# Laboratory Searches of Axions and ALPs

Andreas Ringwald Shoot for the Stars, Aim for the Axions 5<sup>th</sup> YOUNGST@RS Virtual Workshop Mainz Institute for Theoretical Physics Oct 4 - 7, 2022



CLUSTER OF EXCELLENCE QUANTUM UNIVERSE



Interactions with the Standard Model (SM)

• Pseudo Nambu-Goldstone bosons from spontaneous breaking of global U(1) symmetry at scale  $f_a \gg v = 246 \text{ GeV}$ 

#### Interactions with the Standard Model (SM)

- Pseudo Nambu-Goldstone bosons from spontaneous breaking of global U(1) symmetry at scale  $f_a \gg v = 246 \,\text{GeV}$ •
  - **Tiny mass** from anomalous or explicit breaking of global symmetry •
    - Axion: breaking of U(1)<sub>PQ</sub> symmetry by axial anomaly  $m_a \approx \frac{m_\pi f_\pi}{f_a} \frac{\sqrt{z}}{1+z}$   $z = m_u/m_d$ ٠
- - ALP: lower limit from breaking of U(1) symmetry by effects from quantum  $\tilde{g}$  ravity

#### Interactions with the Standard Model (SM)

- Pseudo Nambu-Goldstone bosons from spontaneous breaking of global U(1) symmetry at scale  $f_a \gg v = 246 \,\text{GeV}$ •
  - **Tiny mass** from anomalous or explicit breaking of global symmetry
    - Axion: breaking of U(1)<sub>PQ</sub> symmetry by axial anomaly  $m_a \approx \frac{m_\pi f_\pi}{f_a} \frac{\sqrt{z}}{1+z}$   $z = m_u/m_d$ ٠
    - ALP: lower limit from breaking of U(1) symmetry by effects from quantum gravity
  - **Tiny couplings to SM** since they are suppressed by inverse power of symmetry breaking scale  $f_a$ :

$$\mathcal{L}_{a} \supset -\frac{\alpha}{8\pi} \frac{C_{a\gamma}}{f_{a}} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} \frac{C_{af}}{f_{a}} \partial_{\mu} a \,\overline{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{f} - \frac{i}{2} \frac{C_{a\gamma N}}{f_{a}} a \,\overline{\Psi}_{N} \sigma_{\mu\nu} \gamma_{5} \Psi_{N} F^{\mu\nu}$$

$$- - \mathcal{L}_{m}$$

### Interactions with the Standard Model (SM)

- Pseudo Nambu-Goldstone bosons from spontaneous breaking of global U(1) symmetry at scale  $f_a \gg v = 246 \text{ GeV}$ 
  - Tiny mass from anomalous or explicit breaking of global symmetry
    - Axion: breaking of U(1)<sub>PQ</sub> symmetry by axial anomaly
- $m_a \approx \frac{m_\pi f_\pi}{f_a} \frac{\sqrt{z}}{1+z} \qquad z = m_u/m_d$ 
  - ALP: lower limit from breaking of U(1) symmetry by effects from quantum gravity

 $C_{a\gamma} = \frac{E}{N} - \frac{2}{3}\frac{4+z}{1+z}$ 

 $C_{aN} = \mathcal{O}(1)$ 

• Tiny couplings to SM since they are suppressed by inverse power of symmetry breaking scale  $f_a$ :

$$\mathcal{L}_{a} \supset -\frac{\alpha}{8\pi} \frac{C_{a\gamma}}{f_{a}} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} \frac{C_{af}}{f_{a}} \partial_{\mu} a \,\overline{\Psi}_{f} \gamma^{\mu} \gamma_{5} \Psi_{f} - \frac{i}{2} \frac{C_{a\gamma N}}{f_{a}} a \,\overline{\Psi}_{N} \sigma_{\mu\nu} \gamma_{5} \Psi_{N} F^{\mu\nu}$$

$$---\mathcal{L}_{m}$$

- Size of Wilson coefficients in benchmark axion models:
  - Photon coupling:
  - Nucleon couplings:
  - EDM coupling:  $C_{a\gamma N} = 2.4(1.0) \times 10^{-16} \, e \, {\rm cm}$

[Kaplan 85;Srednicki `85; Grilli di Cortona et al. `16]

[Grilli di Cortona et al. `16]

[Pospelov,Ritz `00]

**Searching for Home-Made Axions** 

• Axion experiences mixing with photon in an external magnetic field

$$\mathcal{L} \supset -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$$
$$\left(g_{a\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma}\right)$$

### **Searching for Home-Made Axions**

- Axion experiences mixing with photon in an external magnetic field
- Light-shining-through a wall:

$$\mathcal{L} \supset -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$$
$$\left(g_{a\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma}\right)$$

### **Searching for Home-Made Axions**

• Axion experiences mixing with photon in an external magnetic field



 $\begin{array}{c|c} \gamma & & & & \\ \gamma & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ 

[Sikivie 1983, Ansel'm 1985, van Bibber et al. 1987]

