The FAMU experiment: present status (amid Brexit, pandemic, accelerator long shutdown, and war)

Emiliano Mocchiutti on behalf of the FAMU Collaboration

PREN2022 Convention

Paris – 20/23 June 2022

Outline

- Introduction
- The FAMU experiment: principle of operation
- Apparatus setup & present status
- Summary

Introduction

FAMU: HFS of µ⁻p ground level

Study of the properties of the proton

scattering: electron experiments
scattering: elastic muon-proton

3) spectroscopy: electronic atoms and ions4) spectroscopy: exotic atoms

HFS of muonic hydrogen ground level

Data taking planned for March 2020

Data taking planned for March 2020

- Hit hard by pandemic! ... moved to September 2020 ... then December 2020
- ... then June 2021

Data taking planned for March 2020

- Hit hard by pandemic!
- ... moved to September 2020
- ... then December 2020
- ... then June 2021

Meanwhile a planned accelerator long shutdown began

ISIS long shutdown Planned: $09/2020 \rightarrow 09/2021$ Planned: $01/2021 \rightarrow 12/2021$ Planned: $07/2021 \rightarrow 07/2022$

Data taking planned for March 2020

- Hit hard by pandemic!
- ... moved to September 2020
- ... then December 2020
- ... then June 2021

Meanwhile a planned accelerator long shutdown began

ISIS long shutdown Planned: $09/2020 \rightarrow 09/2021$ Planned: $01/2021 \rightarrow 12/2021$ Planned: $07/2021 \rightarrow 07/2022$

and, of course, since 01 Jan 2021 Brexit took place (end of free movements of goods)

Data taking planned for March 2020

- Hit hard by pandemic!
- ... moved to September 2020
- ... then December 2020
- ... then June 2021

Meanwhile a planned accelerator long shutdown began

ISIS long shutdown Planned: $09/2020 \rightarrow 09/2021$ Planned: $01/2021 \rightarrow 12/2021$ Planned: $07/2021 \rightarrow 07/2022$

and, of course, since 01 Jan 2021 Brexit took place (end of free movements of goods) Finally, Russia – Ukraine war began (and we have

lasers built in Belarus)

Data taking planned for March 2020

- Hit hard by pandemic! ... moved to September 2020
- ... then December 2020
- ... then June 2021

and course, sin

Meanwhile a planned accele are none she will

1 Jan 2021 Alt took place (end of the movements of Jude

Finally, sha - Kraine ar began (and we have laser b >>> Bc/ar >>

e_{jan}

Emiliano Mocchiutti, INFN Trieste, 21.06.2022 – FAMU

IS'S I

The FAMU experiment

Fisica Atomi MUonici (Physics with muonic atoms)

FAMU: µ⁻p spectroscopy

"Usual" spectroscopic flow:

- 1) create muonic hydrogen
- 2) shoot laser
- 3) count triplets

repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states? Hyperfine splitting of $(\mu^{-}p)_{1S} \approx 183 \text{ meV}...$

HFS de-excitation: μ⁻p gains kinetic energy

"Usual" spectroscopic flow:

- 1) create muonic hydrogen
- 2) shoot laser
- 3) count triplets

repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states? Hyperfine splitting of (µ⁻p)_{1S} ≈183 meV...

... but in the triplet to singlet transition muonic hydrogen gains kinetic energy (\approx 120 meV, 0.12 eV)

μ⁻ transfer rate to high-Z atoms is energy dependent

"Usual" spectroscopic flow:

- 1) create muonic hydrogen
- 2) shoot laser
- 3) count triplets

repeat varying laser frequency to find resonance value.

How is it possible to distinguish HFS excited states? Hyperfine splitting of $(\mu^{-}p)_{1S} \approx 183 \text{ meV}...$

... but in the triplet to singlet transition muonic hydrogen gains kinetic energy (≈120 meV, 0.12 eV)

Key point:

The muon transfer rate to higher-Z atoms in collisions is (kinetic) energy dependent at epithermal energies (≈100/200 meV)

μ⁻ transfer rate to high-Z atoms is energy dependent

Key point:

The muon transfer rate to higher-Z atoms in collisions is (kinetic) energy dependent at epithermal energies (≈100/200 meV)

FAMU: µ⁻p spectroscopy

FAMU: µ⁻p spectroscopy

RIKEN – RAL muon facility

Rutherford Appleton Laboratory – Oxfordshire UK ISIS proton accelerator

High intensity muon beam

Apparatus setup & present status

Target: a necessary trade-off

Main requirements:

- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H₂ compatible

Target: a necessary trade-off

Main requirements:

- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H₂ compatible
- Very big (to improve statistics) and very small (to increase laser photon density, given a maximum laser power available)

Target: a necessary trade-off

Main requirements:

- Operating temperature: liquid nitrogen ≈80 K
- Operating pressure: ≈10 bar
- International safety certification (Directive 97/23/CE PED)
- H₂ compatible

- Very big (to improve statistics) and very small (to increase laser photon density, given a maximum laser power available)
- Made of very heavy materials (to minimize noise in the delayed phase) and of very light materials (to allow X-rays exit)

... and, of course, all the above within time and cost constraints!

