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Two-body

Two body system with arbitrary masses

the highest precision theoretical predictions can be achieved for simple atomic
systems systems, like: hydrogenic, He, HD+, H2

they serve for determination of fundamental constants: Ry, rp , rd , me/mC , me/mp ,
QD , µh, . . .

they could serve for determination of various nuclear properties: charge radius,
polarizability, vector polarizability (hfs)

the rotational excited states can be calculated with extreme precision→
determination of Ry ? Rydberg states of heavy ions ?

they could serve for search of unknown yet interactions by comparison with
theoretical predictions: muonium, positronium
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Theoretical description of energy levels

The light particle spin S = 1/2, charge = 1, the heavy particle spin I is arbitrary,
charge= Z .

Heff = E0 + E1
~L · ~S + E2

~S ·~I + E3
~L ·~I + E4 I i Sj (Li Lj )(2)

+ E5 (Li Lj )(2) (I i I j )(2) + E6 Li Sj (I i I j )(2) + E7 (Li Lj Lk )(3) (I i I j )(2) Sk

+ (. . .) (I i I j Ik )(3) + . . .

The physical energy levels are obtained by diagonalization of this effective
Hamiltonian, ~J2 = (~L + ~S)2 is not necessarily a good quantum number.

Each coefficient Ei is a function of α,Z m/M,me/µ and possibly of nuclear
structure through the charge radius, Zemach radius, and other radii.

Determination of Ei proceeds by expansion in α and calculation of each coefficient
using NRQED theory

Rotational states L > 1 does not depend on nuclear structure, many QED
corrections vanish, so they can be calculated with extreme precision

What are the leading nuclear effects ?
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Nuclear spin independent effects to energy levels

Simple picture:
ρE (r) and ρM (r): the charge and the magnetic moment distribution within the
nucleus.

GE (q2), GM (q2): corresponding Fourier transform,

δEfs = δE (4) + δE (5) + δE (5)
rec + δE (6)

δE (4) = 2π
3 φ2(0) Z α r2

C , where r2
C =

∫
d3r r2 ρE (r)

δE (5) = −π3 φ
2(0) (Z α)2 m r3

F , where r3
F =

∫
d3r1 d3r2 ρ(r1) ρ(r2) |~r1 −~r2|3

δE (5)
rec = −m

M φ2(0) (Z α)2 r2
C

(
7
6 − 2 γ − 2 ln(m rL

)
, where

∫
d3r1

∫
d3r2 ρ(~r1) ρ(~r2) |~r1 −~r2|2 ln(m |~r1 −~r2|) = 2 r2 ln(m rL)

δE (6) = . . . three-photon exchange



Two-body

Three-photon elastic photon exchange

In the infinite nuclear mass limit

E (6)
fns (nS) = −(Z α)6 m3 r2

C
2

3 n3

[
9

4n2
− 3−

1
n

+ 2 γ − ln
n
2

+ Ψ(n) + ln(m rC2 Z α)

]
+(Z α)6 m5 r4

C
4

9 n3

[
−

1
n

+ 2 + 2 γ − ln
n
2

+ Ψ(n) + ln(m rC1 Z α)

]
+(Z α)6 m5 r4

CC
1

15 n5
,

E (6)
fns (nP1/2) = (Z α)6 m

(m2 r2
C

6
+

m4 r4
CC

45

)
1
n3

(
1−

1
n2

)
,

E (6)
fns (nP3/2) = (Z α)6 m5 r4

CC
1

45 n3

(
1−

1
n2

)
,

E (6)
fns (nLJ ) = 0 for L > 1 ,

where r4
CC = 〈r4〉 and the effective nuclear charge radii rC1 and rC2 encode the

high-momentum contributions and are expectedto be of the order of rC .

In the case of the electronic atoms, the terms proportional to r4
C and r4

CC in these
formulas are smaller than the next-order correction and thus can be neglected.
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More accurate picture:

δE (5) = δE (5)
pol + δE (5)

nucleons

δE (5)
nucleons = −π3 α

2 φ2(0) me

[
Z R3

pF + (A− Z ) R3
nF +

∑Z
i,j=1〈φN ||~Ri − ~Rj |3|φN〉

]
Friar radii: RpF = 1.947(75) fm, RnF = 1.43(16) fm

E (5)
pol = −α2 φ2(0) 2

3 me

〈
φN

∣∣∣∣ ~d 1
HN−EN

[
19
6 + 5 ln 2 (HN−EN )

m

]
~d
∣∣∣∣φN

〉
(electronic)

E (5)
pol = − 4π α2

3 φ2(0)

〈
φN

∣∣∣∣~d√ 2 m
HN−EN

~d
∣∣∣∣φN

〉
+ . . . (muonic)

δE (6) not yet calculated, only the elastic part
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Nuclear structure effects in hyperfine splitting

δEnucl = δ(1)Enucl + δ(2)Enucl + . . . where

δ(1)Enucl is the two-photon exchange correction of order (Z α) EF ,

δ(2)Enucl is the three-photon exchange correction of order (Z α)2 EF ,

EF = − 2
3 ψ

2(0) ~µ · ~µe

δ(1)Enucl = −2 mr Zα rZ EF where

rZ is the Zemach radius defined by rZ =
∫

d3r1
∫

d3r2 ρM (r1) ρE (r2) |~r1 −~r2|

nuclear recoil correction

δ(2)Efns,rec = − EF
Z α
π

m
M

3
8

{
g
[
γ −

7
4

+ ln(m rM2 )