 $\mathcal{L} \supset -\frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$ 

 $\left(g_{a\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma}\right)$ 

• Probability, that photon (  $\omega \gg m_a$  ) converts in axion after having traversed a distance  $L_B$  in magnetic field:

$$P(\gamma \leftrightarrow a) \simeq 4 \frac{(g_{a\gamma}\omega B)^2}{m_a^4} \sin^2\left(\frac{m_a^2 L_B}{4\omega}\right)$$

### **Searching for Home-Made Axions**

Axion experiences mixing with photon in an external magnetic field •



Light-shining-through a wall:

[Sikivie 1983, Ansel'm 1985, van Bibber et al. 1987]

Probability, that photon (  $\omega \gg m_a$ ) converts in axion after having traversed a distance  $L_B$  in magnetic field: ٠

 $\mathcal{L} \supset -\frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$ 

 $\left(g_{a\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma}\right)$ 

$$\begin{split} P(\gamma \leftrightarrow a) \simeq 4 \frac{(g_{a\gamma}\omega B)^2}{m_a^4} \, \sin^2\left(\frac{m_a^2 L_B}{4\omega}\right) \\ \bullet \quad \text{Best sensitivity for} \ m_a \ll \left(\frac{4\pi\omega}{L_B}\right)^{1/2} \\ P(\gamma \leftrightarrow a) \simeq \frac{1}{4} \left(g_{a\gamma}BL_B\right)^2 \end{split}$$

#### DESY. | Laboratory Searches of Axions and ALPs | Shoot for the Stars, Aim for the Axions, 5th YOUNGST@RS Virtual Workshop, Mainz Institute for Theoretical Physics, Oct 4 - 7, 2022 Page 10

### Light-Shining-through-a-Wall Searches

#### **Searching for Home-Made Axions**

Proposal to recycle HERA dipoles for a light shining through a wall experiment: ٠



m<sub>A</sub> [eV]

[AR 03]

Physics Letters B 569 (2003) 51-56

SCIENCE DIRECT.

#### Production and detection of very light bosons in the HERA tunnel

A. Ringwald

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Received 17 June 2003; accepted 3 July 2003 Editor: P.V. Landshoff

#### Abstract

ELSEVIER

There are strong theoretical arguments in favour of the existence of very light scalar or pseudoscalar particles beyond the Standard Model which have, so far, remained undetected, due to their very weak coupling to ordinary matter. We point out that after HERA has been decommissioned, there arises a unique opportunity for searches for such particles: a number of HERA's four hundred superconducting dipole magnets might be recycled and used for laboratory experiments to produce and detect light neutral bosons that couple to two photons, such as the axion. We show that, in this way, laser experiments searching for photon regeneration or polarization effects in strong magnetic fields can reach a sensitivity which is unprecedented in pure laboratory experiments and exceeds astrophysical limits from stellar evolution considerations. © 2003 Published by Elsevier B.V.

#### **Searching for Home-Made Axions**

• Letter of Intent for ALPS experiment:

#### DESY 07-014

[Ehret et al.. 07]

Public version - 8.12.2006

### Production and Detection of Axion-Like Particles in a HERA Dipole Magnet – Letter-of-Intent for the ALPS experiment –

Klaus Ehret,<sup>1</sup> Maik Frede,<sup>2</sup> Ernst-Axel Knabbe,<sup>1</sup> Dietmar Kracht,<sup>2</sup> Axel Lindner,<sup>1,\*</sup> Niels Meyer,<sup>1</sup> Dieter Notz,<sup>1</sup> Andreas Ringwald,<sup>1,†</sup> and Günter Wiedemann<sup>3</sup>

<sup>1</sup>Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany <sup>2</sup>Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany <sup>3</sup>Sternwarte Bergedorf, Gojenbergsweg 112, D-21029 Hamburg, Germany

Recently, the PVLAS collaboration has reported evidence for an anomalous rotation of the polarization of light in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero (axion-like) neutral particle coupled to two photons. In this letter-of-intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of a high-power infrared laser, sent along the transverse magnetic field of a superconducting HERA dipole magnet. The proposed<sup>1</sup> ALPS (Axion-Like Particle Search) experiment offers a window of opportunity for a rapid firm establishment or exclusion of the axion-like particle interpretation of the anomaly published by PVALS. It will also allow for the measurement of mass, parity, and coupling strength of this particle.

• ALPS I @ DESY (in collaboration with AEI Hannover and U Hamburg)



[AR 03;....;Ehret et al. 10]

• ALPS I and OSQAR @ CERN give currently the best purely laboratory limit on low mass ALPs:



• ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz) [Bähre et al (ALPS II TDR) 13]

- ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz)
   [Bähre et al (ALPS II TDR) 13]
  - Increase sensitivity in photon coupling by a factor of more than 10<sup>3</sup>

- ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz)
   [Bähre et al (ALPS II TDR) 13]
  - Increase sensitivity in photon coupling by a factor of more than 10<sup>3</sup> by exploiting
    - 12 + 12 straightened HERA magnets



- ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz)
   [Bähre et al (ALPS II TDR) 13]
  - Increase sensitivity in photon coupling by a factor of more than 10<sup>3</sup> by exploiting
    - 12 + 12 straightened HERA magnets



- ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz)
   [Bähre et al (ALPS II TDR) 13]
  - Increase sensitivity in photon coupling by a factor of more than 10<sup>3</sup> by exploiting
    - 12 + 12 straightened HERA magnets