Target: the design

Target: ready in our lab

Target: expected energy spectrum

Detectors

Main requirements:

- High solid angle coverage
- High speed
- Good energy resolution @100 keV

17 LaBr3:Ce 1" read by PMT11 LaBr3:Ce 1" read by SiPM15 LaBr3:Ce ½" read by SiPM

1 HPGe (Ortec GEM-S)

1 hodoscope for beam monitoring (64 channels, 1 mm square fibers read by SiPM)

X-rays distribution from simulation

Detectors: placement

Detectors: mechanical integration

Detectors: electronical integration

Optical cavity: design

Substrate material: FuSi HR coating: ZnS/Ge Support: Invar (CTE<10ppm/K)

Optical cavity: characterization

- Vacuum system
- Feedthrough with stepper motor
- Thermal imaging camera
- Tip/Tilt 0-10 mrad
- Quantum Cascade Laser
 λ@6.13μm (P=80 mW)
- He-Ne Laser $\lambda @ 0.632 \mu m$
- Injection light system based on a telescope with two Off Axis Parabolic Mirror.

Optical cavity: characterization

The cavity number of reflections remain stable against small variations of the incident angle (tip/tilt movement)

Laser: characteristics

Wavelength range Energy output Linewidth Tunability steps Pulses duration Repetition rate

6800 ± 50 nm > 1 mJ < 0.07 nm 0.03 nm 10 ns 25 Hz

≈ 44 THz up to >4 mJ 450 MHz 200 MHz

Laser: scheme

M1 - Mirror HR 1064 nm, M2 - Mirror HR 1262 nm, M3 - Mirror HR 1064&1262&6785 nm, M4 - Mirror HR 6785 nm, T1 and T2 - telescopes, BS1 - beamsplitter/beamsampler 1064 nm, BS2 - beamsplitter/beamsampler 1262 nm, BS3 - beamsplitter/beamsampler 6785 nm, DC1 - dichroic mirror (reflecting 1064 nm, transmitting 1262 nm), DC2 - dichroic mirror (reflecting 1064 nm and 1262 nm, transmitting 6785 nm), NL - nonlinear crystal, MU - measuring units (wavelenght meter, energy meter, dimensions)

Laser: difference frequency generation

- Required output > 1 mJ
- Inputs: ≈70 mJ @ 1064 nm and ≈35 mJ 1262 nm
- Output Wavelength: 6758 nm

Laser: our NLO crystals

Nonlinear crystals

Available

 $LiInS_2-5x5x4 \ / \ 5x5x3$

 $LiInS_2 - 5x5x15$

LGS - 5x5x4 mm

LiInS₂ - 7x7x20 mm / 8x8x18

 $LiInSe_2 - 7x7x15 mm$

BaGa₄Se₇ – 10 x 9 x 28 mm, 6 x 6 x 6 mm

Energies: LiInS₂ & LiInSe₂: 1.3 – 1.5 mJ (double pass) BaGa₄Se₇ ≈1.5 mJ (single pass)

Laser: frequency measurement

6785 nm wavelength meter -Center wavelength accuracy

200 MHz

1262 and 1064 nm wavelength meter

-Center wavelength accuracy

-Center wavelength accuracy

60 MHz @ 1064 nm 40 MHz @ 1262 nm

Overall accuracy better than:

6800.000 ± 0.020 nm

44.0871 ± 0.0001 THz

Laser: absolute calibration cell

C₂H₄ absorption cell

Accuracy (comparing to HITRAN database): from ±10 to ±140 MHz depending on the absorption line

Laser system remain untouched for about 2 years... maintenance needed!

- Lotis (Belarus) lasers refurbished and restarted (thanks to RAL staff!)
- Innolas lasers to be restarted by contractor technician (planned on 4th/5th July)
- DFG and cavity calibration setup to be completed

FAMU setup

5.59

0 10

FAMU setup

Measurement plan

- Zemach radius present measurement range: \approx [1.00,1.12] fm \rightarrow \approx 30 GHz range
- Natural Doppler broadening @80K ≈300 MHz
- ⇒ at least 100 steps to cover the whole range with 300 MHz steps...

Measurement plan

- Zemach radius present measurement range: \approx [1.00,1.12] fm \rightarrow \approx 30 GHz range
- Natural Doppler broadening @80K ≈300 MHz
- ⇒ at least 100 steps to cover the whole range with 300 MHz steps...

