Nucleon radial density moments

Paper 1: Phys . Let. B 808 135669 (2020) Paper 2: In preparation

Key Words: Form Factor; Probability Density Function; Radial Density Moments; Observational Bias; Proton Charge Radius.

M. Atoui, M.B. Barbaro, <u>M. Hoballah</u>, C. Keyrouz, R. Kunne, M. Lassaut, D. Marchand, G. Quéméner, E.Voutier, J. van de Wiele

PREN convention 2022, 20 - 23 June

Laboratoire de Physique des 2 Infinis

- A new approach to extract the moments of a probability density function with integral forms of its Fourier transform: focus on the nucleon charge density
- Accessing new observables with the new method
- The conceptual implication of this new method on the experimental determination of the spatial moments of the charge density
- A reanalysis of some proton electric form factor data with application of the new method

- Ideally: the charge density $\rho_E(\mathbf{r})$ is known from the fourier transform of $G_E(k^2)$ $(r^{\lambda}, \rho_E) = \int d^3\mathbf{r}r^{\lambda}\rho_E(\mathbf{r})$
 - Experimentally complicated
- (r^{2j}, ρ_E) from the derivative of electric Form Factor (FF) $G_E(k^2)$

$$\langle r^{2j} \rangle \equiv (r^{2j}, \rho_E) = (-1)^j \frac{(2j+1)!}{j!} \frac{\mathrm{d}^j G_E(k^2)}{\mathrm{d}(k^2)^j} |_{k^2 = 0}$$

- Relies on **zero-momentum extrapolation** of the k^2 -dependency
 - Sensitive to the functional form used in the extrapolation
 - Sensitive to the interpolation boundaries of the FF
- Only even moments of positive order

• Moments beyond the **second order** are of interest :

Complementary information on the charge distribution inside the nucleon.

• **Negative orders** are relevant for the study of the high-momentum dependence of the form factor:

Essential to understand short range effects near the nucleon's center

 High positive order moments probe the low-momentum behavior of the form factor: Scan of the density close to the nucleon's surface.

Goal: determination of spatial moments of densities at any order directly in momentum space

Mathematical formulation of the new method

• Momentum density
$$\tilde{f}(\mathbf{k}) \equiv \tilde{f}(k) = \int_{\mathbb{R}^3} d^3 \mathbf{r} e^{-i\mathbf{k}\cdot\mathbf{r}} f(\mathbf{r})$$

 \mathbb{R}^3
• Spatial density $f(\mathbf{r}) \equiv f(r) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} d^3 \mathbf{k} e^{i\mathbf{k}\cdot\mathbf{r}} \tilde{f}(\mathbf{k})$
 \mathbb{R}^3
 \mathbb{R}^3
Finite term Divergent term

- The divergent term needs to be regularized as by definition the moment r^{λ} is finite

$$g_{\lambda}(\mathbf{k}) \equiv g_{\lambda}(k) = \int_{\mathbb{R}^3} \mathrm{d}^3 \mathbf{r} \, e^{i \, \mathbf{k} \cdot \mathbf{r}} r^{\lambda}$$

- Two methods to regularize:
 - The principle value regularization: integral method 1 (IM1)
 - The exponential regularization: integral method 2 (IM2)

The principle value regularization IM1

• The integral
$$g_{\lambda}(\mathbf{k}) \equiv g_{\lambda}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3 \mathbf{r} e^{i \mathbf{k} \cdot \mathbf{r}} r^{\lambda}$$
 satisfies the relation $g_{\lambda}(t\mathbf{k}) = \frac{1}{t^{\lambda+3}} g_{\lambda}(\mathbf{k})$

