

Dispersive analysis of the nucleon electromagnetic form factors Ulf-G. Meißner, Univ. Bonn & FZ Jülich

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

CONTENTS

- Theoretical framework: Dispersion relations
- Discussion of the spectral functions
- Fit procedure & theoretical uncertainties
- Results for space- and time-like ffs
- The proton radius controversy
- Summary and outlook

Theoretical framework

Review: Lin, Hammer, UGM, Eur. Phys. J. A 57 (2021) 255

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

BASIC DEFINITIONS

• Nucleon matrix elements of the em vector current J^I_μ

$$\langle N(p')| oldsymbol{J}^{I}_{\mu}| N(p)
angle = ar{u}(p') \left[oldsymbol{F}^{I}_{1}(t) \, \gamma_{\mu} + i \, rac{F^{I}_{2}(t)}{2m} \, \sigma_{\mu
u} q^{
u} \,
ight] u(p)$$

* isospin I = S, V (isoScalar, isoVector) $[= (p \pm n)/2]$

 \star four-momentum transfer $t\equiv q^2=(p'-p)^2\equiv -Q^2$

 $\star F_1$ = Dirac form factor, F_2 = Pauli form factor

- * Normalizations: $F_1^V(0) = F_1^S(0) = 1/2, F_2^{S,V}(0) = (\kappa_p \pm \kappa_n)/2$
- \star Sachs form factors: $G_E = F_1 + rac{t}{4m^2}F_2 \;,\; G_M = F_1 + F_2$
- \star Nucleon radii: F(t)=F(0) $\left[1+t\langle r^2
 angle/6+\ldots
 ight]$ [except for the neutron charge ff]

WHY DISPERSION RELATIONS for the NUCLEON FFs ?

- \bullet Model-independent approach \rightarrow important non-perturbative tool to analyze data
- Dispersion relations are based on fundamental principles: unitarity & analyticity
- Connect data from small to large momentum transfer

as well as time- and space-like data

- Allow for a **simultaneous analysis** of all four em form factors
- Spectral functions encode perturbative and non-perturbative physics
 e.g. vector meson couplings, multi-meson continua, pion cloud, ...
- Spectral functions also encode information on the strangeness vector current \rightarrow sea-quark dynamics, strange matrix elements
- Allow to extract nucleon electric and magnetic radii
- Can be matched to chiral perturbation theory [and not the other way around!]

DISPERSION RELATIONS

Federbush, Goldberger, Treiman, Drell, Zachariasen, Frazer, Fulco, Höhler, ...

- The form factors have cuts in the interval $[t_n, \infty[$ (n = 0, 1, 2, ...) and also poles
- \Rightarrow Dispersion relations for $F_i(t)$ (i = 1, 2):

$$F_i(t) = rac{1}{\pi} {\int_{t_0}^\infty} dt' \; rac{{
m Im}\; F_i(t')}{t'-t}$$

no subtractions

[only proven in perturbation theory]

- suppression of higher mass states
- central objects: spectral functions

 ${\sf Im}\ F_i(t)$

 $- \operatorname{cuts} \stackrel{\wedge}{=} \operatorname{multi-meson} \operatorname{continua}$ $- \operatorname{poles} \stackrel{\wedge}{=} \operatorname{vector} \operatorname{mesons}$

SPECTRAL FUNCTIONS – GENERALITIES

• Spectral decomposition:

Chew, Karplus, Gasiorowicz, Zachariasen (1958)

$$\operatorname{Im} \langle \bar{N}(p')N(p)|J^{I}_{\mu}|0\rangle \sim \sum_{n} \langle \bar{N}(p')N(p)|n\rangle \langle n|J^{I}_{\mu}|0\rangle \Rightarrow \operatorname{Im} F$$

- ***** on-shell intermediate states
- * generates imaginary part
- \star accessible physical states

• *Isoscalar* intermediate states: $3\pi, 5\pi, \ldots, K\bar{K}, K\bar{K}\pi, \pi\rho, \ldots +$ poles

• *Isovector* intermediate states: $2\pi, 4\pi, \ldots +$ poles

• Note that some poles are *generated* from the appropriate continua

 $egin{array}{lll}
ightarrow t_0 = 9 M_\pi^2 \
ightarrow t_0 = 4 M_\pi^2 \end{array}$

ISOVECTOR SPECTRAL FUNCTIONS

Frazer, Fulco, Höhler, Pietarinen, ...

