Cryostat body

GEANT4
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Target: GEANT4 simulation

GEANT4

Aluminium 
vessel
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Target: GEANT4 simulation

GEANT4

Optical cavity
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Target: GEANT4 simulation

muons

GEANT4

Lead absorber

Invar support
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Target: GEANT4 simulation

muons

GEANT4

Silver moderator
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Target: ready in our lab 
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Target: expected energy spectrum

Oxygen lines
(133 & ≈160 keV)

Positron annihilation
(511 keV)
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Main requirements:
- High solid angle coverage
- High speed
- Good energy resolution @100 keV

17 LaBr3:Ce 1’’ read by PMT
11 LaBr3:Ce 1’’ read by SiPM
15 LaBr3:Ce ½’’ read by SiPM

1 HPGe (Ortec GEM-S)

1 hodoscope for beam monitoring (64 channels, 
1 mm square fibers read by SiPM)  

32

Detectors
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≈80 ns
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X-rays distribution from simulation
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Detectors: placement 

LaBr - PMT

LaBr - SiPM

LaBr - SiPM

LaBr - PMT
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Detectors: mechanical integration 
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Detectors: electronical integration 



Emiliano Mocchiutti, INFN Trieste, 21.06.2022 – FAMU

Substrate material: FuSi
HR coating: ZnS/Ge
Support: Invar (CTE<10ppm/K)

37

Optical cavity: design 
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Optical cavity: characterization 
• Vacuum system
• Feedthrough with 

stepper motor
• Thermal imaging camera
• Tip/Tilt 0-10 mrad
• Quantum Cascade Laser 

λ@6.13μm (P=80 mW)
• He-Ne Laser λ@0.632μm
• Injection light system 

based on a telescope 
with two Off Axis 
Parabolic Mirror.
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Optical cavity: characterization

The cavity number of reflections remain 
stable against small variations of the 
incident angle (tip/tilt movement) 
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Laser: characteristics 

Wavelength range           6800 ± 50 nm           ≈ 44 THz
Energy output                 > 1 mJ                      up to >4 mJ
Linewidth                       < 0.07 nm                 450 MHz
Tunability steps              0.03 nm                   200 MHz 
Pulses duration               10 ns
Repetition rate                25 Hz
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Laser: scheme

0.8-1.2 mJ

10-42 mJ

10-250 mJ

1-4 mJ
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Laser: difference frequency 
generation 

• Required output > 1 mJ
• Inputs: ≈70 mJ @ 1064 nm and ≈35 mJ  1262 nm
• Output Wavelength: 6758 nm
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Laser: our NLO crystals 
Nonlinear crystals

Energies:
LiInS2 & LiInSe2: 1.3 – 1.5 mJ (double pass)
BaGa4Se7 ≈1.5 mJ (single pass)

Available
LiInS2 – 5x5x4 / 5x5x3
LiInS2 – 5x5x15 
LGS – 5x5x4 mm
LiInS2 - 7x7x20 mm / 8x8x18
LiInSe2 - 7x7x15 mm
BaGa4Se7 – 10 x 9 x 28 mm, 6 x 6 x 6 mm
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Laser: frequency measurement 

6785 nm wavelength meter
-Center wavelength accuracy 200 MHz

1262 and 1064 nm wavelength meter
-Center wavelength accuracy 60 MHz @ 1064 nm
-Center wavelength accuracy 40 MHz @ 1262 nm

Overall accuracy better than:
6800.000 ± 0.020 nm
44.0871 ± 0.0001 THz
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C2H4 absorption cell

Accuracy (comparing to HITRAN database):
from ±10 to ±140 MHz 
depending on the absorption line

45

Laser: absolute calibration cell 
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Laser status @ RAL 

Laser system remain untouched for about 2 years… 
maintenance needed!
• Lotis (Belarus) lasers refurbished and restarted 

(thanks to RAL staff!)
• Innolas lasers to be restarted by contractor technician 

(planned on 4th/5th July)
• DFG and cavity calibration setup to be completed
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Laser status @ RAL 
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Laser status @ RAL 
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Laser status @ RAL 
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FAMU setup 
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FAMU setup 
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Measurement plan 

• Zemach radius present measurement range: ≈[1.00,1.12] fm → ≈30 GHz range

• Natural Doppler broadening @80K ≈300 MHz

at least 100 steps to cover the whole range with 300 MHz steps…
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Measurement plan 

• Zemach radius present measurement range: ≈[1.00,1.12] fm → ≈30 GHz range

• Natural Doppler broadening @80K ≈300 MHz

at least 100 steps to cover the whole range with 300 MHz steps…

The first already allocated beam time for FAMU sum up to 25 days.