Transition Edge Sensor (TES)

- ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz)
  - Construction progressing:
    - All 24 magnets are installed and aligned and tested
    - Cleanrooms at end stations and center are operational
    - Commissioning of the optical system almost finished
  - First science run in early 2023





• ALPS II designed to beat astrophysical constraints and check astrophysical hints of axions:



Impact of ALPS II for society has already started:

 Rumours that success of soccer team HSV ("Hamburger Sportverein") depends on scientific activities in the HERA tunnel which is located beneath its stadium ("Volkspark Stadion")





# Ist dieser Tunnel Grund für den HSV-Aufschwung?



Blick in den DESY-Tunnel unterm Volkspark: Rechts die auf - 269 Grad gekühlte Röhre mit Magneten, durch die Laserlicht schießen wird Foto: Andreas Costanzo

Von: JÖRG KÖHNEMANN 05.10.2022 - 07:37 Uhr

Hamburg - 20 Meter unterm Volkspark brennt wieder Licht im alten DESY-Tunnel.

30 Physiker sind dort mit 24 Mega-Magneten (jeder 9 m lang, wiegt 10 Tonnen), durch vier Spiegel 10 000-fach verstärktem Laserlicht und Helium-Kühlung in einer schnurgeraden 250-Meter-Röhre geheimnisvoller "Dunkler Materie", einem Axion Elementarteilchen, auf der Spur. Und schon ganz nah dran.



• Flux of solar axions/ALPs produced by two photon process in core:



Helioscope concept: solar axion/ALP to photon conversion
 in magnetic field [Sikivie 1983]

$$P(a \rightarrow \gamma) \simeq 4 \frac{(g_{a\gamma} \omega B)^2}{m_a^4} \sin^2 \left(\frac{m_a^2 L_B}{4\omega}\right)$$

[adapted from Irastorza `16]

- Most sensitive until now: CERN Axion Solar Telescope (CAST)
  - Superconducting LHC dipole magnet
  - X-ray detectors
  - Use of buffer gas to extend sensitivity to higher masses (axion band)



- International Axion Observatory (IAXO)
  - Large toroidal 8-coil magnet L = ~20 m
  - 8 bores: 600 mm diameter each
  - 8 X-ray telescopes + 8 detection systems
  - Rotating platform with services





- International Axion Observatory (IAXO)
  - Large toroidal 8-coil magnet L = ~20 m
  - 8 bores: 600 mm diameter each
  - 8 X-ray telescopes + 8 detection systems
  - Rotating platform with services
- Proposed site: DESY

#### [IAXO CDR: JINST 9 (2014) T05002 (arXiv:1401.3233)]



- Prototype for IAXO: BabyIAXO
  - Two bores of dimensions similar to final IAXO bores
  - Detection lines representative of final ones
  - Test & improve all systems
- Magnet technical design ongoing at CERN





- Prototype for IAXO: BabyIAXO
  - Two bores of dimensions similar to final IAXO bores
  - Detection lines representative of final ones
  - Test & improve all systems
- Magnet technical design ongoing at CERN



- Construction site: DESY
- Funded by CERN, DESY and Irastorza: ERC-AvG 2017 IAXO+

-0.5

0

x. m

0.5

1.5

- Preparations have already started in 2020
- Start of data taking envisaged for 2026





(Baby)IAXO probes meV mass axion:



### **Axion or ALP?**

- (Most of) Parameter range accessible by ALPS II (BabyIAXO) seems far away from expectation for axion
- In case of discovery by those experiments, it can still be the axion in models with
  - increased values of  $C_{a\gamma}$ , for fixed value of  $m_a$
  - smaller values of  $m_a$ , for fixed values of  $C_{a\gamma}/f_a$



[Di Luzio et al. 16, Farina et al. 16, Agrawal et al. 17, Sokolov,AR 21] [Hook 18, Di Luzio et al. 21]

### **Axion or ALP?**

- (Most of) Parameter range accessible by ALPS II (BabyIAXO) seems far away from expectation for axion
- In case of discovery by those experiments, it can still be the axion in models with
  - increased values of  $C_{a\gamma}$ , for fixed value of  $m_a$
  - smaller values of  $m_a$ , for fixed values of  $C_{a\gamma}/f_a$

#### KSVZ variant where exotic quark carries also magnetic charge:



[Di Luzio et al. 16, Farina et al. 16, Agrawal et al. 17, Sokolov,AR 21] [Hook 18, Di Luzio et al. 21]

### **Axion or ALP?**

- (Most of) Parameter range accessible by ALPS II (BabyIAXO) seems far away from expectation for axion
- In case of discovery by those experiments, it can still be the axion in models with
  - increased values of  $C_{a\gamma}$ , for fixed value of  $m_a$
  - smaller values of  $m_a$ , for fixed values of  $C_{a\gamma}/f_a$

#### KSVZ variant where exotic quark carries also magnetic charge:



[Di Luzio et al. 16, Farina et al. 16, Agrawal et al. 17, Sokolov,AR 21] [Hook 18, Di Luzio et al. 21]

