Theory of light hydrogen-like atoms: status and perspectives

Krzysztof Pachucki \& QED Theory Group:
V.A. Yerokhin (St. Petersburg), V. Patkos (Praha)

University of Warsaw

PREN2022
June 21, 2022

Two body system with arbitrary masses

- the highest precision theoretical predictions can be achieved for simple atomic systems systems, like: hydrogenic, $\mathrm{He}, \mathrm{HD}^{+}, \mathrm{H}_{2}$
- they serve for determination of fundamental constants: $\mathrm{Ry}, r_{p}, r_{d}, m_{e} / m_{C}, m_{e} / m_{p}$, Q_{D}, μ_{h}, \ldots
- they could serve for determination of various nuclear properties: charge radius, polarizability, vector polarizability (hfs)
- the rotational excited states can be calculated with extreme precision \rightarrow determination of Ry ? Rydberg states of heavy ions ?
- they could serve for search of unknown yet interactions by comparison with theoretical predictions: muonium, positronium

Theoretical description of energy levels

- The light particle spin $S=1 / 2$, charge $=1$, the heavy particle spin $/$ is arbitrary, charge $=Z$.

$$
\begin{aligned}
H_{\mathrm{eff}}= & E_{0}+E_{1} \vec{L} \cdot \vec{S}+E_{2} \vec{S} \cdot \vec{l}+E_{3} \vec{L} \cdot \vec{l}+E_{4} I^{i} S^{j}\left(L^{i} L^{j}\right)^{(2)} \\
& +E_{5}\left(L^{i} L^{j}\right)^{(2)}\left(I^{i} \mu^{j}\right)^{(2)}+E_{6} L^{i} S^{j}\left(I^{i} j^{j}\right)^{(2)}+E_{7}\left(L^{i} L^{j} L^{k}\right)^{(3)}\left(I^{i} \mu^{j}\right)^{(2)} S^{k} \\
& +(\ldots)\left(I^{j} I^{k}\right)^{(3)}+\ldots
\end{aligned}
$$

- The physical energy levels are obtained by diagonalization of this effective Hamiltonian, $\vec{J}^{2}=(\vec{L}+\vec{S})^{2}$ is not necessarily a good quantum number.
- Each coefficient E_{i} is a function of $\alpha, Z m / M, m_{e} / \mu$ and possibly of nuclear structure through the charge radius, Zemach radius, and other radii.
- Determination of E_{i} proceeds by expansion in α and calculation of each coefficient using NRQED theory
- Rotational states $L>1$ does not depend on nuclear structure, many QED corrections vanish, so they can be calculated with extreme precision
- What are the leading nuclear effects ?

Nuclear spin independent effects to energy levels

Simple picture:

- $\rho_{E}(r)$ and $\rho_{M}(r)$: the charge and the magnetic moment distribution within the nucleus.
- $G_{E}\left(q^{2}\right), G_{M}\left(q^{2}\right)$: corresponding Fourier transform,
- $\delta E_{\mathrm{fs}}=\delta E^{(4)}+\delta E^{(5)}+\delta E_{\mathrm{rec}}^{(5)}+\delta E^{(6)}$
- $\delta E^{(4)}=\frac{2 \pi}{3} \phi^{2}(0) Z \alpha r_{C}^{2}$, where $r_{C}^{2}=\int d^{3} r r^{2} \rho_{E}(r)$
- $\delta E^{(5)}=-\frac{\pi}{3} \phi^{2}(0)(Z \alpha)^{2} m r_{F}^{3}$, where $r_{F}^{3}=\int d^{3} r_{1} d^{3} r_{2} \rho\left(r_{1}\right) \rho\left(r_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|^{3}$
- $\delta E_{\text {rec }}^{(5)}=-\frac{m}{M} \phi^{2}(0)(Z \alpha)^{2} r_{C}^{2}\left(\frac{7}{6}-2 \gamma-2 \ln \left(m r_{L}\right)\right.$, where

$$
\int d^{3} r_{1} \int d^{3} r_{2} \rho\left(\vec{r}_{1}\right) \rho\left(\vec{r}_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|^{2} \ln \left(m\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)=2 r^{2} \ln \left(m r_{L}\right)
$$