We’ll start with 24 hours for one frequency measurement (conservative approach) 

Scan of the most probable signal range
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Time scale 

by end of June: refurbishment of muon line at RAL ends

04-05 July: Innolas technician at RAL to power on our lasers

by July 15th: all equipment at RAL

15-31 July: installation of target and DAQ system starts

1-20 September: installation of detectors and the target on the beam line

3rd ISIS Cycle 2022 [20 September – 15 October]: ready for muon beam line 
commissioning (test of our system)

4th ISIS Cycle 2022 [8 November – 16 December]: our data taking is planned in this 
cycle
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• FAMU: measurement of the (µ-p)1S hyperfine
splitting

• An exciting journey:
– started 25 years ago
– one of the most intense pulsed beam in the world
– best detectors for energy and time observation
– first measurement of the energy dependence of

muon transfer rate to Oxygen
– innovative and powerful laser system

• Target, detectors, cavity, laser, everything is
ready to go

Looking forward to perform the spectroscopic 
measurement by the end of 2022!

Summary

55
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Spares
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Summary of muon atomic 
capture physics (in H gas)
1. Hydrogen gas at room temperature (i.e. H2 molecules mean kinetic 

energy 30 meV – 0.03 eV)
2. Muon slows down and reaches a H2 molecule
3. Muon is captured at high quantum state and H2 molecule breaks
4. Muon goes down to ground level losing energy by Auger effect 

(electron is kicked away) and radiative processes (X-ray emission)
5. The system muon-proton (muonic hydrogen) gains kinetic energy 

(average energy about 2 eV !)
6. The muonic hydrogen thermalizes due to collision with other 

molecules (thermalization time depends on density and 
temperature, order of 100 ns @ 40 bar 300 K)

7. The muon decays OR it is transferred OR it undergoes nuclear 
capture (µ-+p → n+νµ)
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OAPM #1

OAPM #2

f2

f1

tip/tilt
platform 

Alignment procedure
1. We inject in the cavity in the cryogenic target a visible laser (red,

green) and we align the cav_esp in a way that the laser impinges
orthogonally on the second mirror of cav_esp.

2. A BS at 45° is introduced between the OPAM #2 and the injection
mirror of cav_esp. The laser beam is splitin two parts and sent to
two cavities. It is crucial that the distance between the BS and the
two injection mirrors are the same (in the layout is 32 cm).

3. By means the translators and rotators and monitoring the
interference emerging from the two cavities, cav_ref is aligned
superimposing perfectly the two beams. This step guarantee that
the optical path in cav_ref is the same as that in cav_esp.

4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to
maximize the number of reflections in the cav_ref, with warranty
that the optical path in cav_esp will be very similar.

5. The visible beam laser is switched off, the BS is removed and the
infrared laser is injected in the cav_esp.

cav_esp

We use a “twin” cavity (cav_ref) to one in the cryogenic target (cav_esp).
With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a
part of laser beam to align this cavity.
The alignment procedure is carried out in two step:
1) alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom

mirror of cav_esp;
2) alignment of cav_esp by monitoring the optical path in cav_ref.

Target

cav_ref

58

Optical cavity: alignment



Emiliano Mocchiutti, INFN Trieste, 21.06.2022 – FAMU

OAPM #1

OAPM #2

f2

f1

tip/tilt
platform 

Alignment procedure
1. We inject in the cavity in the cryogenic target a visible laser (red,

green) and we align the cav_esp in a way that the laser impinges
orthogonally on the second mirror of cav_esp.

2. A BS at 45° is introduced between the OPAM #2 and the injection
mirror of cav_esp. The laser beam is split in two parts and sent to
two cavities. It is crucial that the distance between the BS and the
two injection mirrors are the same (in the layout is 32 cm).

3. By means the translators and rotators and monitoring the
interference emerging from the two cavities, cav_ref is aligned
superimposing perfectly the two beams. This step guarantee that
the optical path in cav_ref is the same as that in cav_esp.

4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to
maximize the number of reflections in the cav_ref, with warranty
that the optical path in cav_esp will be very similar.

5. The visible beam laser is switched off, the BS is removed and the
infrared laser is injected in the cav_esp.

cav_esp

We use a “twin” cavity (cav_ref) to one in the cryogenic target (cav_esp).
With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a
part of laser beam to align this cavity.
The alignment procedure is carried out in two step:
1) alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom

mirror of cav_esp;
2) alignment of cav_esp by monitoring the optical path in cav_ref.

Target

cav_ref
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Optical cavity: alignment
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Alignment procedure
1. We inject in the cavity in the cryogenic target a visible laser (red,

green) and we align the cav_esp in a way that the laser impinges
orthogonally on the second mirror of cav_esp.

