Nucleon and nuclear structure from muonic and normal atoms

Randolf Pohl

Johannes Gutenberg Universität Mainz

RREN Convention Paris 20 June 2022

111 281280

PSAS 2010 Conference

June 1st, 2010

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

Workshop: The "Proton Radius Puzzle"

ECT* Trento, Italy, Oct. 2012

47 participants Theory + Experiment Atomic physics Nuclear physics Particle physics Electron scattering "Beyond Standard Model"

38 Talks3 "Fighting Sessions"

Finally: Vote (!)

→ Measurement problem

We need more data. Follow-up conferences * Mainz 2014 * Trento 2016 * Mainz 2018

Nuclear radii

- the Standard Model
- * Fundamental constants (CODATA)

Electronic and muonic atoms Regular hydrogen: Muonic hydrogen:

Proton + Electron

Proton + Muon

Muon mass = 200 * electron mass

Bohr radius = 1/200 of H

 $200^3 = a$ few million times larger wave function overlap

more sensitive to proton size

muon

Vastly not to scale!!

Lamb shift in Muonic Hydrogen

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

The situation in 2021

Why was the proton radius so interesting?

Hyperfine structure in muonic H

CREMA-3 / HyperMu at PSI (R16.02)

talk by Aldo

Muonic Deuterium

2.5 transitions in muonic D

Theory: Lamb shift in muonic D

$$\Delta E_{\text{Lamb}}^{\mu \text{D}} = 228.7854 \text{ (13) } \text{meV}_{\text{QED}} + 1.7653 \text{ (130) } \text{meV}_{\text{TPE}} - 6.1103 \text{ (3) } \text{meV/fm}^2 * \text{R}_{\text{d}}^2$$
$$\Delta E_{\text{LS}}^{\text{exp}} = 202.8785(31)_{\text{stat}}(14)_{\text{syst}} \text{ meV}$$

Nuclear structure two (and three!)-photon contributions to the Lamb shift in muonic deuterium.

Carlson, Hernandez, Acharya, Kalinowski, ...

μH + H/D(1S-2S): 2.12785 (17) fm CODATA-2014: 2.1**4**130 (250) fm H/D 1S-2S isotope shift: $r_d^2 - r_p^2 = 3.82070(31) \text{ fm}^2$

Pachucki et al., PRA 97, 062511 (2018)

 $r_{d}^{2} - r_{p}^{2} = 3.82070(31) \text{ fm}^{2} \text{ H / D}$ 1S-2S isotope shift Pachucki et al., PRA 97, 062511 (2018) 3.82028(232) fm² µH / µD 2S-2P isotope shift (0.18 σ)

TPE in muonic D

 $\Delta E_{\text{Lamb}}^{\mu D} = 228.7854 \text{ (13) } \text{meV}_{\text{QED}} + 1.7653 \text{ (130) } \text{meV}_{\text{TPE}} - 6.1103 \text{ (3) } \text{meV/fm}^2 * R_d^2$ $\Delta E_{\rm LS}^{\rm exp} = 202.8785(31)_{\rm stat}(14)_{\rm syst}\,{
m meV}$ ΔE_{TPF} (theo) = 1.7653 +- 0.0130 meV +- 0.0034 meV experimental uncertainty VS. (1) charge radius, using calculated TPE $r_{d} (\mu D) = 2.12776 (13)_{exp} (51)_{theo} \text{ fm vs.}$ r_{d} (µH + H/D iso) = 2.12785 (17) fm (2) polarizability, using charge radius from isotope shift ΔE_{TPF} (theo) = 1.7653 (130) meV vs. ΔE_{TPE} (exp) = 1.7591 (59) meV 2x more accurate

Krauth et al. (2016) + Pachucki et al. (2018) + Hernandez et al. (2018) + Kalinowski (2019) + Acharya (2021)

Using the Zemach radius $r_Z = (2.593 \pm 0.016)$ fm [78] we get: $\Delta E_{\rm HFS}^{\rm th} = 6.2791(50)$ meV Krauth et al., Ann. Phys. (N.Y.) 366, 168 (2016)

$$\Delta E_{\rm HFS}^{\rm exp} = 6.2747(70)_{\rm stat}(20)_{\rm syst}\,{\rm meV} \qquad (6)$$

Pohl et al. (CREMA Coll.), Science 353, 669 (2016)

perfect agreement between theory and experiment !!???

PHYSICAL REVIEW A 98, 062513 (2018)

Nuclear-structure corrections to the hyperfine splitting in muonic deuterium

Marcin Kalinowski^{*} and Krzysztof Pachucki[†] Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

Vladimir A. Yerokhin

Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

(Received 15 October 2018; revised manuscript received 7 November 2018; published 17 December 2018)

Nuclear structure corrections of orders $Z\alpha E_F$ and $(Z\alpha)^2 E_F$ are calculated for the hyperfine splitting of the muonic deuterium. The obtained results disagree with previous calculations and lead to a 5σ disagreement with the current experimental value of the 2S hyperfine splitting in muonic deuterium.

