Hyperfine Splitting in Muonic Hydrogen

Aldo Antognini

Paul Scherrer Institute ETH, Zurich Switzerland

For the CREMA collaboration

Goal \& Motivation

Measure 1S-HFS in μ p with 1 ppm accuracy

Extract

* 2γ-contribution with 1×10^{-4} rel. accuracy
- Zemach radius r_{Z} and polarisability $\Delta_{\text {pol }}$ contribution

$$
E_{1 S-\mathrm{hfs}}=[\underbrace{182.443}_{E_{\mathrm{F}}} \underbrace{+1.350(7)}_{\text {QED+weak }} \underbrace{+0.004}_{\mathrm{hVP}} \underbrace{\left.-1.30653(17)\left(\frac{r_{\mathrm{Z} p}}{\mathrm{fm}}\right)+E_{\mathrm{F}}\left(1.01656(4) \Delta_{\mathrm{recoil}}+1.00402 \Delta_{\mathrm{pol}}\right)\right] \mathrm{meV},}_{2 \gamma \text { incl. radiative corr. }}
$$

AA, Hagelstein, Pascalutsa, arXiv:2205.10076
Peset, Pineda

$$
r_{\mathrm{Z}}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa_{N}}-1\right]
$$

Dispersive approaches

Elastic part (Zemach)

$\Delta_{\mathrm{Z}}=\frac{8 Z \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\kappa}-1\right] \equiv-2 Z \alpha m_{r} R_{\mathrm{Z}}$,

Recoil finite-size

Alternative approach

$$
\begin{aligned}
\Delta_{\mathrm{z}} & =\frac{4 \alpha m_{r} Q_{0}}{3 \pi}\left(-r_{E}^{2}-r_{M}^{2}+\frac{r_{E}^{2} r_{M}^{2}}{18} Q_{0}^{2}\right) \\
& +\frac{8 \alpha m_{r}}{\pi} \int_{Q_{0}}^{\infty} \frac{\mathrm{d} Q}{Q^{2}}\left(\frac{G_{M}\left(Q^{2}\right) G_{E}\left(Q^{2}\right)}{\mu_{P}}-1\right)
\end{aligned}
$$

Tomalak

$$
\begin{aligned}
& \Delta_{\text {recoil }}=\frac{Z \alpha}{\pi(1+\kappa)} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left\{\frac{8 m M}{v_{l}+v} \frac{G_{M}\left(Q^{2}\right)}{Q^{2}}\left(2 F_{1}\left(Q^{2}\right)+\frac{F_{1}\left(Q^{2}\right)+3 F_{2}\left(Q^{2}\right)}{\left(v_{l}+1\right)(v+1)}\right)\right. \\
&\left.-\frac{8 m_{r} G_{M}\left(Q^{2}\right) G_{E}\left(Q^{2}\right)}{Q}-\frac{m}{M} \frac{5+4 v_{l}}{\left(1+v_{l}\right)^{2}} F_{2}^{2}\left(Q^{2}\right)\right\} .
\end{aligned}
$$

Polarisability

$$
\begin{aligned}
\Delta_{\text {pol }}= & \frac{\alpha m}{2 \pi(1+\kappa) M}\left[\Delta_{1}+\Delta_{2}\right] \\
\Delta_{1}= & 2 \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left(\frac{5+4 v_{l}}{\left(v_{l}+1\right)^{2}}\left[4 I_{1}\left(Q^{2}\right)+F_{2}^{2}\left(Q^{2}\right)\right]-\frac{32 M^{4}}{Q^{4}} \int_{0}^{x_{0}} \mathrm{~d} x x^{2} g_{1}\left(x, Q^{2}\right)\right. \\
& \left.\times\left\{\frac{1}{\left(v_{l}+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+\sqrt{1+x^{2} \tau^{-1}}\right)\left(1+v_{l}\right)}\left[4+\frac{1}{1+\sqrt{1+x^{2} \tau^{-1}}}+\frac{1}{v_{l}+1}\right]\right\}\right) \\
\Delta_{2}= & 96 M^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{3}} \int_{0}^{x_{0}} \mathrm{~d} x g_{2}\left(x, Q^{2}\right)\left\{\frac{1}{v_{l}+\sqrt{1+x^{2} \tau^{-1}}}-\frac{1}{v_{l}+1}\right\}
\end{aligned}
$$