• The integral is to be considered as a distribution and counter terms (\tilde{f}_{2j}) need to be subtracted to insure convergence

$$(r^{\lambda}, f) = \mathcal{N}_{\lambda} \int_{0}^{\infty} dk \left\{ \frac{\tilde{f}(k)}{k^{\lambda+1}} \right\} \quad \text{with} \quad \mathcal{N}_{\lambda} = \frac{2^{\lambda+2}}{\sqrt{\pi}} \frac{\Gamma(\frac{\lambda+3}{2})}{\Gamma(-\frac{\lambda}{2})} \text{ with the regularized moment } (r^{m-\eta}, f) = \mathcal{N}_{m-\eta} \int_{0}^{\infty} dk \frac{\tilde{f}(k) - \sum_{j=0}^{n} \tilde{f}_{2j} k^{2j}}{k^{m-\eta+1}}$$
$$\tilde{f}_{2j} = \frac{1}{j!} \left. \frac{d^{j}\tilde{f}(k)}{d(k^{2})^{j}} \right|_{k=0}$$

• The divergence appearing in the normalization term is canceled by the divergence in the integral

$$(r^{m}, f) = \lim_{\eta \to 0^{+}} (r^{m-\eta}, f)$$
 m even
 $(r^{m}, f) = (r^{m-\eta}, f)|_{\eta=0}$ *m* odd.

Condition: $\lambda > -3$

λ

• The integral $g_{\lambda}(\mathbf{k}) \equiv g_{\lambda}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3 \mathbf{r} e^{i \mathbf{k} \cdot \mathbf{r}} r^{\lambda}$ can be taken as the weak limit of the convergent integral

$$g_{\lambda}(\mathbf{k}) = \lim_{\epsilon \to 0^{+}} \int_{\mathbb{R}^{3}} \mathrm{d}^{3}\mathbf{r} r^{\lambda} e^{-\epsilon r} e^{i \mathbf{k} \cdot \mathbf{r}} = \lim_{\epsilon \to 0^{+}} \mathcal{I}_{\lambda}(k,\epsilon) \quad \text{with} \quad \mathcal{I}_{\lambda}(k,\epsilon) = \frac{4\pi \Gamma(\lambda+2) \sin\left[(\lambda+2)\operatorname{Arctan}(k/\epsilon)\right]}{k(k^{2}+\epsilon^{2})^{\frac{\lambda}{2}+1}}$$

• The moment r^{λ} can then be written as

$$(r^{\lambda}, f) = \frac{2}{\pi} \Gamma(\lambda + 2) \lim_{\epsilon \to 0^+} \int_0^\infty dk \, \tilde{f}(k) \, \frac{k \sin\left[(\lambda + 2)\operatorname{Arctan}(k/\epsilon)\right]}{(k^2 + \epsilon^2)^{\lambda/2 + 1}}$$

• For integer values of λ

$$(r^{m}, f) = \frac{2}{\pi} (m+1)! \lim_{\epsilon \to 0^{+}} \epsilon^{m+2} \int_{0}^{\infty} dk \, \tilde{f}(k) \, \frac{k}{(k^{2}+\epsilon^{2})^{m+2}} \, \Phi_{m}(k/\epsilon)$$

with
$$\Phi_{m}(k/\epsilon) = \sum_{j=0}^{m+2} \sin\left(\frac{j\pi}{2}\right) \frac{(m+2)!}{j!(m+2-j)!} \left(\frac{k}{\epsilon}\right)^{j}$$

Condition: $\lambda > -3$

- Moments evaluation requires an experimentally defined asymptotic limit; however:
 - Momentum dependence of the integrands denominator scales at large momentum
 - Integrals are most likely to saturate at a momentum value well below infinity.
 - Cut-off *Q* replaces the infinite integral boundary : **truncated moments**.