DOI: 10.1103/PhysRevA.98.062513

F=5/2

2P_{3/2}

2P_{1/2}-

2S_{1/2}

F≡

н

Another 5σ disagreement between theory and experiment !!

TABLE II. Nuclear structure corrections for hyperfine splitting of the 1S and 2S states of muonic deuterium, in meV. Numerical

Corr	ection 1S	2S	Source
$\delta E_{\rm pc}$	-1.1007	-0.1376	Eq. (22)
$-\langle \rangle \delta E_{\rm pc}$	-0.0823	-0.0103	Eq. (25)
$\langle // 2S-HFS \delta E_{pc}$	0.1513	0.0189	Eq. (26)
$\delta E_{\rm pc}$	-0.1979	-0.0283	Eq. (30)
$\delta E_{\rm pc}$	-0.0327	-0.0041	Eq. (32)
$\delta E_{ m pc}$	-1.2623(631)	-0.1578(79)	Eq. (33)
δE_{10}	-0.9450(224)	-0.1181(28)	Eq. (15)
$\delta E_{ m Lc}$	w 2.566	0.3208	Eq. (14)
$\delta^{(1)} E$	C _{nucl} 0.3587(670)	0.0448(84)	Eq. (12)
nucl. 3-photon $\longrightarrow \delta^{(2)} I$	-0.0547(137)	-0.0065(16)	Eq. (77)
$\delta E_{ m nu}$	cl,theo 0.304(68)	0.383(86)	Eq. (8)
$D - QED(point nucleus) = \delta E_{nu}$	cl,exp	0.0966(73)	Eq. (7)
Diffe	erence	0.0583(113)	

Kalinowski, Pachucki, Yerokhin, PRA 98, 062513 (2018)

Muonic Helium

Krauth et al. (CREMA), Nature (2021)

Measured

Theory in muonic He-4

 $\Delta E_{Lamb}^{\mu^{4}He} = 1668.5002(140)_{QED} + 9.1900(2900)_{TPE} - 106.2200(80) * R_{\alpha}^{2} / fm^{2} \quad [meV]$

Three-photon contribution estimation included (a la Pachucki et al., PRA 97, 052511 (2018))

Theory in muonic He-4

 $\Delta E^{\mu^{4}He} = 1668.5002(140)_{OED} + 9.1900(2900)_{TPE} - 106.2200(80) * R_{\alpha}^{2} / fm^{2} \text{ [meV]}$

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

 $9.1900(2900)_{\text{TPE}} = 9.340(250)_{\text{2PE}}$ nucl. 2-photon exchange -0.150(150)_{\text{3PE}} nucl. 3-photon guesstimate

Reasoning: inelastic 3PE = 0 (minus elastic 3PE) = 0 in "hard" proton, cancels elastic 3PE in "soft" deuteron

TABLE II. Numerical results for the three-photon exchange nuclear structure corrections. Numerical values include the leading recoil effect by the multiplicative reduced-mass prefactor $(\mu/m)^3$. Elastic contributions are obtained with the exponential parametrization of the nuclear charge distribution, with the following values of nuclear radii: $r_p = 0.84087$ fm, $r_d = 2.12562$ fm, $r_C(^3\text{He}) \equiv r_h = 1.973$ fm [22], $r_C(^4\text{He}) \equiv r_\alpha = 1.681$ fm [23].

Transition	Units	Elastic	Inelastic	Sum	Elastic by others
$E^{(6)}(2S-1S,eH)$	Hz	-584	-344 (344)	-928 (344)	-587 (2) ^a
$E^{(6)}(2S-1S,eD-eH)$	Hz	-2846	817 (41)	-2029(41)	$-2834(13)^{a}$
$E^{(6)}(2P_{1/2}-2S,\mu \mathrm{H})$	meV	-0.00127	± 0.00027	-0.00127(27)	-0.00134^{b}
$E^{(6)}(2P_{1/2}-2S,\mu D)$	meV	-0.00656	$0.00875(88)(27)^{\rm f}$	$0.00219(88)(27)^{\rm f}$	$-0.00650(60)^{c}$
$E^{(6)}(2P_{1/2}-2S,\mu^{3}\text{He}^{+})$	meV	-0.3847	unknown		$-0.3786(60)^{d}$
$E^{(6)}(2P_{1/2}-2S,\mu^4\text{He}^+)$	meV	-0.3048	unknown		$-0.3115(140)^{e}$

Pachucki, Patkos, Yerokhin, PRA 97, 052511 (2018)

Three-photon contribution estimation included (a la Pachucki et al., PRA 97)

muonic ⁴He ions

 $R(^{4}He) = 1.67824 (13)_{exp} (82)_{theo} fm$

(82)_{theo} = (70)_{2PE} (42)_{3PE}
2-photon exchange: Bacca group
3-photon exchange: our educated(?) guess based on Pachucki et al.