Bernard, Kaiser, UGM, Nucl. Phys. A 611 (1996) 429

• exact 2π continuum is known from threshold $t_0 = 4 M_\pi^2$ to $t \simeq 40 \, M_\pi^2$

Im
$$G_{E,M}^V(t) = \frac{q_t^3}{\sqrt{t}} F_\pi(t)^* f_{\pm}^1(t)$$

 $\star F_{\pi}(t)$ = pion vector form factor

* $f_{\pm}^{1}(t)$ = P-wave pion-nucleon partial waves in the t-channel

ullet Spectral functions inherit singularity on the second Riemann sheet in $\pi N
ightarrow \pi N$

 $t_c = 4 M_\pi^2 - M_\pi^4/m^2 \simeq 3.98\,M_\pi^2 \Big|
ightarrow {
m strong shoulder}
ightarrow {
m isovector radii}$

- This singularity can also be analyzed in CHPT
- For a recent determination of the 2π continuum, see HKRHM, EPJA 52 (2016) 331
- Higher mass states represented by poles (not necessarily physical masses)

ISOSCALAR SPECTRAL FUNCTIONS

- $K\bar{K}$ continuum can be extracted from analytically cont. KN scattering amplitudes
 - \rightarrow analytic continuation must be stabilized
 - ightarrow generates most of the ϕ contribution

Hammer, Ramsey-Musolf, Phys. Rev. C 60 (1999) 045204, 045205

- Further strength in the ϕ -region generated by correlated $\pi \rho$ exchange
 - ightarrow strong cancellations ($Kar{K}, K^*K, \pi
 ho$)
 - ightarrow takes away sizeable strength from the ϕ

UGM, Mull, Speth, van Orden, Phys. Lett. B 408 (1997) 381

• Spectral functions exhibit anomalous threshold (analyzed in 2-loop CHPT)

$$t_c = M_\pi^2 \left(\sqrt{4 - M_\pi^2/m^2} + \sqrt{1 - M_\pi^2/m^2}
ight)^2 \simeq 8.9 \, M_\pi^2
ight|
ightarrow ext{effectively masked}$$

Bernard, Kaiser, M, Nucl. Phys. A 611 (1996) 429

• Higher mass states represented by poles (with a finite width)

CONSTRAINTS ON THE SPECTRAL FUNCTIONS

- Normalizations: electric charges, magnetic moments
- Radii not imposed [except for the neutron charge radius] Filin et al., Phys.
 - Filin et al., Phys. Rev. C 103 (2021) 024313
- Superconvergence relations \cong leading pQCD behaviour

$$F_1(t) \sim 1/t^2 \;, F_2(t) \sim 1/t^3 \; (ext{helicity} - ext{flip})$$
 Brodsky et al.
 $f_1(t) \sim 1/t^2 \;, F_2(t) \sim 1/t^3 \; (ext{helicity} - ext{flip})$ Brodsky et al.
 $f_2(t) = 0 \;, \quad \int_{t_0}^{\infty} \operatorname{Im} F_2(t) \; dt = \int_{t_0}^{\infty} \operatorname{Im} F_2(t) \; t \; dt = 0$

• Various ways of implementing the asymptotic QCD behaviour

 \Rightarrow severely restricts the number of fit parameters

FORM FACTORS IN THE TIME-LIKE REGION

• Xsection for $e^+e^- \leftrightarrow ar{p}p, ar{n}n$ in the one-photon approximation

$$egin{aligned} &\sigma(s) = rac{4\pilpha_{ ext{EM}}^2eta}{3s}\,C(s)\,\left[|G_M(s)|^2 + rac{2m_N^2}{s}\,|G_E(s)|^2
ight],\;\;eta = \ &= rac{4\pilpha_{ ext{EM}}^2eta}{3s}\,C(s)\,\left(1+rac{2m_N^2}{s}
ight)\;|G_{ ext{eff}}|^2 & {}_{ ext{10}}
ight]. \end{aligned}$$