- $\delta E^{(6)}=\ldots$ three-photon exchange

Three-photon elastic photon exchange

In the infinite nuclear mass limit

$$
\begin{aligned}
E_{\mathrm{fns}}^{(6)}(n S)= & -(Z \alpha)^{6} m^{3} r_{C}^{2} \frac{2}{3 n^{3}}\left[\frac{9}{4 n^{2}}-3-\frac{1}{n}+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{C 2} Z \alpha\right)\right] \\
& +(Z \alpha)^{6} m^{5} r_{C}^{4} \frac{4}{9 n^{3}}\left[-\frac{1}{n}+2+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{C 1} Z \alpha\right)\right] \\
& +(Z \alpha)^{6} m^{5} r_{C C}^{4} \frac{1}{15 n^{5}}, \\
E_{\mathrm{fns}}^{(6)}\left(n P_{1 / 2}\right)= & (Z \alpha)^{6} m\left(\frac{m^{2} r_{C}^{2}}{6}+\frac{m^{4} r_{C C}^{4}}{45}\right) \frac{1}{n^{3}}\left(1-\frac{1}{n^{2}}\right), \\
E_{\mathrm{fns}}^{(6)}\left(n P_{3 / 2}\right)= & (Z \alpha)^{6} m^{5} r_{C C}^{4} \frac{1}{45 n^{3}}\left(1-\frac{1}{n^{2}}\right), \\
E_{\mathrm{fns}}^{(6)}\left(n L_{J}\right)= & 0 \text { for } L>1,
\end{aligned}
$$

where $r_{C C}^{4}=\left\langle r^{4}\right\rangle$ and the effective nuclear charge radii $r_{C 1}$ and $r_{C 2}$ encode the high-momentum contributions and are expectedto be of the order of r_{C}.
In the case of the electronic atoms, the terms proportional to r_{C}^{4} and $r_{C C}^{4}$ in these formulas are smaller than the next-order correction and thus can be neglected.

More accurate picture:

- $\delta E^{(5)}=\delta E_{\text {pol }}^{(5)}+\delta E_{\text {nucleons }}^{(5)}$
- $\delta E_{\text {nucleons }}^{(5)}=-\frac{\pi}{3} \alpha^{2} \phi^{2}(0) m_{e}\left[Z R_{p F}^{3}+(A-Z) R_{n F}^{3}+\sum_{i, j=1}^{Z}\left\langle\phi_{N}\right|\left|\vec{R}_{i}-\vec{R}_{j}\right|^{3}\left|\phi_{N}\right\rangle\right]$
- Friar radii: $R_{p F}=1.947(75) \mathrm{fm}, R_{n F}=1.43(16) \mathrm{fm}$
- $E_{\text {pol }}^{(5)}=-\alpha^{2} \phi^{2}(0) \frac{2}{3} m_{e}\left\langle\phi_{N}\right| \vec{d} \frac{1}{H_{N}-E_{N}}\left[\frac{19}{6}+5 \ln \frac{2\left(H_{N}-E_{N}\right)}{m}\right] \vec{d}\left|\phi_{N}\right\rangle$ (electronic)
- $E_{\mathrm{pol}}^{(5)}=-\frac{4 \pi \alpha^{2}}{3} \phi^{2}(0)\left\langle\phi_{N}\right| \vec{d} \sqrt{\frac{2 m}{H_{N}-E_{N}}} \vec{d}\left|\phi_{N}\right\rangle+\ldots$ (muonic)
- $\delta E^{(6)}$ not yet calculated, only the elastic part

Nuclear structure effects in hyperfine splitting

- $\delta E_{\text {nucl }}=\delta^{(1)} E_{\text {nucl }}+\delta^{(2)} E_{\text {nucl }}+\ldots$ where
$\delta^{(1)} E_{\text {nucl }}$ is the two-photon exchange correction of order $(Z \alpha) E_{F}$,
$\delta^{(2)} E_{\text {nucl }}$ is the three-photon exchange correction of $\operatorname{order}(Z \alpha)^{2} E_{F}$,

$$
E_{F}=-\frac{2}{3} \psi^{2}(0) \vec{\mu} \cdot \vec{\mu}_{e}
$$

- $\delta^{(1)} E_{\text {nucl }}=-2 m_{r} Z \alpha r_{Z} E_{F}$ where
r_{Z} is the Zemach radius defined by $r_{Z}=\int d^{3} r_{1} \int d^{3} r_{2} \rho_{M}\left(r_{1}\right) \rho_{E}\left(r_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|$
- nuclear recoil correction

$$
\begin{aligned}
\delta^{(2)} E_{\mathrm{fns}, \mathrm{rec}}= & -E_{F} \frac{Z \alpha}{\pi} \frac{m}{M} \frac{3}{8}\left\{g\left[\gamma-\frac{7}{4}+\ln \left(m r_{M^{2}}\right)\right]\right. \\
& \left.-4\left[\gamma+\frac{9}{4}+\ln \left(m r_{E M}\right)\right]-\frac{12}{g}\left[\gamma-\frac{17}{12}+\ln \left(m r_{E^{2}}\right)\right]\right\}
\end{aligned}
$$