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

muonic ⁴He ions normalized signal [arb. units] $\mu \text{He}^+(2\text{S} \rightarrow 2\text{P}_{3/2})$ μ⁴He 8 e-He scatt e-He scatt Sick 2008 Sick 2008 1.676 1.678 1.68 1.682 1.684 1.686 6 alpha particle charge radius [fm] claim by Carboni et al. 1977 excluded by 4 Hauser et al. 1992 2 0 368 372 366 367 369 370 371 frequency [THz]

 $R(^{4}He) = 1.67824 (13)_{exp} (82)_{theo} fm$

 $(82)_{theo} = (70)_{2PE} (42)_{3PE}$ 2-photon exchange: Bacca group 3-photon exchange: our educated(?) guess based on Pachucki et al.

Krauth, RP et al. (CREMA Coll.) Nature 589, 527 (2021)

Muonic Helium-3

Preliminary results

Theory in muonic He-3

 $\Delta E^{\mu^{4}He} = 1668.5002(140)_{QED} + 9.1900(2900)_{TPE} - 106.2200 (80) * R_{\alpha}^{2} / fm^{2} [meV]$

 $\Delta E^{\mu^{3}He} = 1644.3466(149)_{QED} + 15.1000(5600)_{TPE} - 103.5180(100) * R_{h}^{2} / fm^{2} \text{ [meV]}$

Following the same recipe as for μ 4He:

 $15.10(56)_{\text{TPE}} = 15.30(52)_{\text{2PE}} - 0.20(20)_{\text{3PE}}$

nucl. 2-photon exchange nucl. 3-photon guesstimate

Reasoning: inelastic 3PE = 0 (minus elastic 3PE) = 0 in "hard" proton, cancels elastic 3PE in "soft" deuteron

TABLE II. Numerical results for the three-photon exchange nuclear structure corrections. Numerical values include the leading recoil effect by the multiplicative reduced-mass prefactor $(\mu/m)^3$. Elastic contributions are obtained with the exponential parametrization of the nuclear charge distribution, with the following values of nuclear radii: $r_p = 0.84087$ fm, $r_d = 2.12562$ fm, $r_C(^3\text{He}) \equiv r_h = 1.973$ fm [22], $r_C(^4\text{He}) \equiv r_\alpha = 1.681$ fm [23].

Transition	Units	Elastic	Inelastic	Sum	Elastic by others
$E^{(6)}(2S-1S,eH)$	Hz	-584	-344 (344)	-928 (344)	$-587(2)^{a}$
$E^{(6)}(2S - 1S, eD - eH)$	Hz	-2846	817 (41)	-2029(41)	$-2834(13)^{a}$
$E^{(6)}(2P_{1/2}-2S,\mu H)$	meV	-0.00127	± 0.00027	-0.001 27 (27)	-0.00134^{b}
$E^{(6)}(2P_{1/2}-2S,\mu D)$	meV	-0.00656	$0.00875(88)(27)^{\rm f}$	$0.00219(88)(27)^{\rm f}$	$-0.00650(60)^{c}$
$E^{(6)}(2P_{1/2}-2S,\mu^{3}\mathrm{He^{+}})$	meV	-0.3847	unknown		$-0.3786(60)^{d}$
$E^{(6)}(2P_{1/2}-2S,\mu^4\text{He}^+)$	meV	-0.3048	unknown		$-0.3115(140)^{e}$

Pachucki, Patkos, Yerokhin, PRA 97, 052511 (2018)

muonic ³He ions

muonic ³He ions

exp: each line has +-20 GHz(stat) +- 0.2 GHz (syst)

 $R(^{3}He) = 1.96782 (12)_{exp} (137)_{theo} fm preliminary!$

Muonic Helium-3

Sick, PRC 90, 064002 (2014)

Helium-3 – Helium-4 Isotope Shift

assumption: the (uncalculated) inelastic 3PE terms are correlated

ShinerPRL 74, corrected by Marsmann et al., (Hessels group)ZhengPRL 119RengelinkNature Physics

Cancio Pastor not shown, too large Quantum Interference (per Hessels)

Intermediate conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

The New York Times

Intermediate conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

• few times more accurate **nuclear polarizability**,

when combined with charge radius from regular atoms

Muonic atoms are a novel tool for proton and new-nucleon properties!

