Hyperfine Splitting in Muonic Hydrogen

Aldo Antognini

Paul Scherrer Institute ETH, Zurich **Switzerland**

For the CREMA collaboration

Goal & Motivation

Extract

- $\sim 2\gamma$ -contribution with 1×10^{-4} rel. accuracy
- Zemach radius r_Z and polarisability Δ_{pol} contribution

$$E_{1S-hfs} = \left[\underbrace{182.443}_{E_{\rm F}} \underbrace{+1.350(7)}_{\text{QED+weak}} \underbrace{+0.004}_{\text{hVP}} \underbrace{-1.30653(17)\left(\frac{r_{\rm Zp}}{\text{fm}}\right) + E_{\rm F}\left(1.01656(4)\,\Delta_{\rm res}\right)}_{2\gamma \text{ incl. radiative corr.}}\right]$$

AA, Hagelstein, Pascalutsa, arXiv:2205.10076 Peset, Pineda

$$r_{\rm Z} = -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa_N} - 1 \right]$$

Aldo Antognini

PREN, Paris

1s

 $r_{ecoil} + 1.00402 \Delta_{pol} \left| meV \right|$

Dispersive approaches

Elastic part (Zemach) $\Delta_{\rm Z} = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[\frac{G_E(Q^2)G_M(Q^2)}{1+\kappa} - 1 \right] \equiv -2Z\alpha m_r R_{\rm Z},$

Recoil finite-size

$$\Delta_{\text{recoil}} = \frac{Z\alpha}{\pi(1+\kappa)} \int_0^\infty \frac{\mathrm{d}Q}{Q} \left\{ \frac{8mM}{v_l+v} \frac{G_M(Q^2)}{Q^2} \left(2F_1(Q^2) + \frac{F_1(Q^2) + 3F_2(Q^2)}{(v_l+1)(v+1)} \right) - \frac{8m_r G_M(Q^2)G_E(Q^2)}{Q} - \frac{m}{M} \frac{5+4v_l}{(1+v_l)^2} F_2^2(Q^2) \right\}.$$

Polarisability

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2 \right] \\ \Delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\frac{5+4v_l}{(v_l+1)^2} \left[4I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x,Q^2) \right] \\ &\times \left\{ \frac{1}{(v_l+\sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})(1+v_l)} \left[4 + \frac{1}{1+\sqrt{1+x^2\tau^{-1}}} + \frac{1}{v_l+1} \right] \right\} \end{split}$$
$$\Delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x,Q^2) \left\{ \frac{1}{v_l+\sqrt{1+x^2\tau^{-1}}} - \frac{1}{v_l+1} \right\}$$

Hagelstein, Pascalutsa, Carlson, Martynenko, Tomalak Faustov, Vanderhaegen, Lensky....

Aldo Antognini

PREN, Paris

Tomalak

Chiral Perturbation Theory and Dispersive approaches

PREN, Paris

 $E_{\rm LS}^{\langle \pi N \rangle \, \rm pollog} (2 \, {\rm Allog}) = 0.2 \, {\rm and} \, 2.5 \, \mu eV$

PAUL SCHERRER INSTITU

Vanderhaeghen,

2γ -contribution for the 1S-HFS and Zemach radius

Reference	$\Delta_{\rm Z}$	$\Delta_{ m recoil}$	$\Delta_{ m pol}$	Δ_1	Δ_2	$E_{1S-\mathrm{hfs}}^{\langle 2\gamma \rangle}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[meV]
DATA-DRIVEN						
Pachucki '96 (50)	-8025	1666	0(658)			-1.160
Faustov et al. '01 $(138)^{\rm a}$	-7180		410(80)	468	-58	
Faustov et al. '06 $(98)^{\rm b}$			470(104)	518	-48	
Carlson et al. '11 $(99)^{c}$	-7703	931	351(114)	370(112)	-19(19)	-1.171(39)
Tomalak '18 $(139)^{d}$	-7333(48)	846(6)	364(89)	429(84)	-65(20)	-1.117(19)
HEAVY-BARYON χPT						
Peset et al. '17 (112)						-1.161(20)
Leading-order χPT						
Hagelstein et al. '16 (62)			37(95)	29(90)	9(29)	
$+\Delta(1232)$ EXCIT.						
Hagelstein et al. '18 (101)			-13	84	-97	

Determinations of the proton Zemach radius r_{Zp} , in units of fm. Table 2

Aldo Antognini

ep so	ep scattering μ H 2S hf		S	H 1S hfs	
Lin $et al. (26)$	Borah et al. (91)	Antognini et al. (2)	$B\chi PT$ (62)	Volotka et al. (92)	$B\chi PT$ (62)
$1.054^{+0.003}_{-0.002}$	1.0227(107)	1.082(37)	1.041(31)	1.045(16)	1.012(14)