Consequences:

- The integral method advocates the necessity of fitting all available data for the determination of the functional form
- The model needs only to be integrable over the domain where data exists. The convergence of the integrand is insured by a cut-off.
- Can access moments with orders $\lambda > -3$, integer and non integer moments
 - Allows to experimentally determine all moments, even if the inverse Fourier transform of the FF doesn't exist
- The extraction of even moments are unchanged w.r.t. previous determinations
- The extraction of odd moments represents a first experimental determination

Validation of the integral method

Use the polynomial ratio parametrization
$$\tilde{f}_K(\mathbf{k}) \equiv \tilde{f}_K(k) = \frac{1+a_1k^2}{1+b_1k^2+b_2k^4+b_3k^6}$$

J.J. Kelly, Phys. Rev. C 70 (2004) 068202.

Q-independence is reproduced by each prescription: the IM recovers the same quantities as the derivative method. The practical constraint is to obtain an appropriate description of the data over a large k^2 -domain.

Different saturation behaviours of the two regularization methods: IM1 asks for large Q-values, IM2 rapidly saturates about 6 fm⁻¹

Sensitive to the high-momentum behaviour of the FF.

Convergence is not guaranteed within the domain covered by experimental data **Negative moments are of particular importance**: behavior of the charge density near the nucleon's center

21/06/2022

- Select data extracted from electron scattering experiments
 - via a Rosenbluth separation
 - for kinematical conditions where the magnetic form factor contribution to the cross section is strongly suppressed
- Use the functional form

 $\tilde{f}_K(\mathbf{k}) \equiv \tilde{f}_K(k) = \frac{1 + a_1 k^2}{1 + b_1 k^2 + b_2 k^4 + b_3 k^6}$

- Fit simultaneously the different datasets
 - The **same functional behavior** is assumed for each dataset
 - A separate normalization parameter is considered for each dataset

Author (Year)	k^2 range (fm ⁻²)	nb. of data points
Xiong (2019)	0.005-14.9	71
Bernauer (2014)	0.39-14.15	77
Lehmann (1961)	1.05-2.98	1
Frerejacque (1966)	0.975-1.76	4
Janssens (1966)	4-30	20
Borkowski (1975)	0.35-3.15	10
Walker (1994)	25.65-77	4
Andivahis (1994)	44.85-226	8
Christy (2004)	16.65-133	7
Mihovilovic (2019)	0.0256 - 0.436	25

Very preliminary

- Acceptable fit quality with a reduced χ^2 of ~1.9
- The evaluated **normalization parameters** reflect **the imprecision** on the determination of the absolute normalization for each experiment

Experiment	Normalization	Normalization values			± (sys.)	
Frerejacques	0.907	0.0091		5.700 ×10	-05	
Janssens	1.005	1.005			4.500 ×10	-05
Borkowski	0.981		0.0025		4.000 ×10	-05
Bernauer	0.990		0.0008		3.200 ×10	-05
Xiong 1.1 GeV	1.000	1.000			3.600 ×10	-04
Xiong 2.1 GeV	0.984	0.984			2.400 ×10	-04
Walker	1.083	1.083		0.3798		
Andivahis	0.986	0.986			0.3399	
Christy	1.052	1.052			3.2853×10^{-04}	
Lehmann	0.993	0.993			1.0600×10^{-04}	
Mihovilovic 195 MeV	1.001	1.001		1.1322×10^{-03}		-03
Mihovilovic 330 MeV	0.999		9.6429×	10 ⁻⁰⁴	1.6312×10	-03
Mihovilovic 495 MeV	1.001	1.001		6.4563×10 ⁻⁰⁴		-03
a_1	b_1		b_2		b_3	
(10^{-1} fm^2)	(10^{-1} fm^2)	(10-	$^{1} \text{ fm}^{4}$)	(10^{-3} fm^6)		
8.8005	9.9560	1.(0300	2.9455		
$(\delta a_1)_{Sta.}$	$(\delta b_1)_{Sta.}$	(δb	$(2)_{S ta.}$		$\delta b_3)_{Sta.}$	
(10^{-1} fm^2)	(10^{-1} fm^2)	(10^{-1} fm^2) (10 ⁻		(10	(10^{-3} fm^6)	
0.0054	0.0114	0.0	0601	0.0687		
$(\delta a_1)_{Sys.}$	$(\delta b_1)_{Sys.}$	(δb	$_2)_{Sys.}$	$(\delta b_3)_{Sys.}$		
(10^{-1} fm^2)	(10^{-1} fm^2)	(10-	$^{1} \text{ fm}^{4}$)	(10^{-3} fm^6)		
0.0003	0.0004	0.0)001	0.0002		