Chiral Perturbation Theory and Dispersive approaches

2γ-contribution for the 1 S -HFS and Zemach radius

Using Lin, Hammer, Meissner result

$$
r_{Z}=1.054_{-2}^{+3} \mathrm{fm}
$$

$\Delta_{Z}=-7403_{-16}^{+21} \mathrm{ppm}$

Reference	Δ_{Z} $[\mathrm{ppm}]$	$\Delta_{\text {recoil }}$ $[\mathrm{ppm}]$	Δ_{pol} $[\mathrm{ppm}]$	Δ_{1} $[\mathrm{ppm}]$	Δ_{2} $[\mathrm{ppm}]$	$E_{1 S-\mathrm{hfs}}^{(2 \gamma)}$ $[\mathrm{meV}]$
DATA-DRIVEN	-8025	1666	$0(658)$			
Pachucki '96 (50)	-7180		$410(80)$	468	-58	-1.160
Faustov et al. '01 (138)			$470(104)$	518	-48	
Faustov et al. '06 (98)		-7703	931	$351(114)$	$370(112)$	$-19(19)$
Carlson et al. '11 (99)		$-1.171(39)$				
Tomalak '18 (139)						

AA, Hagelstein, Pascalutsa, arXiv:2205.10076
Table 2 Determinations of the proton Zemach radius $r_{Z p}$, in units of fm.

$e p$ scattering		$\mu \mathrm{H} 2 S$ hfs		H $1 S$ hfs	
Lin et al. (26)	Borah et al. (91)	Antognini et al. (2)	B χ PT (62)	Volotka et al. (92)	B χ PT (62)
$1.054_{-0.002}^{+0.003}$	$1.0227(107)$	$1.082(37)$	$1.041(31)$	$1.045(16)$	$1.012(14)$

What happened in the last years: shrinking the uncertainty

- First ChPT results of polarisability contribution
- New data from g2p available
- Precision values of the Zemach radius r_{Z}

Scaling the 2γ-contribution from H
$\Delta_{Z} E_{F}=-1.3506_{-29}^{+38} \mathrm{meV}$
$\Delta E^{2 \gamma+h V P}=-1.159(2) \mathrm{meV}$
Zemach, polarisability, recoil, eVP correction to 2γ, hVP

Hagelstein \& Pascalutsa

Lin et al., Borah et al., Distler et al.

Pineda, Peset
Tomalak,
AA, Hagelstein \& Pascalutsa

$2 \mathrm{~S}-2 \mathrm{P}$ versus HFS

- Excite the $2 \mathrm{~S}-2 \mathrm{P}$ transition at $6.0 \mu \mathrm{~m}$
- Detect the 2 keV X-ray from $2 \mathrm{P} \rightarrow 1 \mathrm{~S}$ de-excitation
- Excite the HFS transition at $6.8 \mu \mathrm{~m}$

B But what do we detect?

The principle

- Stop muon beam in $1 \mathrm{~mm} \mathrm{H}_{2}$ gas target at $22 \mathrm{~K}, 0.5$ bar
- Wait until $\mu \mathrm{p}$ atoms de-excite and thermalize
- Laser pulse: $\quad \mu p(F=0)+\gamma \rightarrow \mu p(F=1)$
- De-excitation: $\mu \mathrm{p}(F=1)+\mathrm{H}_{2} \rightarrow \mu \mathrm{p}(\mathrm{F}=0)+\mathrm{H}_{2}+\mathrm{E}_{\text {kin }}$
- μ p diffuses to Au-coated target walls
- formed $\mu A u^{*}$ de-excites producing X-rays
* Plot number of X-ray events vs laser frequency