The first already allocated beam time for FAMU sum up to 25 days.

We'll start with 24 hours for one frequency measurement (conservative approach)

Scan of the most probable signal range

Time scale

- by end of June: refurbishment of muon line at RAL ends
- 04-05 July: Innolas technician at RAL to power on our lasers
- by July 15th: all equipment at RAL
- **15-31 July:** installation of target and DAQ system starts
- 1-20 September: installation of detectors and the target on the beam line
- **3rd ISIS Cycle 2022 [20 September 15 October]:** ready for muon beam line commissioning (test of our system)
- **4th ISIS Cycle 2022 [8 November 16 December]:** our data taking is planned in this cycle

Summary

- FAMU: measurement of the (μ⁻p)_{1S} hyperfine splitting
- An exciting journey:
 - started 25 years ago
 - one of the most intense pulsed beam in the world
 - best detectors for energy and time observation
 - *first measurement* of the energy dependence of muon transfer rate to Oxygen

- *innovative* and powerful laser system

 Target, detectors, cavity, laser, everything is ready to go

Looking forward to perform the spectroscopic measurement by the end of 2022!

Summary of muon atomic capture physics (in H gas)

- Hydrogen gas at room temperature (i.e. H₂ molecules mean kinetic energy 30 meV – 0.03 eV)
- 2. Muon slows down and reaches a H_2 molecule

- 3. Muon is captured at high quantum state and H₂ molecule breaks
- Muon goes down to ground level losing energy by Auger effect (electron is kicked away) and radiative processes (X-ray emission)
- 5. The system muon-proton (muonic hydrogen) gains kinetic energy (average energy about 2 eV !)
- 6. The muonic hydrogen thermalizes due to collision with other molecules (thermalization time depends on density and temperature, order of 100 ns @ 40 bar 300 K)
- 7. The muon decays OR it is transferred OR it undergoes nuclear capture ($\mu^-+p \rightarrow n+\nu_{\mu}$)

cav_ref Target $\omega_2 = \frac{f_2}{c} \omega_0$ **OAPM #2** $4f_1\lambda$ πω cav esp f1 ω tip/tilt platform OAPM #1

We use a "twin" cavity (cav ref) to one in the cryogenic target (cav esp).

With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav esp we take a part of laser beam to align this cavity.

The alignment procedure is carried out in two step:

- 1) alignment of cav ref referencing to a beam laser that impinges orthogonally on the bottom mirror of cav esp;
- 2) alignment of cav esp by monitoring the optical path in cav ref.

- 1. We inject in the cavity in the cryogenic target a visible laser (red, green) and we align the cav esp in a way that the laser impinges orthogonally on the second mirror of cav esp.
- 2. A BS at 45° is introduced between the OPAM #2 and the injection mirror of cav_esp. The laser beam is splitin two parts and sent to two cavities. It is crucial that the distance between the BS and the two injection mirrors are the same (in the layout is 32 cm).
- 3. By means the translators and rotators and monitoring the interference emerging from the two cavities, cav ref is aligned superimposing perfectly the two beams. This step guarantee that the optical path in cav ref is the same as that in cav esp.
- 4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to maximize the number of reflections in the cav ref, with warranty that the optical path in cav esp will be very similar.
- 5. The visible beam laser is switched off, the BS is removed and the infrared laser is injected in the cav esp.

cav_ref Target $\omega_2 = \frac{f_2}{c} \omega_0$ **OAPM #2** 43cm $4f_1\lambda$ 1mπω cav esp f1 ω tip/tilt platform OAPM #1

We use a "twin" cavity (cav ref) to one in the cryogenic target (cav esp).

With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav esp we take a part of laser beam to align this cavity.

The alignment procedure is carried out in two step:

- 1) alignment of cav ref referencing to a beam laser that impinges orthogonally on the bottom mirror of cav esp;
- 2) alignment of cav esp by monitoring the optical path in cav ref.

Alignment procedure

- 1. We inject in the cavity in the cryogenic target a visible laser (red, green) and we align the cav esp in a way that the laser impinges orthogonally on the second mirror of cav esp.
- 2. A BS at 45° is introduced between the OPAM #2 and the injection mirror of cav_esp. The laser beam is split in two parts and sent to two cavities. It is crucial that the distance between the BS and the two injection mirrors are the same (in the layout is 32 cm).
- 3. By means the translators and rotators and monitoring the interference emerging from the two cavities, cav ref is aligned superimposing perfectly the two beams. This step guarantee that the optical path in cav_ref is the same as that in cav_esp.
- 4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to maximize the number of reflections in the cav ref, with warranty that the optical path in cav esp will be very similar.
- 5. The visible beam laser is switched off, the BS is removed and the infrared laser is injected in the cav esp.

