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Two body system with arbitrary masses

@ the highest precision theoretical predictions can be achieved for simple atomic
systems systems, like: hydrogenic, He, HD*, H,

@ they serve for determination of fundamental constants: Ry, rp, ry, me/mc, me/mp,
Qp, s -

@ they could serve for determination of various nuclear properties: charge radius,
polarizability, vector polarizability (hfs)

@ the rotational excited states can be calculated with extreme precision —
determination of Ry ? Rydberg states of heavy ions ?

@ they could serve for search of unknown yet interactions by comparison with
theoretical predictions: muonium, positronium
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Theoretical description of energy levels

The light particle spin S = 1/2, charge = 1, the heavy particle spin / is arbitrary,
charge= Z.
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The physical energy levels are obtained by diagonalization of this effective
Hamiltonian, J2 = (L + S)? is not necessarily a good quantum number.

Each coefficient E; is a function of o, Z m/M, me /1 and possibly of nuclear
structure through the charge radius, Zemach radius, and other radii.

Determination of E; proceeds by expansion in « and calculation of each coefficient
using NRQED theory

Rotational states L > 1 does not depend on nuclear structure, many QED
corrections vanish, so they can be calculated with extreme precision

What are the leading nuclear effects ?
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Nuclear spin independent effects to energy levels

Simple picture:

@ pe(r) and py(r): the charge and the magnetic moment distribution within the
nucleus.

Ge(9?), Gu(g?): corresponding Fourier transform,

SEr = 6E@ 4+ 5EG) 1 6EO) 4 5E®)

(]

® JE@® = 2T 42(0) Zarr3, where rd = [ d®r r? pg(r)

0 0E®) = —Z ¢?(0) (Za)® mr2, where r2 = [ d®ry d®ry p(ry) p(r2) |Fy — T2

SES) = —m 42(0) (Z )2 12 (g 242 In(mrL>, where
[ &Br [ &Bryp(Fy) p(Fo) |[Fy — F2f? In(m|Fy — T2]) = 272 In(mry)

@ SE®) = ... three-photon exchange
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Three-photon elastic photon exchange

In the infinite nuclear mass limit
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where rd. = (r*) and the effective nuclear charge radii r¢; and r¢, encode the
high-momentum contributions and are expectedto be of the order of r¢.

In the case of the electronic atoms, the terms proportional to ré and ’éc in these
formulas are smaller than the next-order correction and thus can be neglected.
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More accurate picture:
o 5E®) = 6EC) + 5EL)

nucleons
g 5Er5uzleon> = _% a2 ¢2(O) Mme [Z RS + (A Z) F + Z// 1<¢N||'§i - ﬁj‘3|¢N>}

@ Friar radii: Rpr = 1.947(75) fm, R,r = 1.43(16) fm

-] Elgol) = _a? ¢2(0) % Me <¢N a HN1—

C7\/ HAy—En EN

@ §E®) not yet calculated, only the elastic part

19 2(Hy—E T
= {?+5|n7( - N)}d

¢N> (electronic)

2
o EO) = 4z ¢2(0)<¢N

¢N> .. (muonic)
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Nuclear structure effects in hyperfine splitting

@ 3Ewa = 8 Epe + 8@ Epyer + ... where
8 E . is the two-photon exchange correction of order (Z «) Ef,

S E, . is the three-photon exchange correction of order (Z a)2 Er,
Er = —542(0) i jie
o SWE o = —2myZa rz EF where
rz is the Zemach radius defined by rz = [ d®ry [ d®r2 pu(r1) pe(r2) |Fi — T

@ nuclear recoil correction
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More accurate picture

5(1)Ehf> = ELow + E1nuc + Epol

Eipue = —

81 » P2(0) 2
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Let us consider the special case of a spherically symmetric nucleus and neglect the
proton-neutron mass difference.

8 2(0 o\ =
EL()w:_iazL() ST (rap g8y s

3 Mn a—protons b

Much better description for hfs in D
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Two-body systems with angular momentum L > 1

They can be calculated very accurately for an arbitrary masses:
E(a)=E©® 4 E@) 4 F® 4 EG) 4 E6) 4 o(a7)
where each individual term EU) is of the order o/. In particular,
EO® =m; +m,

and E@ is the eigenvalue of the nonrelativistic two-body Hamiltonian H = H®) in the
center of mass frame,

e e 1
_PP eel
2u 4 r
When we set ey = —e, e, = Zeitis equal to
E(z):E:_(Za)zu
2n2

with 4 = my mp /(my + my) being the reduced mass.
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Two-body systems with angular momentum L > 1
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In the limit of the infinite mass m, and the point particle "1"

3 1
€9 =me g ) v

coincides with the Dirac or the Klein-Gordon equation
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Two-body systems with angular momentum L > 1

The leading QED corrections

g® _ _ 1 (Za)®y® 1
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2oy

810 (On + 65 81 - 82)

where éy, dg are known only for spin 1/2 particles
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Two-body systems with angular momentum L > 1

The correction of the order m a8 for spinless particles is thus

5 3 3 1
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The limit when mass M = m», of one of the particles is infinitely heavy is in agreement
with Klein-Gordon equation j = [:

5 3 3 1
SE®0 — m(z 6(77 - - )
MEZV\~ 16 T 20 12 20 12 A+ 2P )

The first-order recoil correction
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To do list

@ two-photon exchange to hfs for light nuclei

three-photon exchange nuclear structure correction (spin-independent)
@ E® for L = 0 with arbitrary masses

o E(:1) for an arbitrary state

two-loop radiative correction 6E = o? (Z a)®

(]

three-loop radiative corrections 6E = o8 (Z a)®



	Two-body
	Two-body