#### **Z<sub>N</sub> axion exploiting N copies of the SM:** [Di Luzio et al., 2102.00012]



### **Microwave Cavities**

• Axion DM – photon conversion in microwave cavity placed in magnetic field



[Sikivie 83]

- Best sensitivity: mass = resonance frequency  $m_a = 2\pi\nu \sim 4 \ \mu eV \left(\frac{\nu}{GHz}\right)$
- Power output:  $P_{\rm out} \sim g_{a\gamma}^2 \mid {f B}_0 \mid^2 
  ho_{\rm DM} V Q/m_a$



[https://github.com/cajohare/AxionLimits/blob/master/plots/AxionPhoton\_Rescaled.pdf] DESY. | Laboratory Searches of Axions and ALPs | Shoot for the Stars, Aim for the Axions, 5th YOUNGST@RS Virtual Workshop, Mainz Institute for Theoretical Physics, Oct 4 - 7, 2022

#### **Dish Antennas**

- Oscillating axion DM in a background magnetic field carries a small electric field component
- A magnetised mirror in axion/ALP DM background radiates photons [Horns, Jaeckel, Lindner, Lobanov, Redondo, AR 13]



### **Dish Antennas**

- Boosted dish antenna: Open dielectric resonator
  - Add stack of dielectric disks with  $\sim \lambda/2\,$  spacing in front of mirror (all immersed in magnetic field)  $_{\sf [Ja]}$
  - Constructive interference of photon part of wave function

[Jaeckel,Redondo 13] [Millar,Raffelt,Redondo,Steffen 16]

[Baryakhtar, Huang, Lasenby18]



#### **Dish Antennas**



#### **Dish Antennas**



#### **Dish antennas**



[https://github.com/cajohare/AxionLimits/blob/master/plots/AxionPhoton\_Rescaled.pdf] DESY. | Laboratory Searches of Axions and ALPs | Shoot for the Stars, Aim for the Axions, 5th YOUNGST@RS Virtual Workshop, Mainz Institute for Theoretical Physics, Oct 4 - 7, 2022

### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{eff}$  parallel to  $B_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure

# Toroid vs solenoid



$$\mathbf{J}_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM}} \cos(m_a t) \mathbf{B}$$

### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments



#### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA

[Ouellet et al. 19]



### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA
- [Ouellet et al. 19]
- ADMX SLIC
   [Crisosto et al. 20]



### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA
- [Ouellet et al. 19]
- ADMX SLIC [Crisosto et al. 20]
- SHAFT [Gramolin et al. 21]



### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA [Ouellet et al. 19]
  - ADMX SLIC [Crisosto et al. 20]
  - SHAFT [Gramolin et al. 21]
  - WISPLC [Zhang,Horns,Ghosh 21]



#### [Zhang,Horns,Ghosh 21]

TABLE I. Comparison of experimental parameters between WISPLC, ABRA. and SHAFT,  $C = |\vec{B}_{\max}|V_{\text{magnet}} \mathcal{G}_V$ .

|                    | $ \vec{B}_{ m max} ({ m T})$ | $\mathcal{G}_V$      | $V_{ m magnet}({ m m}^3)$ | $C/C_{\mathrm{SHAFT}}$ |
|--------------------|------------------------------|----------------------|---------------------------|------------------------|
| SHAFT <sup>a</sup> | 1.5                          | $0.108^{\mathrm{b}}$ | $9.5 \times 10^{-5}$      | 1                      |
| $ABRA.^{c}$        | 1                            | 0.027                | $8.9 	imes 10^{-4}$       | 1.55                   |
| WISPLC             | 14                           | 0.074                | $2.4 \times 10^{-2}$      | $1.60 \times 10^3$     |

### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA [Ouellet et al. 19]
  - ADMX SLIC [Crisosto et al. 20]
  - SHAFT [Gramolin et al. 21]
  - WISPLC
- DM-Radio Cubic Meter Consortium

### **DM Radio Cubic Meter Consortium**

Funded as part of DOE New Initiatives in Dark Matter program

| R&D Phase Consort   | ium Leadership:      |                               | DARK MATTER RADIO       |
|---------------------|----------------------|-------------------------------|-------------------------|
| Project             | kHz MHz GHz THz freq |                               |                         |
| <u>Name</u>         | <u>Institution</u>   | <u>Role / Team Lead</u>       |                         |
| Kent Irwin          | SLAC and Stanford    | Consortium Pl                 |                         |
| Karl van Bibber     | UC Berkeley          | Magnet                        |                         |
| Lindley Winslow     | MIT                  | Magnetic shielding, vibration |                         |
| Saptarshi Chaudhuri | Princeton            | Control system, scan          |                         |
| Peter Graham        | Stanford             | Theory                        |                         |
| Reyco Henning       | UNC Chapel Hill      | Calibration and DAQ           |                         |
| Dale Li             | SLAC                 | Cryomechanical                | Cal 🔻 📗                 |
| Hsiao-Mei Cho       | SLAC                 | SQUID                         | PRINCETON<br>UNIVERSITY |
| Wes Craddock        | SLAC                 | Lead Engineer                 | THE UNIVERSITY          |
| Nadine Kurita       | SLAC                 | Project Management Plan       | at CHAPEL HILL          |