Using Lin, Hammer, Meissner result

 $r_Z = 1.054^{+3}_{-2} \,\mathrm{fm}$

 $\Delta_Z = -7403^{+21}_{-16}$ ppm

AA, Hagelstein, Pascalutsa, arXiv:2205.10076

What happened in the last years: shrinking the uncertainty

- First ChPT results of polarisability contribution
- New data from g2p available
- Precision values of the Zemach radius r_Z
- Scaling the 2γ -contribution from H

$$\Delta_Z E_F = -1.3506^{+38}_{-29} \,\mathrm{meV}$$

$$\Delta E^{2\gamma + hVP} = -1.159(2) \text{ meV}$$

Zemach, polarisability, recoil, eVP correction to 2γ , hVP

Hagelstein & Pascalutsa

et al., Borah et al., Distler et al.

Pineda, Peset Tomalak, AA, Hagelstein & Pascalutsa

decreased by a factor of 5

 $\Delta E_{1S-HFS} = 182.634(8) \text{ meV}$

limited by QED

2S-2P versus HFS

- Excite the 2S-2P transition at 6.0 μ m
- ▶ Detect the 2 keV X-ray from 2P→1S de-excitation

- Excite the HFS transition at 6.8 μ m
- But what do we detect?

20-23.06.2022

7

The principle

- Stop muon beam in 1 mm H₂ gas target at 22 K, 0.5 bar
- Wait until µp atoms de-excite and thermalize
- Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- µp diffuses to Au-coated target walls
- formed µAu* de-excites producing X-rays
- Plot number of X-ray events vs laser frequency

1S

The principle

- Stop muon beam in 1 mm H₂ gas target at 22 K, 0.5 bar
- Wait until µp atoms de-excite and thermalize
- Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- µp diffuses to Au-coated target walls

PAUL SCHERRER INSTITU

- formed µAu* de-excites producing X-rays
- Plot number of X-ray events vs laser frequency

μp formation and thermalisation

µp atoms formed in highly excited states De-excitation to 1S-state imparts kinetic

µp has to thermalise before we can excite

Laser excitation

- We modelled the laser excitation using optical Bloch equations including
 - Inelastic collisions: part of the detection scheme
 - Elastic collisions: additional decoherence effect
 - Laser bandwidth
- Included Doppler broadening
- Accounted for ortho-para H₂ ro-vibrational levels

Transition	$\mathcal{M}[m]$	$\frac{\Omega}{\sqrt{\mathcal{I}}} \left[m/\sqrt{Js} \right]$
$2s^{F=1} \rightarrow 2p^{F=2}_{3/2}$	$\sqrt{5}a_{\mu} = 6.367 \times 10^{-13}$	2.65×10^4
$1s^{F=0} \to 1s^{F=1}$	$\frac{\hbar}{4m_{\mu}c} \left(g_{\mu} + \frac{m_{\mu}}{m_p}g_p\right)$ $= 1.228 \times 10^{-15}$	5.12×10^{1}

Aldo Antognini

PREN, Paris

Amaro, et al., arXiv:2112.00138

Laser excitation

Transition	Linewith	Saturation fluen	
2S-2P	20 GHz 0.016 J/		
HFS	200 MHz	44 J/cm ²	

Thermalised versus laser excited µp atoms

- De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- µp diffuses to Au-coated target walls

Diffusion to the target walls

Upon arrival at the target walls

Aldo Antognini

(**n**

2

3

4

→n')	Energy	Prob.
→1	5.6 MeV	90%
→2	2.4 MeV	84%
→3	0.9 MeV	76%

Detection system prototype tested

- Realised a system with two BGO clusters for efficient detection of MeV X-Rays
- Several large size plastic scintillators for rejection of decay-electrons

L. Sinkunaite, PhD Thesis, ETH 2021

PREN, Paris

Aldo Antognini

Results from the detection system

 \mathbf{M} Detection efficient for μ Au events: 80% False identification of muon-decay events: 10% Anti-coincidece efficiency: >95% Uncorreletaed background quantified

Estimated background and event rates

400 events/h

 $P_{\text{diffusion}}^{\text{BG}}$ 2500 events/h $P_{\rm electron}^{\rm BG}$ 800 events/h = $P_{\rm uncorrelated}^{\rm BG}$ 500 events/h =

These numbers depends on various still unknown factors as laser and cavity performance, muon beam etc