- $\delta^{(2)} E_{\text {fns }}=\frac{4}{3} E_{F}\left(m r_{p} Z \alpha\right)^{2}\left[-\frac{1}{n}+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{p p} Z \alpha\right)+\frac{r_{m}^{2}}{4 r_{p}^{2} n^{2}}\right]$

More accurate picture

$$
\begin{aligned}
\delta^{(1)} E_{\mathrm{hfs}} & =E_{\mathrm{Low}}+E_{1 \text { nuc }}+E_{\mathrm{pol}} \\
E_{1 \text { nuc }} & =-\frac{8 \pi}{3} \alpha^{2} \frac{\psi^{2}(0)}{m_{p}+m} \vec{s} \cdot\left\langle\sum_{a} g_{a} \vec{s}_{a} r_{a Z}\right\rangle \\
E_{\mathrm{Low}} & =\frac{\alpha}{16} \psi^{2}(0) \vec{\sigma} \sum_{a \neq b} \frac{e_{a} e_{b}}{m_{b}}\left\langle 4 r_{a b} \vec{r}_{a b} \times \vec{p}_{b}+\frac{g_{b}}{r_{a b}}\left[\vec{r}_{a b}\left(\vec{r}_{a b} \cdot \vec{\sigma}_{b}\right)-3 \vec{\sigma}_{b} r_{a b}^{2}\right]\right\rangle
\end{aligned}
$$

Let us consider the special case of a spherically symmetric nucleus and neglect the proton-neutron mass difference.

$$
E_{\text {Low }}=-\frac{8 \pi}{3} \alpha^{2} \frac{\psi^{2}(0)}{m_{n}} \sum_{a-\text { protons }} \sum_{b}\left\langle r_{a b} g_{b} \vec{s}_{b}\right\rangle \vec{s}
$$

Much better description for hfs in $\mu \mathrm{D}$

Two-body systems with angular momentum $L>1$

They can be calculated very accurately for an arbitrary masses:

$$
E(\alpha)=E^{(0)}+E^{(2)}+E^{(4)}+E^{(5)}+E^{(6)}+o\left(\alpha^{7}\right)
$$

where each individual term $E^{(j)}$ is of the order α^{j}. In particular,

$$
E^{(0)}=m_{1}+m_{2}
$$

and $E^{(2)}$ is the eigenvalue of the nonrelativistic two-body Hamiltonian $H=H^{(2)}$ in the center of mass frame,

$$
H=\frac{p^{2}}{2 \mu}+\frac{e_{1} e_{2}}{4 \pi} \frac{1}{r} .
$$

When we set $e_{1}=-e, e_{2}=Z e$ it is equal to

$$
E^{(2)}=E=-\frac{(Z \alpha)^{2} \mu}{2 n^{2}}
$$

with $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ being the reduced mass.

Two-body systems with angular momentum $L>1$

$$
\begin{aligned}
E^{(4)}= & \mu^{3}(Z \alpha)^{4}\left\{\frac{1}{8 n^{4}}\left(\frac{3}{\mu^{2}}-\frac{1}{m_{1} m_{2}}\right)-\frac{1}{\mu^{2}(2 I+1) n^{3}}+\frac{2 \delta_{l 0}}{3 n^{3}}\left(r_{C 1}^{2}+r_{C 2}^{2}\right)+\frac{\delta_{l 0}}{m_{1} m_{2} n^{3}}\right. \\
& +\frac{1}{I\left(I+\frac{1}{2}\right)(I+1) n^{3}}\left[\vec{L} \cdot \vec{s}_{1}\left(\frac{1+2 \kappa_{1}}{2 m_{1}^{2}}+\frac{1+\kappa_{1}}{m_{1} m_{2}}\right)+\vec{L} \cdot \vec{s}_{2}\left(\frac{1+2 \kappa_{2}}{2 m_{2}^{2}}+\frac{1+\kappa_{2}}{m_{1} m_{2}}\right)\right. \\
& \left.\left.-\frac{6\left(1+\kappa_{1}\right)\left(1+\kappa_{2}\right)}{m_{1} m_{2}(2 I-1)(2 I+3)} s_{1}^{i} s_{2}^{j}\left(L^{i} L^{j}\right)^{(2)}\right]+\frac{8 \delta_{l 0}}{3 m_{1} m_{2} n^{3}}\left(1+\kappa_{1}\right)\left(1+\kappa_{2}\right) \vec{s}_{1} \cdot \vec{s}_{2}\right\}
\end{aligned}
$$