We use a "twin" cavity (cav_ref) to one in the cryogenic target (cav_esp).

With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a part of laser beam to align this cavity.

The alignment procedure is carried out in two step:

- alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom mirror of cav_esp;
- 2) alignment of cav_esp by monitoring the optical path in cav_ref.

- 1. We inject in the cavity in the cryogenic target a visible laser (red, green) and we align the cav_esp in a way that the laser impinges orthogonally on the second mirror of cav_esp.
- 2. A BS at 45° is introduced between the OPAM #2 and the injection mirror of cav_esp. The laser beam is split in two parts and sent to two cavities. It is crucial that the distance between the BS and the two injection mirrors are the same (in the layout is 32 cm).
- 3. By means the translators and rotators and monitoring the interference emerging from the two cavities, cav_ref is aligned superimposing perfectly the two beams. This step guarantee that the optical path in cav_ref is the same as that in cav_esp.
- 4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to maximize the number of reflections in the cav_ref, with warranty that the optical path in cav_esp will be very similar.
- 5. The visible beam laser is switched off, the BS is removed and the infrared laser is injected in the cav_esp.

We use a "twin" cavity (cav_ref) to one in the cryogenic target (cav_esp).

With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav_esp we take a part of laser beam to align this cavity.

The alignment procedure is carried out in two step:

- alignment of cav_ref referencing to a beam laser that impinges orthogonally on the bottom mirror of cav_esp;
- 2) alignment of cav_esp by monitoring the optical path in cav_ref.

- 1. We inject in the cavity in the cryogenic target a visible laser (red, green) and we align the cav_esp in a way that the laser impinges orthogonally on the second mirror of cav_esp.
- 2. A BS at 45° is introduced between the OPAM #2 and the injection mirror of cav_esp. The laser beam is split in two parts and sent to two cavities. It is crucial that the distance between the BS and the two injection mirrors are the same (in the layout is 32 cm).
- 3. By means the translators and rotators and monitoring the interference emerging from the two cavities, cav_ref is aligned superimposing perfectly the two beams. This step guarantee that the optical path in cav_ref is the same as that in cav_esp.
- 4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to maximize the number of reflections in the cav_ref, with warranty that the optical path in cav_esp will be very similar.
- 5. The visible beam laser is switched off, the BS is removed and the infrared laser is injected in the cav_esp.

cav_ref Target $\omega_2 =$ **OAPM #2** 43cm $4f_1\lambda$ 1nπωο cav esp f1 ω tip/tilt platform OAPM #1

We use a "twin" cavity (cav ref) to one in the cryogenic target (cav esp).

With a beam splitter (BS) between the OPAM #2 and the injection mirror of cav esp we take a part of laser beam to align this cavity.

The alignment procedure is carried out in two step:

- 1) alignment of cav ref referencing to a beam laser that impinges orthogonally on the bottom mirror of cav esp;
- 2) alignment of cav esp by monitoring the optical path in cav ref.

- 1. We inject in the cavity in the cryogenic target a visible laser (red, green) and we align the cav esp in a way that the laser impinges orthogonally on the second mirror of cav esp.
- 2. A BS at 45° is introduced between the OPAM #2 and the injection mirror of cav_esp. The laser beam is split in two parts and sent to two cavities. It is crucial that the distance between the BS and the two injection mirrors are the same (in the layout is 32 cm).
- 3. By means the translators and rotators and monitoring the interference emerging from the two cavities, cav ref is aligned superimposing perfectly the two beams. This step guarantee that the optical path in cav_ref is the same as that in cav_esp.
- 4. By moving the OAMPs (OAMP #1, with motorized tip/tilt) to maximize the number of reflections in the cav ref, with warranty that the optical path in cav esp will be very similar.
- 5. The visible beam laser is switched off, the BS is removed and the infrared laser is injected in the cav esp.

Laser: Cr:forsterite amplifier

- 3 stages with 6, 6, and 4 passes respectively
- $0.8 \text{mJ} \rightarrow 42 \text{ mJ}$, total gain of about 52.

Laser: single crystal DFG setup

Laser: single crystal DFG setup

- 1. Trichroic mirror
- 2. NLO crystal
- 3. Metallic mirror
- 4. Trichroic mirror
- 5. Ge mirror slider
- 6. Ge mirror slider
- 7. Beam splitter
- 8. Ge mirror
- 9. Calibration cell
- 10. Energy meter
- 11. Energy meter

- 12. Alignment laser
- 13. Wavelength meter

Laser injection

Laser injection

Detectors:

Transfer rate mea

Thermalization of μp

Thermalization of μp

71

Depolarization of μ p

Lifetime of μp and muon transfer

