# The proton radius from electron scattering measurements (and other thoughts about form factors)

#### Jan C. Bernauer

#### PREN 2022, PARIS

Genter for Frontiers in Nuclear Science RBRC RIKEN BNL Research Center

Stony Brook University

Dr. Bernauer is supported by NSF grant PHY 2012114

#### Reminder: The Proton Radius puzzle



## Reminder: The Proton Radius puzzle



# Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering

- Point-like probe
- No strong force
- Lepton interaction "straight-forward"

Measure cross sections and reconstruct form factors.

#### Cross section for elastic scattering

$$\frac{\left(\frac{\partial\sigma}{\partial\Omega}\right)}{\left(\frac{d\sigma}{\partial\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon(1+\tau)} \left[\varepsilon G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)\right]$$

with:

$$\tau = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

- Rosenbluth formula
- Electric and magnetic form factor encode the shape of the proton
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

#### How to measure the proton radius

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}\left(G_{M}/\mu_{P}\right)}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$



6

# Complications

We are actually measuring  $ep 
ightarrow ep \gamma^N$ 

#### **Cross sections**



#### Cross sections over standard dipole



# Why is it hard to extract the radius

- ► Need to extrapolate slope to  $Q^2 = 0$  (This is actually harder than extrapolating  $G_E$ )
- Shape not a priori known. Model dependence.
- ► N.B:
  - All fits are model dependent (they have to, as the number of parameters must be finite)
  - A polynomial fit has nothing to do with a Taylor expansion (except that it's also a polynomial)

# Does low Q<sup>2</sup> help?

![](_page_10_Figure_1.jpeg)

(Q in units of GeV/c) We want to measure the radius ( $\propto \sqrt{A/2}$ ) to within 0.5%, without knowing B. So:

 $B/A \cdot Q^2 \ll 0.02 \longrightarrow Q^2 \ll 0.004$  (GeV/G)

# Does low Q<sup>2</sup> help?

![](_page_11_Figure_1.jpeg)

(Q in units of GeV/c) We want to measure the radius ( $\propto \sqrt{A/2}$ ) to within 0.5%, without knowing B. So:

 $B/A \cdot Q^2 \ll 0.02 \longrightarrow Q^2 \ll 0.004$  (GeV/C)

But: Need to measure A to 2%, so measure  $\frac{d\sigma}{d\Omega}$  to  $6 \cdot 0.004 \cdot 0.02 = 0.048\%$ .

#### In principle also true for spectroscopy

#### De Rujula, Phys.Lett.B693:555-558,2010

- Can "fix" muon result by assuming a different third Zemach moment  $< r_p^3 >_2$ .
- Ruled out by scattering measurements. Full form factors, so we get "all" moments.

## World data set 2010

![](_page_13_Figure_1.jpeg)

## World data set 2010

![](_page_14_Figure_1.jpeg)

## World data set 2010

![](_page_15_Figure_1.jpeg)

# Magnetic radius

I do not believe we have a reliable magnetic radius with currently available data without model assumption.

## Fits (as reported in papers)

Fitting a selected, small  $Q^2$  range: often small radius. Fitting a large  $Q^2$  radius

- Flexible fits: large radius (including those that use physics constraints)
- Strongly) Physics motivated fits:
  - Dispersion relation (see talk by Ulf-G. Meissner tomorrow)
  - Dispersively improved  $\chi pt$

I stopped looking at papers which don't properly discuss  $\chi^2$ . Low bar.

# New data

#### New data

# ISR method

![](_page_19_Figure_1.jpeg)

- Use initial state radiation to reduce effective beam energy
- Have to subtract FSR

# ISR at MAMI

- Published: Miha Mihovilovič et al. PLB 771:194-198
- Radiative correction correct on the 1% level deep in the tail!
- Radius extraction not competitive in precision
- In principle: Larger scattering angle for G<sub>M</sub>

![](_page_20_Figure_5.jpeg)

# Updated analysis of ISR

 Miha Mihovilovič et al. arXiv: 1905.11182

Focuses on cs instead of FF

- ►  $r_p = 0.870 \pm 0.014_{stat}$ ±0.024<sub>sys</sub> ± 0.003<sub>mod</sub> fm
- Slightly prefers large radius

![](_page_21_Figure_5.jpeg)