X-ray detectors | muon |
| :--- |
| beam |\quad X-ray detectors

The principle

- Stop muon beam in $1 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2}$ gas target at $22 \mathrm{~K}, 0.5$ bar
- Wait until μ p atoms de-excite and thermalize
- Laser pulse: $\quad \mu p(F=0)+\gamma \rightarrow \mu p(F=1)$
- De-excitation: $\mu \mathrm{p}(\mathrm{F}=1)+\mathrm{H}_{2} \rightarrow \mu \mathrm{p}(\mathrm{F}=0)+\mathrm{H}_{2}+\mathrm{E}_{\text {kin }}$
- μ p diffuses to Au-coated target walls
- formed $\mu A u^{*}$ de-excites producing X-rays
* Plot number of X-ray events vs laser frequency

X-ray detectors | muon |
| :--- |
| beam |\quad X-ray detectors

$\mu \mathrm{p}$ formation and thermalisation

0.5 bar, 22 K

* $\mu \mathrm{p}$ atoms formed in highly excited states
- De-excitation to 1 S -state imparts kinetic energies up to 100 eV
- $\mu \mathrm{p}$ has to thermalise before we can excite it with laser light

Laser excitation

* We modelled the laser excitation using optical Bloch equations including
- Inelastic collisions:
part of the detection scheme
- Elastic collisions:
additional decoherence effect
* Laser bandwidth
- Included Doppler broadening
- Accounted for ortho-para H_{2} ro-vibrational levels
$\left.\begin{array}{lll}\hline \hline \text { Transition } & \mathcal{M}[\mathrm{m}] & \frac{\Omega}{\sqrt{I}}[\mathrm{~m} / \sqrt{\mathrm{Js}}] \\ \hline 2 s^{F=1} \rightarrow 2 p_{3 / 2}^{F=2} & \sqrt{5} a_{\mu}=6.367 \times 10^{-13} & 2.65 \times 10^{4} \\ 1 s^{F=0} \rightarrow 1 s^{F=1} & \begin{array}{l}\frac{\hbar}{4 m_{\mu} c}\left(g_{\mu}+\frac{m_{\mu}}{m_{p}} g_{p}\right)\end{array} & 5.12 \times 10^{1} \\ & =1.228 \times 10^{-15}\end{array}\right]$

Laser excitation

0.5 bar, 22 K

Transition	Linewith	Saturation fluence
$2 \mathrm{~S}-2 \mathrm{P}$	20 GHz	$0.016 \mathrm{~J} / \mathrm{cm}^{2}$
HFS	200 MHz	$44 \mathrm{~J} / \mathrm{cm}^{2}$

Thermalised versus laser excited $\mu \mathrm{p}$ atoms

- De-excitation: $\mu p(F=1)+\mathrm{H}_{2} \rightarrow \mu p(F=0)+\mathrm{H}_{2}+E_{\text {kin }}$

B μ diffuses to Au-coated target walls

On average $\mu \mathrm{p}$ atoms wins 0.1 eV kinetic energy after a successful laser excitation

Diffusion to the target walls

- 100 ns after laser excitation the first μp atoms reach the target walls
- Signal on top of a large background from μ patoms formed closed to the target walls

Upon arrival at the target walls

$$
\begin{aligned}
\mu \mathrm{p}+\mathrm{Au} \rightarrow & \mu \mathrm{Au}^{*}+\mathrm{p} \\
& \downarrow \downarrow \\
& \mu \mathrm{Au}+\text { X-rays } \\
& \downarrow \\
& \nu+\ldots+\text { neutrons }+\gamma+p, d, \alpha
\end{aligned}
$$

$\left(n \rightarrow n^{\prime}\right)$	Energy	Prob.
$2 \rightarrow 1$	5.6 MeV	90%
$3 \rightarrow 2$	2.4 MeV	84%
$4 \rightarrow 3$	0.9 MeV	76%
$\ldots \ldots$	$\ldots \ldots$	$\ldots .$.