Aldo Antognini

20-23.06.2022

18

The laser system

- ▶ delay time: 1 µs
- stochastic trigger
- ▶ energy: 5 mJ
- ▶ repetition rate: 200 1/s
- ▶ wavelength: 6.8 µm
- ▶ bandwidth: < 100 MHz

Single-frequency thin-disk laser oscillator

- M. Zeyen , PhD Thesis, ETH 2021
- Energy: 32 mJ
- **M**Delay: 700 ns
- Pulse-to-pulse stability: 1% (rms)
- Single-frequency operation
- ☑ Laser chirp < 2 MHz
- Continuos re-locking

Thin-disk laser amplifier

The sequence

4f amplification Fourier Transform amplification 4f 4f amplification Fourier Transform amplification 4f 4f amplification Fourier Transform amplification 4f

M. Zeyen, PhD Thesis, ETH 2021

4f

Aldo Antognini

PREN, Paris

Energy: 220 mJ **G**ain: 7.5 Beam quality: M²=1.05 Pointing stability Insensitive to thermal lens

Increase beam size Astigmatism compensation New disks Energy: 300 mJ

The laser system

- ▶ delay time: 1 µs
- stochastic trigger
- ▶ energy: 5 mJ
- ▶ repetition rate: 200 1/s
- ▶ wavelength: 6.8 µm
- ▶ bandwidth: < 100 MHz

Sketch of the down-conversion stages (in preparation)

Aldo Antognini

The multi-pass cavity

M. Marszalek , PhD Thesis, ETH 2022

Aldo Antognini

PREN, Paris

Simulated laser fluence

Aldo Antognini

The various passes in the toroidal cavity

PAUL SCHERRER INSTITUT

Aldo Antognini

PREN, Paris

Qualify cavity with ring-down techniques

Results for the two measured cavities

M Developed two cavity designs Cavities perform as expected Developed monitoring method

Development of a dielectric coating for the toroidal cavity

Losses in 1 mm slit?

Alignment of two-mirror cavity

Test at cryogenic temperatures

Transition probabilities ρ_{33} in ROI for 1 mJ Copper, toroidal: 3% Dielectric, two-mirror: 6%

Summary of status

ETH

PREN, Paris

Message to theorists

There is a need to improve on the HFS theory of µp and H.

This will simplify tremendously the experimental efforts

- This will pay off after the measurement of the muonic HFS resonance
- Combining H with µp will result in testing QED for a hyperfine splitting on the ppt level

Present theory uncertainty:

 \Box 7 µeV from QED in µp (very conservative estimate)

 \Box 2 µeV from 2 γ -contribution (limited by recoil-finite-size contribution)

If you have new fits of G_E, G_M, F_1, F_2 -> gratis publication of the recoil contribution for H and µp

$$\Delta_{\text{recoil}} = \frac{Z\alpha}{\pi(1+\kappa)} \int_0^\infty \frac{\mathrm{d}Q}{Q} \left\{ \frac{8mM}{v_l+v} \frac{G_M(Q^2)}{Q^2} \left(2F_1(Q^2) + \frac{F_1(Q^2) + 3F_2(Q^2)}{(v_l+1)(v+1)} \right) - \frac{8m_r G_M(Q^2)G_E(Q^2)}{Q} - \frac{m}{M} \frac{5+4v_l}{(1+v_l)^2} F_2^2(Q^2) \right\}.$$

PREN, Paris

The CREMA collaboration

F. Biraben, P. Indelicato, L. Julien, F. Nez, N. Paul, P. Yzombard

Y.-H. Chang, W.-L. Chen, Y.-W. Liu, L.-B. Wang

T.W. Hänsch

PAUL SCHERRER INSTITUT

ETH Zürich

L. Affoltern, D. Göldi, O. Kara, K. Kirch, F. Kottmann, J. Nuber, K. Schuhmann, D. Taqqu, M. Zeyen, A. Antognini, M. Hildebrandt, A. Knecht, M. Marszalek, L. Sinkunaite, A. Soter

P. Amaro, P.M. Carvalho, M. Ferro, Guerra, J. Machado, J. P. Santos, L. Sustelo

M. Abdou-Ahmed, T. Graf

Aldo Antognini

PREN, Paris

IOHANNES GUTENBERG UNIVERSITÄT MAINZ

Our, R. Pohl, S. Rajamohanan, F. Wauters

UNIVERSIDADE DE COIMBRA

F.D. Amaro, L.M.P. Fernandes,

C. Henriques, R.D.P Mano,

C.M.B. Monteiro, J.M.F. dos Santos,

P. Silva