- $G_{E,M}(s)$ are complex for $s \geq 4m_N^2$
- Threshold constraint: $G_E(4m_N^2) = G_M(4m_N^2)$
- Gamov-Sommerfeld factor (only for the proton):

$$C = rac{y}{1-e^{-y}}\,, \;\; y = rac{\pilpha_{
m EM}m_p}{k_p}\,, \;\; \sqrt{s} = 2\sqrt{m_p^2+k_p^2}\,,$$

• Data from $e^+e^- \rightarrow \bar{N}N$ & $\bar{N}N \rightarrow e^+e^-$: strong threshold enhancement & oscillations

 $rac{k_p}{k_e}$

SUMMARY: SPECTRAL & FIT FUNCTIONS

• Representation of the pole contributions: vector mesons [NB: can be extended for finite width]

$$\operatorname{Im} F_i^V(t) = \sum_v \pi a_i^v \,\delta(t - M_v^2) \,, \quad a_i^v = \frac{M_v^2}{f_V} g_{vNN} \,\Rightarrow\, F_i(t) = \sum_v \frac{a_i^v}{M_v^2 - t}$$

• Isovector spectral functions:

$$\operatorname{Im} F_{i}^{V}(t) = \operatorname{Im} F_{i}^{(2\pi)}(t) + \sum_{v=v_{1},v_{2},...} \pi a_{i}^{v} \delta(t - M_{v}^{2}) + \sum_{V=V_{1},...} \operatorname{Im} F_{i}^{V_{i}} \quad (i = 1, 2)$$

• Isoscalar spectral functions:

$$\mathrm{Im}F_{i}^{S}(t) = \mathrm{Im}F_{i}^{(K\bar{K})}(t) + \mathrm{Im}F_{i}^{(\pi\rho)}(t) + \sum_{v=\omega,\phi,s_{1},s_{2},...} \pi a_{i}^{v}\delta(t-M_{v}^{2}) + \sum_{S=S_{1},...} \mathrm{Im}F_{i}^{S_{i}}$$

- Parameters: 2 for the ω , ϕ , 3 (4) for each other V-mesons minus # of constraints
- Additional broad poles w/ 3 parameters above the $\bar{N}N$ threshold [structures in the time-like ffs]
- Ill-posed problem \rightarrow extra constraint: minimal # of poles to describe the data

SUMMARY: SPECTRAL FUNCTIONS

• Cartoons of the isoscalar/isovector spectral functions:

Fit procedure & theoretical uncertainties

Review: Lin, Hammer, UGM, Eur. Phys. J. A 57 (2021) 255

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

DATA BASIS

• Data basis:

Region	Observables	Coll.	$ t (GeV^2)$	number
Spacelike(t < 0)	$d\sigma/d\Omega$	MAMI	0.00384-0.977	1422
		PRad	0.000215-0.058	71
	$\mu_p G_E^p/G_M^p$	JLab	1.18-8.49	16
	G_E^n	world	0.14-1.47	25
	G_M^n	world	0.071 - 10.0	23
Timelike(t > 0)	$ G_{eff}^p $	world	3.52-20.25	153
	$ G_{eff}^n $	world	3.53-9.49	27
	$ G_E^p/G_M^p $	BaBar	3.52-9.0	6
	$d\sigma/d\Omega$	BESIII	3.52-3.80	10

• Number of data/fit parameters:

$$\#_{\text{data}} = 1753$$
, $\#_{\text{fitpara.}} = \underbrace{4}_{\omega+\phi} + 3\underbrace{(N_s+N_v)}_{best\ fit:\ 3+5} + 4\underbrace{(N_S+N_V)}_{best\ fit:\ 3+3} - 11 + \underbrace{31+2}_{\text{norm.}}$