]
− 4

[
γ +

9
4

+ ln(m rEM )

]
−

12
g

[
γ −

17
12

+ ln(m rE2 )

]}

δ(2)Efns = 4
3 EF (mrpZα)2

[
− 1

n + 2γ − ln n
2 + Ψ(n) + ln(mrppZα) +

r2
m

4r2
p n2

]
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More accurate picture

δ(1)Ehfs = ELow + E1nuc + Epol

E1nuc = −
8π
3
α2 ψ2(0)

mp + m
~s ·
〈∑

a
ga ~sa raZ

〉

ELow =
α

16
ψ2(0)~σ

∑
a 6=b

ea eb

mb

〈
4 rab~rab × ~pb +

gb

rab

[
~rab (~rab · ~σb)− 3~σb r2

ab
]〉

Let us consider the special case of a spherically symmetric nucleus and neglect the
proton-neutron mass difference.

ELow =−
8π
3
α2 ψ

2(0)

mn

∑
a−protons

∑
b

〈
rab gb ~sb

〉
~s

Much better description for hfs in µD
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Two-body systems with angular momentum L > 1

They can be calculated very accurately for an arbitrary masses:

E(α) = E (0) + E (2) + E (4) + E (5) + E (6) + o(α7)

where each individual term E (j) is of the order αj . In particular,

E (0) = m1 + m2

and E (2) is the eigenvalue of the nonrelativistic two-body Hamiltonian H = H(2) in the
center of mass frame,

H =
p2

2µ
+

e1 e2

4π
1
r
.

When we set e1 = −e, e2 = Z e it is equal to

E (2) = E = −
(Z α)2 µ

2 n2
,

with µ = m1 m2/(m1 + m2) being the reduced mass.
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Two-body systems with angular momentum L > 1

E (4) = µ3(Zα)4
{

1
8 n4

(
3
µ2
−

1
m1 m2

)
−

1
µ2(2l + 1) n3

+
2 δl0

3 n3

(
r2
C1 + r2

C2
)

+
δl0

m1 m2 n3

+
1

l(l + 1
2 )(l + 1)n3

[
~L ·~s1

(
1 + 2κ1

2m2
1

+
1 + κ1

m1m2

)
+ ~L ·~s2

(
1 + 2κ2

2m2
2

+
1 + κ2

m1m2

)
−

6(1 + κ1)(1 + κ2)

m1m2 (2 l − 1)(2 l + 3)
si

1sj
2(Li Lj )(2)

]
+

8 δl0

3m1m2 n3
(1 + κ1)(1 + κ2)~s1 ·~s2

}
In the limit of the infinite mass m2 and the point particle "1"

E (4) = m (Zα)4
{

3
8 n4

−
1

(2j + 1) n3

}
. (1)

coincides with the Dirac or the Klein-Gordon equation
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Two-body systems with angular momentum L > 1

The leading QED corrections

E (5) = −
7

3π
(Zα)5µ3

m1m2

1
n3 l(2l + 1)(l + 1)

−
4

3π

(
1

m1
+

Z
m2

)2 α(Zα)4µ3

n3
ln
[
k0(n, l)

]
+

(Z α)5

π n3
δl0 (δN + δS ~s1 ·~s2)

where δN , δS are known only for spin 1/2 particles
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Two-body systems with angular momentum L > 1

The correction of the order mα6 for spinless particles is thus

E (6) =µ(Zα)6
[
−

5
16 n6

+
3

2 (2l + 1) n5
−

3
2 (2l + 1)2 n4

−
1

(2l + 1)3 n3

+
µ2

m1 m2

(
3

16 n6
−

(
8 l(l + 1)− 3

)
2 (2l − 1)(2l + 1)(2l + 3) n5

+
6

(2l − 1)(2l + 1)(2l + 3) n3

)
−

µ4

16 m2
1 m2

2 n6
+

2µ3 (αE1 + αE2)

(2l − 1)(2l + 1)(2l + 3)

(
1
n5
−

3
l(l + 1) n3

)]
The limit when mass M = m2 of one of the particles is infinitely heavy is in agreement
with Klein-Gordon equation j = l :

δE (6,0) = m(Zα)6
(
−

5
16n6

+
3

2(1 + 2j)n5
−

3
2(1 + 2j)2n4

−
1

(1 + 2j)3n3

)
,

The first-order recoil correction

E (6,1) = (Zα)6 m2

M

[
1

2n6
+

6− 10l(l + 1)

(2l − 1)(2l + 1)(2l + 3)n5
+

3
2(1 + 2l)2n4

+
3 + 28l(l + 1)

(2l − 1)(2l + 1)3(2l + 3)n3

]
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To do list

two-photon exchange to hfs for light nuclei

three-photon exchange nuclear structure correction (spin-independent)

E6 for L = 0 with arbitrary masses

E (7,1) for an arbitrary state

two-loop radiative correction δE = α2 (Z α)6

three-loop radiative corrections δE = α3 (Z α)5

. . .


	Two-body
	Two-body