### **Searching for Axion-induced Magnetic Fields**

[Sikivie,Sullivan,Tanner 14; Kahn,Safdi,Thaler `16]

- Toroidal (solenoidal) magnet with fixed field B<sub>0</sub>:
  - Axion DM generates oscillating effective current  $J_{\text{eff}}$  parallel to  $\mathsf{B}_0$
  - ... generating oscillating magnetic flux B<sub>a</sub> through center (azimuthal magnetic flux)
  - ... which can be read out by pickup structure
- Pathfinder experiments:
  - ABRACADABRA [Ouellet et al. 19]
  - ADMX SLIC [Crisosto et al. 20]
  - SHAFT [Gramolin et al. 21]
  - WISPLC
- DM-Radio Cubic Meter Consortium: aims to reach the canonical axion band, even reaching predictions from GUTs

[Ernst,AR,Tamarit 18; Di Luzio,AR,Tamarit 18]

# Better reach



#### Searches employing lumped elements



[https://github.com/cajohare/AxionLimits/blob/master/plots/AxionPhoton\_Rescaled.pdf] DESY. | Laboratory Searches of Axions and ALPs | Shoot for the Stars, Aim for the Axions, 5th YOUNGST@RS Virtual Workshop, Mainz Institute for Theoretical Physics, Oct 4 - 7, 2022

### **Magnetic Resonance Searches**

• Axion DM field induces oscillating NEDMs:

 $d_N(t) = g_d \sqrt{2\rho_{\rm DM}} \cos(m_A t) / m_A$ 

- Place a ferroelectric crystal (permanent electric polarisation fields  $\vec{E}^*$ ) in external  $\vec{B}_{\rm ext} \perp E^*$
- Nuclear spins are polarised along  $\vec{B}_{ext}$  and precess at Larmor frequency  $\omega_L = 2\mu_N B_{ext}$
- Interaction  $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$  of DM induced NEDM with the  $\vec{E}^*$ -field leads to resonant increase of transverse magnetisation of sample when  $\omega_L = m_A$

[Graham, Rajendran 13; Budker et al. 14]





### **Magnetic Resonance Searches**

• Axion DM field induces oscillating NEDMs:

 $d_N(t) = g_d \sqrt{2\rho_{\rm DM}} \cos(m_A t) / m_A$ 

- Place a ferroelectric crystal (permanent electric polarisation fields  $\vec{E}^*$ ) in external  $\vec{B}_{\rm ext} \perp E^*$
- Nuclear spins are polarised along  $\vec{B}_{ext}$  and precess at Larmor frequency  $\omega_L = 2\mu_N B_{ext}$
- Interaction  $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$  of DM induced NEDM with the  $\vec{E}^*$ -field leads to resonant increase of transverse magnetisation of sample when  $\omega_L = m_A$

[Graham,Rajendran 13; Budker et al. 14]

CASPEr-Electric currently being set-up in Boston



[Budker et al. 14]

### **Magnetic Resonance Searches**

• Axion DM field induces oscillating NEDMs:

 $d_N(t) = g_d \sqrt{2\rho_{\rm DM}} \cos(m_A t) / m_A$ 

- Place a ferroelectric crystal (permanent electric polarisation fields  $\vec{E^*}$ ) in external  $\vec{B}_{\rm ext} \perp E^*$
- Nuclear spins are polarised along  $\vec{B}_{ext}$  and precess at Larmor frequency  $\omega_L = 2\mu_N B_{ext}$
- Interaction  $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$  of DM induced NEDM with the  $\vec{E}^*$ -field leads to resonant increase of transverse magnetisation of sample when  $\omega_L = m_A$

[Graham,Rajendran 13; Budker et al. 14]

- CASPEr-Electric currently being set-up in Boston
  - In phase III: probes axion dark matter in mass range predicted by GUTs [Ernst,AR,Tamarit 18; Di Luzio,AR,Tamarit 18]



### **Magnetic Resonance Searches**

• Axion DM field induces oscillating NEDMs:

 $d_N(t) = g_d \sqrt{2\rho_{\rm DM}} \cos(m_A t) / m_A$ 

- Place a ferroelectric crystal (permanent electric polarisation fields  $\vec{E}^*$ ) in external  $\vec{B}_{\rm ext} \perp E^*$
- Nuclear spins are polarised along  $\vec{B}_{ext}$  and precess at Larmor frequency  $\omega_L = 2\mu_N B_{ext}$
- Interaction  $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$  of DM induced NEDM with the  $\vec{E}^*$ -field leads to resonant increase of transverse magnetisation of sample when  $\omega_L = m_A$

[Graham, Rajendran 13; Budker et al. 14]

- CASPEr-Electric currently being set-up in Boston
  - In phase III: probes axion dark matter in mass range predicted by GUTs [Ernst,AR,Tamarit 18; Di Luzio,AR,Tamarit 18]
  - In phase I and II: probes Z<sub>N</sub> axion dark matter

[Di Luzio, Gavela, Quilez, AR 2102.00012]



### **Conclusions**

- Boom in axion searches!
- Large parts in axion parameter space will be tackled in the upcoming decade by a number of terrestrial experiments:
  - Light-shining-through-a-wall experiments (ALPS II, ...)
  - Solar axion searches ((Baby)IAXO, ...)
  - Axion dark matter searches (ADMX, BRASS, CAPP, CASPEr, DM RADIO, HAYSTAC, MADMAX, ORGAN, QUAX, ...)
  - Searches for axion-mediated forces (ARIADNE, ...)
- If 100 % of DM consists of QCD axions, one of the dark matter axion experiments likely to see a signal in the upcoming decade!