FIT PROCEDURE

- Fit strategy (weighted average): $\chi^2_{\text{total}} = \sum_{i \text{ in data basis}} \frac{\chi^2_i}{\# \text{ data points}}$
- Two definitions of χ^2 [(un)correlated errors]:

$$\begin{split} \chi_1^2 &= \sum_i \sum_k \frac{(n_k C_i - C(Q_i^2, \theta_i, \vec{p}\,))^2}{(\sigma_i + \nu_i)^2} \\ \chi_2^2 &= \sum_{i,j} \sum_k (n_k C_i - C(Q_i^2, \theta_i, \vec{p}\,)) [V^{-1}]_{ij} (n_k C_j - C(Q_j^2, \theta_j, \vec{p}\,)) \\ V_{ij} &= \sigma_i \sigma_j \delta_{ij} + \nu_i \nu_j \end{split}$$

- $-C_i$ = cross section data
- $-C(Q_j^2, \theta_j, \vec{p}) = XS$ for a given FF parametrization
- $-\vec{p}$ = parameter values for a given FF parametrization
- $-n_k$ = normalization constants for various data sets k
- $-V_{ij}$ = covariance matrix w/ stat. (σ_i) & syst. (ν_i) errors

TYPES of UNCERTAINTIES

• Systematic and statistical, only recently fully incorporated

• Systematics: Vary the number of poles

around the best solution

so that $\delta\chi^2_{
m total} \leq 1\%$

Höhler et al. (1976)

Conf. Total chi^2 Reduced chi^2	33 3063.09 2.01652 43 2978.98 1.96502 53 2944.36 1.94604 54 2925.07 1.93713	34 3054.05 2.01455 44 2958.66 1.95549 63 2930.96 1.94104	35 3022.62 1.99777 45 2965.49 1.96390	36 3030.21 2.00676		
Change 1% of total chi^2 of best fit: 2875~2933	64 2904.04 1.92703 74 2897.13 1.92629 66 2891.57 1.92643 76 2892.43 1.93086 86 2885.39 1.93002 87 2886.00 1.93431 88 2886.83 1.93877	55 2906.76 1.92884 56 2900.41 1.92846 57 2909.94 1.93867 58 2897.60 1.93431 77 2890.74 1.93360 78 2891.97 1.93832	73 2954.51 1.96652 65 2922.20 1.94295 84 2910.37 1.93895 85 2899.90 1.93585 68 2891.36 1.93402	37 3058.50 2.02953 83 2967.10 1.97281 75 2911.52 1.93972 67 2901.95 1.93722	46 3062.15 2.03195 47 3008.90 2.00060 48 2987.44 1.99030	38 3032.76 2.01646

• Statistical errors, use

- bootstrap method
- Bayesian analysis

Efron, Tibshirani (1986)

Bayes (1763)

 \Rightarrow both give the same, bootstrap simpler to implement

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

Results

Lin, Hammer, UGM, Phys. Rev. Lett. 128 (2022) 5, 052002

SPACE-LIKE RESULTS I

• ep scattering data and neutron ffs: [error bands from bootstrap, χ^2 /dof=1.223]

SPACE-LIKE RESULTS II

• Proton form factor ratio [Jlab data]:

- zero crossing disfavored

TIME-LIKE RESULTS I

• Proton effective form factor:

open symbols not fitted

 $|G_{\text{eff}}^{p}|_{\text{smooth}} = \frac{7.7}{(1+t/14.8)(1-t/0.71)^2}$ BaBar fit formula: $F_{n} = A^{\text{osc}} \exp(-B^{\text{osc}}n)$

$$X_p = A \exp(-D p)$$

 $\times \cos(C^{\mathrm{osc}}p + D^{\mathrm{osc}})$

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

TIME-LIKE RESULTS II

• Neutron effective form factor:

open symbols not fitted

$$\begin{split} |G_{\text{eff}}^{n}|_{\text{smooth}} &= \frac{4.87}{(1+t/14.8)(1-t/0.71)^2} \\ \text{BESIII fit formula:} \\ F_{p} &= A^{\text{osc}} \exp(-B^{\text{osc}}p) \\ &\times \cos(C^{\text{osc}}p + D^{\text{osc}}) \end{split}$$

TIME-LIKE RESULTS III

• More fits and predictions [pQCD & phases]

