The prôton radius from electron scattering

Dr. Bernauer is supported by NSF grant PHY 2012114

Reminder: The Proton Radius puzzle

Reminder: The Proton Radius puzzle

Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering

- Point-like probe
- No strong force
- Lepton interaction "stral ht-forward"

Measure cross sections and reconstruct form factors.

Cross section for elastic scattering

$$
\frac{\left(\frac{d \sigma}{d \Omega}\right)}{\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}}=\frac{1}{\varepsilon(1+\tau)}\left[\varepsilon G_{E}^{2}\left(Q^{2}\right)+\tau G_{M}^{2}\left(Q^{2}\right)\right]
$$

with:

$$
\tau=\frac{Q^{2}}{4 m_{\rho}^{2}}, \quad \varepsilon=\left(1+2(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}\right)^{-1}
$$

- Rosenbluth formula
- Electric and magnetic form factor encode the shape of the proton
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

How to measure the proton radius

$$
\left\langle r_{E}^{2}\right\rangle=-\left.6 \hbar^{2} \frac{d G_{E}}{d Q^{2}}\right|_{Q^{2}=0}\left\langle r_{M}^{2}\right\rangle=-\left.6 \hbar^{2} \frac{d\left(G_{M} / \mu_{P}\right)}{d Q^{2}}\right|_{Q^{2}=0}
$$

Complications

We are actually measuring $e p \rightarrow e p \gamma^{N}$

Cross sections

Polynomial \qquad
\qquad Friedrich-Walcher Double dipole Extended G.K. \qquad
Poly. \times dip
Spline \times dip

Cross sections over standard dipole

Polynomial $=$
Poly. + dip $=$
Poly. \times dip $=$

Inv. poly.
Spline
Spline \times dip
---:
Double dipole
Extended G.K.

Why is it hard to extract the radius

- Need to extrapolate slope to $Q^{2}=0$ (This is actually harder than extrapolating G_{E})
- Shape not a priori known. Model dependence.
- N.B:
- All fits are model dependent (they have to, as the number of parameters must be finite)
- A polynomial fit has nothing to do with a Taylor expansion (except that it's also a polynomial)

Does low Q^{2} help?

$$
\frac{d \sigma}{d \Omega} \propto 1-\underbrace{A}_{O(6)} \cdot Q^{2}+\underbrace{B}_{O(30)} \cdot Q^{4}+\ldots
$$

(Q in units of $\mathrm{GeV} / \mathrm{c}$)
We want to measure the radius ($\propto \sqrt{A / 2}$) to within 0.5%, without knowing B. So:

$$
B / A \cdot Q^{2} \ll 0.02 \longrightarrow Q^{2} \ll 0.004(\mathrm{GeV} / \mathrm{C})
$$

Does low Q^{2} help?

$$
\frac{d \sigma}{d \Omega} \propto 1-\underbrace{A}_{O(6)} \cdot Q^{2}+\underbrace{B}_{O(30)} \cdot Q^{4}+\ldots
$$

(Q in units of $\mathrm{GeV} / \mathrm{c}$)
We want to measure the radius ($\propto \sqrt{A / 2}$) to within 0.5%, without knowing B. So:

$$
B / A \cdot Q^{2} \ll 0.02 \rightarrow Q^{2} \ll 0.004(\mathrm{GeV})
$$

But: Need to measure A to 2%, so measure $\frac{d \sigma}{d \Omega}$ to $6 \cdot 0.004 \cdot 0.02=0.048 \%$.

In principle also true for spectroscopy

- De Rujula, Phys.Lett.B693:555-558,2010
- Can "fix" muon result by assuming a different third Zemach moment $<r_{p}^{3}>_{2}$.
- Ruled out by scattering measurements. Full form factors, so we get "all" moments.

World data set 2010

World data set 2010

World data set 2010

Magnetic radius

I do not believe we have a reliable magnetic radius with currently available data without model assumption.

Fits (as reported in papers)

Fitting a selected, small Q^{2} range: often small radius. Fitting a large Q^{2} radius

- Flexible fits: Iarge radius (including those that use physics constraints)
- (Strongly) Physics motivated fits:
- Dispersion relation (see talk by Ulf-G. Meissner tomorrow)
- Dispersively improved xpt

I stopped looking at papers which don'† properly discuss χ^{2}. Low bar.