# PRad

#### ▶ @JLAB,

- 1 and 2 GeV beam, very forward angles
- "open" cell, so less background
- Calorimeter
  - worse energy resolution
  - but only 1 setting per energy
  - calibration with Møller scattering
- Fit using function determined before data was available!
- See more in Ashot Gasparian's talk later today

# PRad

![](_page_23_Figure_1.jpeg)

24

## No agreement on form factor level

![](_page_24_Figure_1.jpeg)

## Take aways

- Getting the same radius in fits to Mainz and PRad does not mean the data is in agreement.
- Hard to see how both results can be right
  - At least one of the experiments wrong.
  - But is it a problem in the experimental part or in theory?
- If PRad is fully right, what do we know about FFs after all?

# What could have gone wrong

 Will not speculate on the experimental part
 What is different?
 Momentum resolution (tail shape!)
 Kinematics: PRad is very forward, all other are not. ⇒ Radiative corrections?

#### RadCorr workshop

![](_page_27_Picture_1.jpeg)

Fbk.eu Magazine Phonebook Jobs 🖾 Canale YouTube 🖉Twitter 🍸

TRENTINO

About Us External Funding Activities Research Outreach People Publications

#### RADIATIVE CORRECTIONS FROM MEDIUM TO HIGH ENERGY EXPERIMENTS

![](_page_27_Picture_6.jpeg)

18 July 2022 — 22 July 2022 Hybrid/Mixed

https://indico.ectstar.eu/event/146/

# Mainz new results (PhD. thesis Yimin Wang)

![](_page_28_Picture_1.jpeg)

Collaboration with Muenster group

#### Results of pilot experiment Two data groups. Fit two norms to PRad and Mainz fits

![](_page_29_Figure_1.jpeg)

30

# Why I believe Mainz high $Q^2$ is right

#### OLYMPUS yields

- TPE measurement via ratio of  $e^+p$  to  $e^-p$
- But can use charge average to cancel TPE.
- New Mainz high energy proton ff. measurement
  - Same machine but partially double coincidence
  - Not analyzed by me

# **OLYMPUS** yields

![](_page_31_Figure_1.jpeg)

# Mainz high $Q^2$ ff (PhD. thesis Julian Mueller)

![](_page_32_Figure_1.jpeg)

# Future experiments: PRad II

- Different energies
- Better outer calorimeter
- Please don't concentrate on lowest Q<sup>2</sup> only
- See talk by Ashot Gasparian later today

# Future experiments: ULQ2

- Aims for absolute cs on per-mille level!
- 60 MeV beam at Tohoku
- Please also think about  $G_M!$
- See talk by Yuki Honda on Wednesday

# Future experiments: AMBER

- Using muons at CERN
- Both charges
- Ultra-high energy, very small scattering angle.
- See talk by Stephan Paul on Wednesday

# Future experiments: MUSE

- Electrons, positrons, muons, pions at PSI
- Separated by ToF
- Direct test of lepton universality, rad. cor., TPE
- See talk by Tigran Rostomyan on Wednesday

# Future experiments: Mainz

- Hopefully have chance to redo ISR and jet target with A1
- Jet target will be the work horse for MAGIX@MESA
- Data on  $G_M$  relevant for the radius!
- See talk by Soeren Schlimme on Wednesday

## Proton CS/FF database

- World fits have to normalize data to same level of radiative corrections
- Needs meta data beyond published CS, FF etc.
- Better fit CS then FF (correlations!)
- Ethan Cline, Axel Schmidt, Craig McRae and I are working on open database with this meta information.
  - Few clicks to download selected datasets
  - Check for independence of selected sets
  - Auto-normalized to selected radiative corrections
  - Auto-fill of kinematic variables
- Who wants to help?

#### Conclusion

#### ► The PRad $\leftrightarrow$ Mainz discrepancy has me worried

- If you discard PRad high Q<sup>2</sup>, why believe the low Q<sup>2</sup>
- If you discard Mainz low Q<sup>2</sup>, why believe the high Q<sup>2</sup>
- Future experiments will illuminate puzzle from many directions.
- Magnetic radius is hard
- Look at all data before you claim victory/agreement.
- There is a world beyond the proton radius:
  - See talks bei Michael Paolone, Toshimi Suda and Tyler Kutz, on Thursday