Impact of μ^4He^+ measurements

Few-nucleon theories

- r_{α} represents a benchmark for fewnucleon theories.
- r_α can be used also to fix a low-energy constant of nuclear potential.
- ▶ r_{α} improves ⁶He and ⁸He radii (slightly)

Müller, Lu

BSM physics

 Agreement constrains BSM models suggested to explain the R_p puzzle

Udem, MPQ Eikema, LaserLab

Combined with upcoming He⁺ (He) exp.

- bound-state QED test He⁺(1S-2S): 60 kHz, u_r = 6x10⁻¹²
- Rydberg constant: 24 kHz
- 2PE+3PE in µHe with 0.1 meV uncertainty

from A. Antognini

Why was the proton radius so interesting?

 $\rightarrow\,$ Test QED and SM

2-body QED calculations

2-body QED calculations

Exp: Amsterdam, Garching, Zürich Paris, Colorado, Mainz ...

2-body QED calculations 3-body QED calculations Exp: Amsterdam, Düsseldorf, Zurich, Garching, Paris, Wuhan, ...

2-body QED calculations3-body QED calculations4-body QED calculations

Exp: Amsterdam, Zurich, Paris, Darmstadt, ...

Determine Rydberg constant with various means \rightarrow Test QED and SM

absolutely requires nuclear charge radii + polarizabilities

What's next?

Simulated trapping efficiency

staged approach

- Optogalvanic spectroscopy in a cell
- Syst. extrapolation w/ H,D
- Tritium confined.

Status: Hunting for the signal in H

further future:

5x better Lamb shift in muonic hydrogen

Resonance in muonic hydrogen

Pohl et al. (CREMA Coll.), Nature 466, 213 (2010)

Laser system: Raman cell

Yb:YAG Disk laser → fast response on µ Frequency doubling (SHG) → green light to pump Ti:sapphire laser

Ti:sapphire cw laser \rightarrow determines laser frequency

Ti:sapphire MOPA \rightarrow high pulse energy (15 mJ)

Raman cell

 \rightarrow 3 sequential stimulated Raman Stokes shifts Laser wave length \rightarrow 6 μm

Target Cavity

 \rightarrow Mirror system to fill the muon stop volume (H₂)

Thanks a lot for your attention

19

L neigerannennen

The CREMA Collaboration

Correlation between $R_{_{\rm \infty}}$ and $R_{_{\rm p}}$ / $R_{_{\rm d}}$

Hyperfine structure in muonic H

CREMA-3 / HyperMu at PSI (R16.02)

The sky in hydrogen

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting)

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

v_{exp} = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

QED test is limited to 6 digits (800 Hz) because of proton structure effects:

$$v_{\text{theo}} = 1\ 420\ 403.\ 1\ \pm 0.6_{\text{proton size}}\ \pm 0.4_{\text{polarizability}}\ \text{kHz}$$

Eides et al., Springer Tracts 222, 217 (2007)

Proton Zemach radius

HFS depends on "Zemach" radius:

 $\Delta E = -2(Z\alpha)m\langle r \rangle_{(2)}E_F$

$$\langle r \rangle_{(2)} = \int d^3r d^3r' \rho_E(r) \rho_M(r') |r-r'|$$

Zemach, Phys. Rev. 104, 1771 (1956)

Form factors and momentum space

$$\Delta E = \frac{8(Z\alpha)m}{\pi n^3} E_F \int_0^\infty \frac{dk}{k^2} \left[\frac{G_E(-k^2)G_M(-k^2)}{1+\kappa} \right]$$

From charge to magnetic properties

2S-2P = Lamb shift

is sensitive to CHARGE radius

1S-HFS = Hyperfine splitting

is sensitive to **ZEMACH** radius

Proton Zemach radius from µp

µp 2013: Antognini et al. (CREMA Coll.), Science 339, 417 (2013)

Proton Zemach radius from µp

Proton Zemach radius from µp

PSI Exp. R-16-02: Antognini, RP et al. (CREMA-3 / HyperMu)

see e.g. Schmidt, RP et al., J. Phys. Conf. Ser 1138, 012010 (2018); arXiv 1808.07240 also: FAMU @ RIKEN/RAL, and a Collaboration at J-PARC

HFS in μp

goal: measure HFS with 1 ppm relative accuracy

obtain TPE with 3x10⁻⁴ rel. accuracy

HFS in µp

related propsals: FAMU at RIKEN/RAL, muonic H at J-PARC

CREMA-3/HyperMu @ PSI

- ► Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- ▶ De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- Diffusion: X-rays produced at target walls
- Resonance: Number of X-rays vs laser freq.

Predicting the resonance position

The resonance position