• Moments are evaluated for different values of λ

- With a Q^2 cutoff at 2 GeV²
- With $Q^2 \to \infty$
- Both evaluations are compatible for positive valued moment orders
 - The Q^2 cutoff provides a faithful representation of the physical moments
- Negative moments show discrepancy when a cutoff is taken into account
 - Motivation for measurements of the electric FF at large k^2
 - Would provide better understanding of the charge density near the nucleon's center

PREN 2022

- Statistical error coming from experimental data
- Sources of systematic errors:
 - 1. Originating from the systematic error that is reported by each considered **experiment on the EFF**
 - 2. Bias that could be generated on the fit parameters from the fitting model itself
 - 3. Error coming from the choice of the fitting model.
- Errors are propagated to the evaluated moments using MC methods
 - Take into account correlations between parameters to all orders

Procedure:

- Make replicas (10000) of data following the assumption of each error source
- Each replica is fitted with the chosen fitting model
- The moments are estimated from each replica
- A dedicated study of the bias and variance of the replicas is performed from which the different error sources are obtained

Application to real data: evaluation of statistical errors Very preliminary

21/06/2022

PREN 2022

New experimental determination thanks to the IM

thanks to the lin	n r^n	$(Q_C^2 = 52 \text{ fm}^{-2})$	± (stat.)	± (syst)	± (model)	\pm (choice of model)	r ⁿ
	-2	7.671	8.047×10 ⁻⁵	0.0013	0.0029	2.306	8.699
	-1	2.050	3.146×10 ⁻⁵	0.0002	0.0004	0.172	2.088
	0	1.00					1.000
As can be obtained from derivative forms of the FF	1	0.718	0.0019	0.0002	0.0002	0.0134	0.718
	2	0.693	0.0090	0.0012	0.0006	0.0276	0.693
	3	0.865	0.0610	0.0066	0.0018	0.1035	0.865
	4	1.444	0.3580	0.0285	0.0063	0.2062	1.444
	5	3.641	2.1030	0.0131	0.0203	0.4018	3.641
	6	15.253	14.660	1.1000	0.0634	0.7285	15.253
	7	95.948	114.40	9.1080	0.2206	20.9622	95.948

Observational bias and the proton charge radius

Researchers are tempted -unconsciously- to find results that validate previous findings Solution: **blind physical observables** while **optimizing the extraction strategy** so only fit quality and estimated precision guides the analysis

J-P. Karr, D. Marchand, E. Voutier Nature Reviews Physics 2, 601–614 (2020)

PREN 2022

• The obtained proton charge radius from our reanalysis is:

- Radius compatible with previous measurements
- The systematic error on the choice of the parametrization insures that the variation observed in the radius due to extrapolation is taken into account as a limitation of the measurement

Conclusions

- A novel method for the determination of the moments of the charge density via integral forms of the electric FF.
- The method generalizes to any probability density function
- The method generalizes to any D-dimensional space

Important when considering the Dirac and Pauli form factors F1 and F2 for the estimation of a relativistic charge radius

- A conceptual implication on the consideration of k^2 domain for the fit
- The experimental extraction of odd, even, fractional and negative ($\lambda > -3$) moments of the charge density
- Performed a reanalysis of some experimental data extracting the values of several moments of the charge density
- Extracted a value for the radius taking all error sources into consideration

- Blinded analysis is already a common practice in high energy particle physics
- We need to take it as a standard procedure in our community