### **STAY TUNED!**

# **Axion Dark Matter Search Based on NEDM Coupling**

Storage ring EDM method

#### PHYSICAL REVIEW D 99, 083002 (2019)

#### Axionlike dark matter search using the storage ring EDM method

Seung Pyo Chang,<sup>1,2</sup> Selçuk Hacıömeroğlu,<sup>2</sup> On Kim,<sup>1,2</sup> Soohyung Lee,<sup>2</sup> Seongtae Park,<sup>2,\*</sup> and Yannis K. Semertzidis<sup>1,2</sup> <sup>1</sup>Department of Physics, KAIST, Daejeon 34141, Republic of Korea <sup>2</sup>Center for Axion and Precision Physics Research, IBS, Daejeon 34051, Republic of Korea

(Received 20 June 2018; revised manuscript received 28 January 2019; published 8 April 2019)

We propose using the storage ring electric dipole moment (EDM) method to search for the axion dark matter induced EDM oscillation in nucleons. The method uses a combination of *B* and *E* fields to produce a resonance between the g-2 spin precession frequency and the background axion field oscillation to greatly enhance sensitivity to it. An axion frequency range from  $10^{-9}$  Hz to 100 MHz can, in principle, be scanned with high sensitivity, corresponding to an  $f_a$  range of  $10^{13}$  GeV  $\leq f_a \leq 10^{30}$  GeV, the breakdown scale of the global symmetry generating the axion or axionlike particles.

DOI: 10.1103/PhysRevD.99.083002

### **Axion Dark Matter Search Based on NEDM Coupling**

#### Storage ring EDM method

12th Int. Particle Acc. Conf. ISBN: 978-3-95450-214-1 IPAC2021, Campinas, SP, Brazil JACoW Publishing ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB188

#### NEW METHOD TO SEARCH FOR AXION-LIKE PARTICLES DEMONSTRATED WITH POLARIZED BEAM AT THE COSY STORAGE RING

#### First demonstrator experiment at COSY

S. Karanth<sup>\*</sup>, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland on behalf of the JEDI collaboration<sup>†</sup>

#### Abstract

The axion was originally proposed to explain the absence size of CP violation in quantum chromodynamics. Axions or axion-like particles (ALPs), when coupled to gluons, induce an oscillating Electric Dipole Moment (EDM) along the nucleon's spin direction. At the Cooler Synchrotron COSY in Jülich, this principle was used to perform a first test experiment to search for ALPs using an in-plane polarized deuteron beam. In COSY, the beam polarization vector precesses in the horizontal plane due to the presence of magnetic fields. If the spin precession frequency equals the EDM oscillation frequency, a resonance occurs that accumulates the rotation of the polarization out of the ring plane. Such a resonance is searched for by scanning beam revolution frequency, which is directly related to the spin precession frequency. At COSY, four beam bunches with different polarization directions were used to make sure that no resonance was missed because of the unknown relative phase between the polarization precession and the EDM oscillations. We scanned a frequency window of about 1.5 kHz width around the spin precession frequency of 121 kHz. This paper describes the experiment.

### Cooler Synchrotron (COSY)

- A proof-of-principle experiment to search for ALPs
- Polarized deuterons
- WASA detector as the polarimeter



# **Axion Dark Matter Search Based on NEDM Coupling**

#### Storage ring EDM method

12th Int. Particle Acc. Conf. ISBN: 978-3-95450-214-1 IPAC2021, Campinas, SP, Brazil JACoW Publishing ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB188

#### NEW METHOD TO SEARCH FOR AXION-LIKE PARTICLES DEMONSTRATED WITH POLARIZED BEAM AT THE COSY STORAGE RING

S. Karanth<sup>\*</sup>, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland on behalf of the JEDI collaboration<sup>†</sup>

#### Abstract

The axion was originally proposed to explain the absence size of CP violation in quantum chromodynamics. Axions or axion-like particles (ALPs), when coupled to gluons, induce an oscillating Electric Dipole Moment (EDM) along the nucleon's spin direction. At the Cooler Synchrotron COSY in Jülich, this principle was used to perform a first test experiment to search for ALPs using an in-plane polarized deuteron beam. In COSY, the beam polarization vector precesses in the horizontal plane due to the presence of magnetic fields. If the spin precession frequency equals the EDM oscillation frequency, a resonance occurs that accumulates the rotation of the polarization out of the ring plane. Such a resonance is searched for by scanning beam revolution frequency, which is directly related to the spin precession frequency. At COSY, four beam bunches with different polarization directions were used to make sure that no resonance was missed because of the unknown relative phase between the polarization precession and the EDM oscillations. We scanned a frequency window of about 1.5 kHz width around the spin precession frequency of 121 kHz. This paper describes the experiment.