New data

New data

ISR method

- Use initial state radiation to reduce effective beam energy
- Have to subtract FSR

ISR at MAMI

- Published: Miha Mihovilovič et al. PLB 771:194-198
- Radiative correction correct on the 1\% level deep in the tail!
- Radius extraction not competitive in precision
- In principle: Larger scattering angle for G_{M}

Updated analysis of ISR

- Miha Mihovilovič et al. arXiv: 1905.11182
- Focuses on cs instead of FF
- $r_{p}=0.870 \pm 0.014_{\text {stat }}$ $\pm 0.024_{\text {sys }} \pm 0.003_{\text {mod }} \mathrm{fm}$
- Slightly prefers large radius

PRad

- @JLAB,
- 1 and 2 GeV beam, very forward angles
- "open" cell, so less background
- Calorimeter
- worse energy resolution
- but only 1 setting per energy
- calibration with Møller scattering
- Fit using function determined before data was available!
- See more in Ashot Gasparian's talk later today

PRad

Proton electric form factor $\mathbf{G}_{\mathrm{E}}^{\prime}$

Fit G_{E} to $\left\{\begin{array}{l}n_{1} f\left(Q^{2}\right) \text { for } 1.1 \mathrm{GeV} \\ n_{2} f\left(Q^{2}\right) \text { for } 2.2 \mathrm{GeV}\end{array} \quad f\left(Q^{2}\right)=\frac{1+p_{1} Q^{2}}{1+p_{2} Q^{2}} \quad G_{E}^{\prime}=\left\{\begin{array}{l}G_{E} / n_{1} \\ G_{E} / n_{2}\end{array}\right.\right.$

Proton Electric Form Factor G_{E}

$n_{1}=1.0002+/-0.0002$ (stat.) $+/-0.0020$ (syst.),

Proton Electric Form Factor $\mathrm{G}_{\mathrm{E}}^{\prime}$

$n_{2}=0.9983+/-0.0002$ (stat.) $+/-0.0013$ (syst.)

Current result

$$
r_{p}=0.831+/-0.007 \text { (stat.) }+/-0.012 \text { (syst.) fm }
$$

Jefferson Lab
E. Pasyuk

MENLI2019
Pittsburgh, PA June 2-7, 2019

No agreement on form factor level

Take aways

- Getting the same radius in fits to Mainz and PRad does not mean the data is in agreement.
- Hard to see how both results can be right
- At least one of the experiments wrong.
- But is it a problem in the experimental part or in theory?
- If PRad is fully right, what do we know about FFs after all?

What could have gone wrong

- Will not speculate on the experimental part
- What is different?
- Momentum resolution (tail shape!)
- Kinematics: PRad is very forward, all other are not.
\Rightarrow Radiative corrections?

RadCorr workshop

Fbkeu Magazine Ph

RADIATIVE CORRECTIONS FROM MEDIUM TO HIGH ENERGY EXPERIMENTS

18 July 2022 - 22 July 2022 Hybrid/Mixed
https://indico.ectstar.eu/event/146/

Mainz new results (PhD. thesis Yimin Wang)

Collaboration with Muenster group

Results of pilot experiment

Two data groups. Fit two norms to PRad and Mainz fits

Why I believe Mainz high Q^{2} is right

- OLYMPUS yields
- TPE measurement via ratio of $e^{+} p$ to $e^{-} p$
- But can use charge average to cancel TPE.
- New Mainz high energy proton ff. measurement
- Same machine but partially double coincidence
- Not analyzed by me

OLYMPUS yields

Mainz high Q² ff (PhD. thesis Julian Mueller)

Future experiments: PRad II

- Different energies
- Better outer calorimeter
- Please don'† concentrate on lowest Q^{2} only
- See talk by Ashot Gasparian later today

Future experiments: ULQ2

- Aims for absolute cs on per-mille level!
- 60 MeV beam at Tohoku
- Please also think about G_{M} !
- See talk by Yuki Honda on Wednesday

Future experiments: AMBER

- Using muons at CERN
- Both charges
- Ultra-high energy, very small scattering angle.
\rightarrow Measuring proton recoil \rightarrow different systematics, rad corr.
- See talk by Stephan Paul on Wednesday

Future experiments: MUSE

- Electrons, positrons, muons, pions at PSI
- Separated by ToF

D Direct test of lepton universality, rad. cor., TPE

- See talk by Tigran Rostomyan on Wednesday

Future experiments: Mainz

- Hopefully have chance to redo ISR and jet target with A1
- Jet target will be the work horse for MAGIX@MESA
- Data on G_{M} relevant for the radius!
- See talk by Soeren Schlimme on Wednesday

Proton CS/FF database

- World fits have to normalize data to same level of radiative corrections
- Needs meta data beyond published CS, FF etc.
- Better fit CS then FF (correlations!)
- Ethan Cline, Axel Schmidt, Craig McRae and I are working on open database with this meta information.
- Few clicks to download selected datasets
- Check for independence of selected sets
- Auto-normalized to selected radiative corrections
- Auto-fill of kinematic variables
- Who wants to help?

Conclusion

- The PRad \leftrightarrow Mainz discrepancy has me worried
- If you discard PRad high Q^{2}, why believe the low Q^{2}
- If you discard Mainz low Q^{2}, why believe the high Q^{2}
- Future experiments will illuminate puzzle from many directions.
- Magnetic radius is hard
- Look at all data before you claim victory/agreement.
- There is a world beyond the proton radius:
- See talks bei Michael Paolone, Toshimi Suda and Tyler Kutz, on Thursday