The proton radius

Fig. courtesy Yong-Hui Lin

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

PROTON CHARGE RADIUS

• Definition: $\left(r_p^2\equiv-6\,G_E^\prime(0)
ight)$

- Measurements:
 - Leptonic hydrogen Lamb shift [in principle 2 numbers: $r_p \& R_\infty$]

$$\Delta E_{LS} = \Delta E_1 + \Delta E_2 C(r_p^2) + \mathcal{O}(m_{
m red} lpha_{
m EM}^2)$$

$$C(r_p^2) = c_1 + c_2 r_p^2 + \mathcal{O}(m_{\rm red} \alpha_{\rm EM}^2)$$

- Lepton-proton scattering (Rosenbluth sep.)

$$rac{d\sigma}{d\Omega} = rac{d\sigma_{
m Mott}}{d\Omega} rac{1}{1+ au} \left(m{G_E^2} + rac{ au}{arepsilon} m{G_M^2}
ight) (1+\delta_{
m rad.}) + \mathcal{O}(m_{
m red}lpha_{
m EM}^2)$$

• The neglected sibling, the proton magnetic radius:

$$(r_p^M)^2 \equiv -(6/\mu_p)\,G_M'(0)$$

PROTON CHARGE & MAGNETIC RADIUS

• Our determination incl. statistical and systematic errors:

$$r_E^p = 0.840^{+0.003}_{-0.002}_{-0.002} ~{
m fm} ~,~~ r_M^p = 0.849^{+0.003}_{-0.003}_{-0.004} ~{
m fm}$$

• Comparison to earlier DR determinations (and some data)

PROTON CHARGE RADIUS

• Comparison to recent measurements:

ZEMACH RADIUS & THIRD MOMENT

• Our determination incl. statistical and systematic errors:

$$r_{Z} = \frac{2}{\pi} \int_{-\infty}^{0} \frac{dt}{t\sqrt{-t}} \left(\frac{G_{E}(t)G_{M}(t)}{1+\kappa_{p}} - 1 \right) = 1.054^{+0.003}_{-0.002}_{-0.001} \text{ fm}$$
$$\langle r^{3} \rangle_{(2)} = \frac{24}{\pi} \int_{-\infty}^{0} \frac{dt}{t^{2}\sqrt{-t}} \left(G_{E}^{2}(t) - 1 - \frac{t}{3} \langle r^{2} \rangle_{p} \right) = 2.310^{+0.022}_{-0.018}_{-0.018}_{-0.015} \text{ fm}^{3}$$

• Relevant formulas:

 $\Delta E_{LS} = 206.0336(15) - 5.2275(10) \langle r_p^2 \rangle + 0.0347 \langle r^3 \rangle_{(2)}$

 $\Delta E_{HFS} = 22.9843(30) - 0.1621(10) r_Z$

Antognini et al., Ann. Phys. 331 (2013) 127

black triangles = our results

red bands from Antognini et al., Science 339 (2013) 417

PREDICTIONS for PRAD-II

Lin, Hammer, UGM, Phys. Lett. B 827 (2022) 136981 [2111.09619 [hep-ph]]

• Predictions for the upcoming PRad-II and e^+p scattering

 \hookrightarrow Predictions for $E_{\gamma} = 0.7, 1.4, 2.1$ GeV

NEUTRON RADII

• The charge squared neutron $(r_E^n)^2$ radius was mostly input in DR analyses, but not the magnetic one

 $r_M^n = 0.864^{+0.004}_{-0.004} + 0.006_{-0.001} \, {
m fm}^2$

Lin et al., full data, 2021 \hookrightarrow rather stable over time Lin et al., space-like data, 2021 \hookrightarrow but larger variation I. T. Lorenz et al. 2012 M. A. Belushkin et al. 2006 \hookrightarrow always the largest em radius! H.-W. Hammer et al. 2003 \hookrightarrow lattice QCD gives rather P. Mergell et al. 1995 comparable isovector radii (p& n) G. Höhler et al. 1976 0.86 0.94 0.78 0.82 0.9 0.98