Background sources

Diffusion background

Bremsstrahlung background

* Muon decay followed by Bremsstrahlung

$$
\begin{aligned}
\mu \rightarrow & e+\nu+\bar{\nu} \\
& \downarrow \\
& \text { Bremstrahlung }+\ldots .
\end{aligned}
$$

Factor of 10 more muon-decays than laser-excited μ p reaching the target walls

Detection system prototype tested

- Realised a system with two BGO clusters for efficient detection of MeV X-Rays
- Several large size plastic scintillators for rejection of decay-electrons
L. Sinkunaite, PhD Thesis, ETH 2021

PREN, Paris

Results from the detection system

区Detection efficient for μ Au events：80\％
『False identification of muon－decay events：10\％
『Anti－coincidece efficiency：＞95\％
『Uncorreletaed background quantified

Estimated background and event rates

| $P_{\text {signal }}$ | $=400$ events $/ \mathrm{h}$ |
| :--- | :--- | ---: |
| $P_{\text {diffusion }}^{\mathrm{BG}}$ | $=2500$ events $/ \mathrm{h}$ |
| $P_{\text {electron }}^{\mathrm{BG}}$ | $=800$ events $/ \mathrm{h}$ |
| $P_{\text {uncorrelated }}^{\mathrm{BG}}$ | $=500$ events $/ \mathrm{h}$ |

These numbers depends on various still unknown
factors as laser and cavity performance，muon beam etc

The laser system

Single-frequency thin-disk laser oscillator

M. Zeyen , PhD Thesis, ETH 2021

口Energy: 32 mJ
G(Delay: 700 ns ■ Pulse-to-pulse stability: 1% (rms) ■Single-frequency operation『Laser chirp < 2 MHz (Continuos re-locking

Thin-disk laser amplifier

The sequence
4f
amplification
Fourier Transform
amplification
$4 f$
$4 f$
amplification
Fourier Transform
amplification
4 f
4 f
amplification
Fourier Transform
amplification
4 f
4 f
\vdots
\vdots

The laser system

Sketch of the down-conversion stages (in preparation)

The multi-pass cavity

$$
\theta=5^{\circ}
$$

- Resonant vertically
- Unstable horizontally

- Resonant vertically
- Stable horizontally
M. Marszalek, PhD Thesis, ETH 2022

Simulated laser fluence

The various passes in the toroidal cavity

EHH

Qualify cavity with ring-down techniques

- Use ps laser pulses
- Measure light escaping through the input slit
* Developed a model for the variance und used to fit the data

Results for the two measured cavities

Summary of status

Message to theorists

There is a need to improve on the HFS theory of μ p and H .
[This will simplify tremendously the experimental efforts
IThis will pay off after the measurement of the muonic HFS resonance
Combining H with μ p will result in testing QED for a hyperfine splitting on the ppt level

Present theory uncertainty:
$\square 7 \mu \mathrm{eV}$ from OED in $\mu \mathrm{p}$ (very conservative estimate)
$\square 2 \mu \mathrm{eV}$ from 2γ-contribution (limited by recoil-finite-size contribution)

If you have new fits of $G_{E}, G_{M}, F_{1}, F_{2}$
-> gratis publication of the recoil contribution for H and $\mu \mathrm{p}$

$$
\begin{aligned}
\Delta_{\text {recoil }}= & \frac{Z \alpha}{\pi(1+\kappa)} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q}\left\{\frac{8 m M}{v_{l}+v} \frac{G_{M}\left(Q^{2}\right)}{Q^{2}}\left(2 F_{1}\left(Q^{2}\right)+\frac{F_{1}\left(Q^{2}\right)+3 F_{2}\left(Q^{2}\right)}{\left(v_{l}+1\right)(v+1)}\right)\right. \\
& \left.-\frac{8 m_{r} G_{M}\left(Q^{2}\right) G_{E}\left(Q^{2}\right)}{Q}-\frac{m}{M} \frac{5+4 v_{l}}{\left(1+v_{l}\right)^{2}} F_{2}^{2}\left(Q^{2}\right)\right\} .
\end{aligned}
$$

The CREMA collaboration

F. Biraben, P. Indelicato, L. Julien, F. Nez, N. Paul, P. Yzombard

T.W. Hänsch

Ouf, R. Pohl, S. Rajamohanan, F. Wauters

EMH

L. Affoltern, D. Göldi, O. Kara, K. Kirch, F. Kottmann, J. Nuber,
K. Schuhmann, D. Taqqu, M. Zeyen, A. Antognini, M. Hildebrandt,
A. Knecht, M. Marszalek, L. Sinkunaite, A. Soter