#### [adapted from https://github.com/cajohare/AxionLimits]

### Axion Dark Matter Search Based on NEDM Coupling Storage ring EDM method

#### The storage ring proton EDM experiment

Jim Alexander<sup>7</sup>, Vassilis Anastassopoulos<sup>36</sup>, Rick Baartman<sup>28</sup>, Stefan Baeßler<sup>39,22</sup>, Franco Bedeschi<sup>19</sup>, Martin Berz<sup>17</sup>, Michael Blaskiewicz<sup>4</sup>, Themis Bowcock<sup>33</sup>, Kevin Brown<sup>4</sup>, Dmitry Budker<sup>9,31</sup>, Sergey Burdin<sup>33</sup>, Brendan C. Casey<sup>8</sup>, Gianluigi Casse<sup>34</sup>, Giovanni Cantatore<sup>38</sup>, Timothy Chupp<sup>34</sup>, Hooman Davoudiasl<sup>4</sup>, Dmitri Denisov<sup>4</sup>, Milind V. Diwan<sup>4</sup>, George Fanourakis<sup>20</sup>, Antonios Gardikiotis<sup>30,36</sup>, Claudio Gatti<sup>18</sup>, James Gooding<sup>33</sup>, Renee Fatemi<sup>32</sup>, Wolfram Fischer<sup>4</sup>, Peter Graham<sup>26</sup>, Frederick Grav<sup>23</sup>, Selcuk Haciomeroglu<sup>6</sup>, Georg H. Hoffstaetter<sup>7</sup>, Haixin Huang<sup>4</sup>, Marco Incagli<sup>19</sup>, Hoyong Jeong<sup>16</sup>, David Kaplan<sup>13</sup>, Marin Karuza<sup>37</sup>, David Kawall<sup>29</sup>, On Kim<sup>6</sup>, Ivan Koop<sup>5</sup>, Valeri Lebedev<sup>14,8</sup>, Jonathan Lee<sup>27</sup>, Soohyung Lee<sup>6</sup>, Alberto Lusiani<sup>25,19</sup>, William J. Marciano<sup>4</sup>, Marios Maroudas<sup>36</sup>, Andrei Matlashov<sup>6</sup>, Francois Meot<sup>4</sup>, James P. Miller<sup>3</sup>, William M. Morse<sup>4</sup>, James Mott<sup>3,8</sup>, Zhanibek Omarov<sup>15,6</sup>, Cenap Ozben<sup>11</sup>, Seong Tae Park<sup>6</sup>, Giovanni Maria Piacentino<sup>35</sup>, Boris Podobedov<sup>4</sup>, Matthew Poelker<sup>12</sup>, Dinko Pocanic<sup>39</sup>, Joe Price<sup>33</sup>, Deepak Raparia<sup>4</sup>, Surjeet Rajendran<sup>13</sup>, Sergio Rescia<sup>4</sup>, B. Lee Roberts<sup>3</sup>, Yannis K. Semertzidis <sup>\*6,15</sup>, Alexander Silenko<sup>14</sup>, Amarjit Soni<sup>4</sup>, Edward Stephenson<sup>10</sup>, Riad Suleiman<sup>12</sup>, Michael Syphers<sup>21</sup>, Pia Thoerngren<sup>24</sup>, Volodva Tishchenko<sup>4</sup>, Nicholaos Tsoupas<sup>4</sup>, Spyros Tzamarias<sup>1</sup>, Alessandro Variola<sup>18</sup>, Graziano Venanzoni<sup>19</sup>, Eva Vilella<sup>33</sup>, Joost Vossebeld<sup>33</sup>, Peter Winter<sup>2</sup>, Eunil Won<sup>16</sup>, Anatoli Zelenski<sup>4</sup>, and Konstantin Zioutas<sup>36</sup>

<sup>1</sup>Aristotle University of Thessaloniki, Thessaloniki, Greece
 <sup>2</sup>Argonne National Laboratory, Lemont, Illinois, USA
 <sup>3</sup>Boston University, Boston, Massachusetts, USA
 <sup>4</sup>Brookhaven National Laboratory, Upton, New York, USA
 <sup>5</sup>Budker Institute of Nuclear Physics, Novosibirsk, Russia
 <sup>6</sup>Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea
 <sup>7</sup>Cornell University, Ithaca, New York, USA
 <sup>8</sup>Fermi National Accelerator Laboratory, Batavia, Illinois, USA
 <sup>9</sup>Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany
 <sup>10</sup>Indiana University, Bloomington, Indiana, USA
 <sup>11</sup>Istanbul Technical University, Istanbul, Turkey