 r_M^n

SUMMARY & OUTLOOK

- Dispersion theory is the best tool to analyze the nucleon em FFs
- Description of all data, time- and space-like
- Always a small proton charge radius (0.84 fm), magnetic one bigger (0.85 fm)
- Most recent experiments tend to the small radius
- From a puzzle to precision Hammer, UGM, Sci.Bull. 65 (2020) 257
- Predictions for PRad-II & positron-proton scattering (also MESA/Mainz)
- Magnetic radius of the neutron is the largest one
- Theory challenge: better understanding of the oscillations in $|G_{\text{eff}}^{p,n}|$
- Experimental challenges
 - \hookrightarrow proton form factor ratio at $Q^2 \simeq 10 \, {
 m GeV^2}$
 - \hookrightarrow more resolved form factor measurements in the time-like region
 - $\hookrightarrow \mu p$ scattering testing lepton flavor universality (MUSE, AMBER)

ISOSCALAR SPECTRAL FUNCTION

Two-loop CHPT calculation

• Electric/magnetic spectral fcts

* **no** shoulder on the left wing * clean omega-pol dominance

Once more on the isovector spectral functions

Hoferichter, Kubis, Ruiz de Elvira, Hammer, UGM, Eur. Phys. J. A **52** (2016)331 [arXiv:1609.06722 [nucl-th]]

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

ROY-STEINER EQUATION ANALYSIS

- improve the isovector spectral functions by
 - \hookrightarrow updated πN amplitudes from Roy-Steiner equations
 - → include modern data (esp. pionic hydrogen & deuterium)
 - \hookrightarrow better treatment of isospin-violating effects
 - \hookrightarrow construct the pion FF from precise knowledge of $\delta_1^1(s)$
 - \hookrightarrow perform systematic error analysis

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 092301; Phys. Rev. Lett. 115 (2015) 192301; Phys. Rept. 625 (2016) 1; J.Phys. G45 (2018) 024001

NEW ISOVECTOR SPECTRAL FUNCTIONS

• Precise determinations of the isovector spectral functions

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

BAYESIAN ANALYSIS

• Bayes theorem: $P(\text{parameters}|\text{data}) = \frac{P(\text{parameters})P(\text{data}|\text{parameters})}{P(\text{data})}$

posterior \sim prior \times likelihood

 Bayesian analysis of the PRad data (71 data pts)

- Ulf-G. Meißner, Dispersive analysis of the nucleon's electromagnetic form factors - talk, PREN22, Jun. 21, 2022 -

BAYESIAN versus BOOTSTRAP

• Bootstrap sampling in comparison to the Bayesian analysis [PRad data]

Method	r_{E}^{p} [fm]	r^p_M [fm]
Bayes normal	0.828 ± 0.011	0.843 ± 0.004
Bayes uniform	0.828 ± 0.011	0.843 ± 0.004
Bootstrap	0.828 ± 0.012	0.843 ± 0.005

 \hookrightarrow identical results, but bootstrap much faster

 \hookrightarrow will use the bootstrap method to determine the statistical error

• Energy levels in hydrogen:

$$\left(E_{n\ell j} = \mathbf{R}_{\infty} \left(-\frac{1}{n^2} + f_{n\ell j}\left(\alpha, \frac{m_e}{m_p}, \ldots\right) + \delta_{\ell 0} \frac{C_{\rm NS}}{n^3} r_p^2\right)\right)$$

$$f_{n\ell j}\left(lpha, rac{m_e}{m_p}, \ldots\right) = X_{20}\alpha^2 + X_{30}\alpha^3 + X_{31}\alpha^3 \ln lpha + X_{40}\alpha^4 + \ldots$$

- $-n,\ell,j$ principal, orbital, total ang. momentum quantum numbers
- $-f_{n\ell j}$ relativistic corr's, vacuum effects, other QED corrections
- $-\,m_e/m_p$ enters through the coefficients $X_{20},\,X_{30},\,...$ (recoil)
- $C_{
 m NS}$ calculable leading order correction due to the finite r_p
- higher order charge distributions are included in $f_{n\ell j}$
- \Rightarrow must measure at least 2 transitions to pin down the two unknowns \Rightarrow this is done in recent measurements, but not before! [inconsistency]