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Outline
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• A new approach to extract the moments of a probability density function with integral forms 
of its Fourier transform: focus on the nucleon charge density

• Accessing new observables with the new method

• The conceptual implication of this new method on the experimental determination of the 
spatial moments of the charge density

• A reanalysis of some proton electric form factor data with application of the new method



Determining moments of the charge density
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• Ideally: the charge density 𝜌𝐸(𝐫) is known from the fourier transform of 𝐺𝐸(𝑘
2)

(𝑟𝜆, 𝜌𝐸) = ∫ d3𝐫𝑟𝜆𝜌𝐸(𝐫)

• Experimentally complicated

• (𝑟2𝑗 , 𝜌𝐸) from the derivative of electric Form Factor (FF)  𝐺𝐸 𝑘2

𝑟2𝑗 ≡ (𝑟2𝑗 , 𝜌𝐸) = (−1)𝑗
(2𝑗+1)!

𝑗!

d𝑗𝐺𝐸(𝑘
2)

d(𝑘2)𝑗
|𝑘2=0

• Relies on zero-momentum extrapolation of the 𝑘2-dependency 
• Sensitive to the functional form used in the extrapolation

• Sensitive to the interpolation boundaries of the FF

• Only even moments of positive order



Determining moments of the charge density
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• Moments beyond the second order are of interest : 

Complementary information on the charge distribution inside the nucleon.

• Negative orders are relevant for the study of the high-momentum dependence of the form 
factor:

Essential to understand short range effects near the nucleon’s center

• High positive order moments probe the low-momentum behavior of the form factor:

Scan of the density close to the nucleon’s surface.

Goal: determination of spatial moments of densities at any order directly in momentum space



Mathematical formulation of the new method
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• Momentum density

• Spatial density

• The divergent term needs to be regularized as by definition the moment 𝒓𝝀 is finite

• Two methods to regularize:
• The principle value regularization: integral method 1 (IM1)

• The exponential regularization: integral method 2 (IM2)

Finite term Divergent term



The principle value regularization IM1
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• The integral                                           satisfies the relation

• The integral is to be considered as a distribution and counter terms ( ሚ𝑓2𝑗) need to be 
subtracted to insure convergence

• The divergence appearing in the normalization term is canceled by the divergence in the 
integral

with with the regularized moment

𝜆

Condition: 𝜆 ≻ −3



The exponential regularization IM2
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• The integral                                           can be taken as the weak limit of the convergent integral 

• The moment 𝒓𝝀 can then be written as

• For integer values of 𝝀

with

Condition: 𝜆 ≻ −3
with



Saturation behavior of the moments 
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• Moments evaluation requires an experimentally defined asymptotic limit; however:

• Momentum dependence of the integrands denominator scales at large momentum

• Integrals are most likely to saturate at a momentum value well below infinity.

• Cut-off 𝑄 replaces the infinite integral boundary : truncated moments.

Consequences:

• The integral method advocates the necessity of fitting all available data for the determination of the functional form

• The model needs only to be integrable over the domain where data exists. The convergence of the integrand is insured

by a cut-off.

• Can access moments with orders 𝝀 ≻ −𝟑, integer and non − integer moments

• Allows to experimentally determine all moments, even if the inverse Fourier transform of the FF doesn’t exist

• The extraction of even moments are unchanged w.r.t. previous determinations

• The extraction of odd moments represents a first experimental determination



Validation of the integral method 
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Q-independence is reproduced by each

prescription: the IM recovers the same

quantities as the derivative method.

The practical constraint is to obtain an

appropriate description of the data

over a large 𝒌𝟐-domain.

Different saturation behaviours of the

two regularization methods: IM1 asks for

large 𝑸 -values, IM2 rapidly saturates

about 6 fm−𝟏

Sensitive to the high-momentum behaviour

of the FF.

Same behavior for both methods IM1

and IM2

Convergence is not guaranteed within the

domain covered by experimental data

Negative moments are of particular

importance: behavior of the charge

density near the nucleon’s center

Use the polynomial ratio parametrization J.J. Kelly, Phys. Rev. C 70 (2004) 068202.