In the limit of the infinite mass m_{2} and the point particle "1"

$$
\begin{equation*}
E^{(4)}=m(Z \alpha)^{4}\left\{\frac{3}{8 n^{4}}-\frac{1}{(2 j+1) n^{3}}\right\} . \tag{1}
\end{equation*}
$$

coincides with the Dirac or the Klein-Gordon equation

Two-body systems with angular momentum $L>1$

The leading QED corrections

$$
\begin{aligned}
E^{(5)}= & -\frac{7}{3 \pi} \frac{(Z \alpha)^{5} \mu^{3}}{m_{1} m_{2}} \frac{1}{n^{3} I(2 I+1)(I+1)} \\
& -\frac{4}{3 \pi}\left(\frac{1}{m_{1}}+\frac{Z}{m_{2}}\right)^{2} \frac{\alpha(Z \alpha)^{4} \mu^{3}}{n^{3}} \ln \left[k_{0}(n, I)\right] \\
& +\frac{(Z \alpha)^{5}}{\pi n^{3}} \delta_{/ 0}\left(\delta_{N}+\delta_{S} \vec{s}_{1} \cdot \vec{s}_{2}\right)
\end{aligned}
$$

where δ_{N}, δ_{S} are known only for spin $1 / 2$ particles

Two-body systems with angular momentum $L>1$

The correction of the order $m \alpha^{6}$ for spinless particles is thus

$$
\begin{aligned}
E^{(6)}= & \mu(Z \alpha)^{6}\left[-\frac{5}{16 n^{6}}+\frac{3}{2(2 I+1) n^{5}}-\frac{3}{2(2 I+1)^{2} n^{4}}-\frac{1}{(2 I+1)^{3} n^{3}}\right. \\
& +\frac{\mu^{2}}{m_{1} m_{2}}\left(\frac{3}{16 n^{6}}-\frac{(8 I(I+1)-3)}{2(2 I-1)(2 I+1)(2 I+3) n^{5}}+\frac{6}{(2 I-1)(2 I+1)(2 I+3) n^{3}}\right) \\
& \left.-\frac{\mu^{4}}{16 m_{1}^{2} m_{2}^{2} n^{6}}+\frac{2 \mu^{3}\left(\alpha_{E 1}+\alpha_{E 2}\right)}{(2 I-1)(2 I+1)(2 I+3)}\left(\frac{1}{n^{5}}-\frac{3}{I(I+1) n^{3}}\right)\right]
\end{aligned}
$$

The limit when mass $M=m_{2}$ of one of the particles is infinitely heavy is in agreement with Klein-Gordon equation $j=I$:

$$
\delta E^{(6,0)}=m(Z \alpha)^{6}\left(-\frac{5}{16 n^{6}}+\frac{3}{2(1+2 j) n^{5}}-\frac{3}{2(1+2 j)^{2} n^{4}}-\frac{1}{(1+2 j)^{3} n^{3}}\right)
$$

The first-order recoil correction

$$
\begin{gathered}
E^{(6,1)}=(Z \alpha)^{6} \frac{m^{2}}{M}\left[\frac{1}{2 n^{6}}+\frac{6-10 I(I+1)}{(2 I-1)(2 I+1)(2 I+3) n^{5}}+\frac{3}{2(1+2 I)^{2} n^{4}}\right. \\
\\
\left.+\frac{3+28 I(I+1)}{(2 I-1)(2 I+1)^{3}(2 I+3) n^{3}}\right]
\end{gathered}
$$

To do list

- two-photon exchange to hfs for light nuclei
- three-photon exchange nuclear structure correction (spin-independent)
- E^{6} for $L=0$ with arbitrary masses
- $E^{(7,1)}$ for an arbitrary state
- two-loop radiative correction $\delta E=\alpha^{2}(Z \alpha)^{6}$
- three-loop radiative corrections $\delta E=\alpha^{3}(Z \alpha)^{5}$
- ...