2. A BS at 45° is introduced between the OPAM #2 and the injection
mirror of cav_esp. The laser beam is split in two parts and sent to
two cavities. It is crucial that the distance between the BS and the
two injection mirrors are the same (in the layout is 32 cm).

3. By means the translators and rotators and monitoring the
interference emerging from the two cavities, cav_ref is aligned
superimposing perfectly the two beams. This step guarantee that
the optical path in cav_ref is the same as that in cav_esp.

4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to
maximize the number of reflections in the cav_ref, with warranty
that the optical path in cav_esp will be very similar.

5. The visible beam laser is switched off, the BS is removed and the
infrared laser is injected in the cav_esp.

cav_esp

X

Y

We use a “twin” cavity (cav_ref) to one in the cryogenic target (cav_esp).
With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a
part of laser beam to align this cavity.
The alignment procedure is carried out in two step:
1) alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom

mirror of cav_esp;
2) alignment of cav_esp by monitoring the optical path in cav_ref.

BS

Target

cav_ref
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Optical cavity: alignment
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Alignment procedure
1. We inject in the cavity in the cryogenic target a visible laser (red,

green) and we align the cav_esp in a way that the laser impinges
orthogonally on the second mirror of cav_esp.

2. A BS at 45° is introduced between the OPAM #2 and the injection
mirror of cav_esp. The laser beam is split in two parts and sent to
two cavities. It is crucial that the distance between the BS and the
two injection mirrors are the same (in the layout is 32 cm).

3. By means the translators and rotators and monitoring the
interference emerging from the two cavities, cav_ref is aligned
superimposing perfectly the two beams. This step guarantee that
the optical path in cav_ref is the same as that in cav_esp.

4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to
maximize the number of reflections in the cav_ref, with warranty
that the optical path in cav_esp will be very similar.

5. The visible beam laser is switched off, the BS is removed and the
infrared laser is injected in the cav_esp.

cav_esp

X

Y

We use a “twin” cavity (cav_ref) to one in the cryogenic target (cav_esp).
With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a
part of laser beam to align this cavity.
The alignment procedure is carried out in two step:
1) alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom

mirror of cav_esp;
2) alignment of cav_esp by monitoring the optical path in cav_ref.

BS

Target

cav_ref
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Optical cavity: alignment
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Alignment procedure
1. We inject in the cavity in the cryogenic target a visible laser (red,

green) and we align the cav_esp in a way that the laser impinges
orthogonally on the second mirror of cav_esp.

2. A BS at 45° is introduced between the OPAM #2 and the injection
mirror of cav_esp. The laser beam is split in two parts and sent to
two cavities. It is crucial that the distance between the BS and the
two injection mirrors are the same (in the layout is 32 cm).

3. By means the translators and rotators and monitoring the
interference emerging from the two cavities, cav_ref is aligned
superimposing perfectly the two beams. This step guarantee that
the optical path in cav_ref is the same as that in cav_esp.

4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to
maximize the number of reflections in the cav_ref, with warranty
that the optical path in cav_esp will be very similar.

5. The visible beam laser is switched off, the BS is removed and the
infrared laser is injected in the cav_esp.

cav_esp

We use a “twin” cavity (cav_ref) to one in the cryogenic target (cav_esp).
With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a
part of laser beam to align this cavity.
The alignment procedure is carried out in two step:
1) alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom

mirror of cav_esp;
2) alignment of cav_esp by monitoring the optical path in cav_ref.

Target

cav_ref
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Optical cavity: alignment
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Laser: Cr:forsterite amplifier

• 3 stages with 6, 6, and 4 passes 
respectively

• 0.8mJ → 42 mJ , total gain of 
about 52. 1° Crystal

3° Crystal

2° Crystal
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Laser: single crystal DFG setup 

1. Trichroic mirror
2. NLO crystal
3. Metallic mirror
4. Trichroic mirror
5. Ge mirror slider
6. -
7. Beam splitter
8. -
9. Calibration cell
10. Energy meter
11. Energy meter
12. -
13. Wavelength meter
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Laser: single crystal DFG setup 

1. Trichroic mirror
2. NLO crystal
3. Metallic mirror
4. Trichroic mirror
5. Ge mirror slider
6. Ge mirror slider
7. Beam splitter
8. Ge mirror
9. Calibration cell
10. Energy meter
11. Energy meter
12. Alignment laser
13. Wavelength meter

1 2 3
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13
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Laser injection 
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Laser injection 
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Detectors: 

LaBr - SiPM

LaBr - PMT
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Transfer rate measurement
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