Application to real data
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• Select data extracted from electron scattering 
experiments 
• via a Rosenbluth separation

• for kinematical conditions where the magnetic 
form factor contribution to the cross section is 
strongly suppressed

• Use the functional form

• Fit simultaneously the different datasets 
• The same functional behavior is assumed for 

each dataset  

• A separate normalization parameter is 
considered for each dataset

Very preliminary



Application to real data: fit results
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• Acceptable fit quality with a reduced 𝜒2 of ~1.9

• The evaluated normalization parameters reflect the imprecision
on the determination of the absolute normalization for each
experiment

Very preliminary



Application to real data: evaluation of moments
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• Moments are evaluated for different values of 𝝀
• With a 𝑄2 cutoff at 2 GeV2

• With 𝑄2 → ∞

• Both evaluations are compatible for positive
valued moment orders

• The 𝑄2 cutoff provides a faithful representation of
the physical moments

• Negative moments show discrepancy when a
cutoff is taken into account
• Motivation for measurements of the electric FF at

large 𝑘2

• Would provide better understanding of the charge
density near the nucleon’s center Exact moments

evaluated in the 

limit 𝑄2 → ∞

Truncated moments

evaluated for the 

cutoff  𝑄2 → 52fm−2

Very preliminary



Application to real data: evaluation of errors
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• Statistical error coming from experimental data

• Sources of systematic errors:

1. Originating from the systematic error that is reported by each considered experiment on the EFF

2. Bias that could be generated on the fit parameters from the fitting model itself

3. Error coming from the choice of the fitting model.

• Errors are propagated to the evaluated moments using MC methods
• Take into account correlations between parameters to all orders

Procedure:
• Make replicas (10000) of data following the assumption of each error source

• Each replica is fitted with the chosen fitting model

• The moments are estimated from each replica

• A dedicated study of the bias and variance of the replicas is performed from which the different error 
sources are obtained



Application to real data: evaluation of statistical errors
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10000 replicas
Plot: (fitted – expected) 
value for each moment

Very preliminary



Application to real data: moments
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As can be obtained from

derivative forms of the

FF

New experimental determination

thanks to the IM

Very preliminary



Observational bias and the proton charge radius
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J-P. Karr, D. Marchand, E. Voutier Nature Reviews Physics 2, 601–614 (2020)

Less communication 

between physicists

More communication 

between physicists
Proton radius puzzle

Small radius era

Large radius era Small radius era

Researchers are tempted -unconsciously- to find results that validate previous findings

Solution: blind physical observables while optimizing the extraction strategy so

only fit quality and estimated precision guides the analysis



The proton charge radius
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• The obtained proton charge radius from our reanalysis is: 

𝑟𝑝 = 0.8326 ± 0.0054stat. ± 0.0007syst. ± 0.0003model ± 0.0166parametrization

Reflects the statistical

precision of the

considered data sets

Reflects the quality of

the considered data sets

Reflects the intrinsic

bias generated by

the fitting model

Reflects the bias

induced from the

choice of the

extrapolation model

• Radius compatible with previous measurements

• The systematic error on the choice of the parametrization insures that the variation observed
in the radius due to extrapolation is taken into account as a limitation of the measurement

Very preliminary

rp = 0.84184 ± 0.00067stat.+syst. value from R. Pohl et al. Nature 466 7303 (2010)

rp = 0.87900 ± 0.00500stat. ± 0.00400syst. ± 0.00200model ± 0.00400group value from J. C. Bernauer et al.Phys. Rev. Lett. 105 242001 (2010)



Conclusions
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• A novel method for the determination of the moments of the charge density via integral forms
of the electric FF.

• The method generalizes to any probability density function

• The method generalizes to any D-dimensional space
Important when considering the Dirac and Pauli form factors F1 and F2 for the estimation of a relativistic
charge radius

• A conceptual implication on the consideration of 𝒌𝟐 domain for the fit

• The experimental extraction of odd, even, fractional and negative (𝜆 ≻ −3) moments of the
charge density

• Performed a reanalysis of some experimental data extracting the values of several moments of
the charge density

• Extracted a value for the radius taking all error sources into consideration



Post-conclusion
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• Blinded analysis is already a common practice in high energy particle physics

• We need to take it as a standard procedure in our community