<sup>12</sup>JLAB, Newport News, Virginia, USA <sup>13</sup>Johns Hopkins University, Baltimore, Maryland, USA <sup>14</sup> Joint Institute for Nuclear Research, Dubna, Russia <sup>15</sup>Physics Dept., KAIST, Daejeon, Korea <sup>16</sup>Physics Dept., Korea University, Seoul, Korea <sup>17</sup>Michigan State University, East Lansing, Michigan, USA <sup>18</sup>National Institute for Nuclear Physics (INFN-Frascati), Rome, Italy <sup>19</sup>National Institute for Nuclear Physics (INFN-Pisa), Pisa, Italy <sup>20</sup>NCSR Demokritos Institute of Nuclear and Particle Physics, Athens, Greece <sup>21</sup>Northern Illinois University, DeKalb, Illinois, USA <sup>22</sup>Oak Ridge National Laboratory, Oak Ridge, TN, USA <sup>23</sup>Regis University, Denver, Colorado, USA <sup>24</sup>Royal Institute of Technology, Division of Nuclear Physics, Stockholm, Sweden <sup>25</sup>Scuola Normale Superiore di Pisa, Pisa, Italy <sup>26</sup>Stanford University, Stanford, California, USA <sup>27</sup>Stony Brook University, Stony Brook, New York, USA <sup>28</sup> TRIUMF, Vancouver, British Columbia, Canada <sup>29</sup>UMass Amherst, Amherst, Massachusetts, USA <sup>30</sup>Universität Hamburg, Hamburg, Germany <sup>31</sup>University of California at Berkeley, Berkeley, California, USA <sup>32</sup>University of Kentucky, Lexington, Kentucky, USA <sup>33</sup>University of Liverpool, Liverpool, UK <sup>34</sup>University of Michigan, Ann Arbor, Michigan, USA <sup>35</sup>University of Molise, Campobasso, Italy <sup>36</sup>University of Patras, Dept. of Physics, Patras-Rio, Greece 37 University of Rijeka, Rijeka, Croatia <sup>38</sup>University of Trieste and National Institute for Nuclear Physics (INFN-Trieste), Trieste, Italy <sup>39</sup>University of Virginia, Charlottesville, Virginia, USA

April 20, 2022



<sup>[</sup>Alexander et al., arXiv:2205.00830 [hep-ph]]

ALP with nEDM coupling in projected reach of storage ring EDM method is much lighter than a canonical QCD axion with the same nEDM coupling strength

# **Searches for Axion Mediated Forces**

### **Magnetic Resonance Searches**

- Experiments searching for axion mediated forces particularly effective in meV mass range
- Monopole-dipole interaction between nucleon and fermion:

$$U_{\text{mon-dip}}(r) = \frac{g_{\overline{aNN}} g_{af\bar{f}}}{8\pi m_f} \left(\frac{m_a}{r} + \frac{1}{r^2}\right) e^{-m_a r} \left(\hat{\sigma} \cdot \hat{r}\right)$$
$$\mathcal{L}_{\text{int}} = g_{\overline{aNN}} a \bar{N} N - i g_{af\bar{f}} a \bar{f} \gamma_5 f$$

- Proposed ARIADNE experiment searches for forces between a rotating cylinder, made of unpolarized material, and a vessel containing hyperpolarized <sup>3</sup>He gas
  - Since <sup>3</sup>He magnetic moment dominated by neutron contribution: sensitive to monopole-dipole interaction between nucleus and neutrons,  $\mid g_{\overline{aNN}} \; g_{an\bar{n}} \mid$



FIG. 1 (color online). A source mass consisting of a segmented cylinder with *n* sections is rotated around its axis of symmetry at frequency  $\omega_{rot}$ , which results in a resonance between the frequency  $\omega = n\omega_{rot}$  at which the segments pass near the sample and the resonant frequency  $2\vec{\mu}_N \cdot \vec{B}_{ext}/\hbar$  of the NMR sample. Superconducting cylinders screen the NMR sample from the source mass and (not shown) the setup from the environment.

#### [Arvanitaki, Geraci 14]

#### DESY. | Laboratory Searches of Axions and ALPs | Shoot for the Stars, Aim for the Axions, 5th YOUNGST@RS Virtual Workshop, Mainz Institute for Theoretical Physics, Oct 4 - 7, 2022 Page 59

### **Searches for Axion Mediated Forces**

#### **Magnetic Resonance Searches**

- Experiments searching for axion mediated forces particularly effective in meV mass range
- Monopole-dipole interaction between nucleon and fermion:

$$U_{\text{mon-dip}}(r) = \frac{g_{\overline{aNN}} g_{af\bar{f}}}{8\pi m_f} \left(\frac{m_a}{r} + \frac{1}{r^2}\right) e^{-m_a r} \left(\hat{\sigma} \cdot \hat{r}\right)$$
$$\mathcal{L}_{\text{int}} = g_{\overline{aNN}} a \bar{N}N - i g_{af\bar{f}} a \bar{f} \gamma_5 f$$

- Proposed ARIADNE experiment searches for forces between a rotating cylinder, made of unpolarized material, and a vessel containing hyperpolarized <sup>3</sup>He gas
  - Since <sup>3</sup>He magnetic moment dominated by neutron contribution: sensitive to monopole-dipole interaction between nucleus and neutrons,  $\mid g_{aN\bar{N}} \; g_{an\bar{n}} \mid$



#### [Arvanitaki, Geraci 14]

## **Axion Dark Matter**

### Wavy dark matter

- "Invisible axion" ( $f_a \gtrsim 10^9 \, {\rm GeV} \leftrightarrow m_a \lesssim 6 \, {\rm meV}$ )
  - Natural DM candidate
    - stable on cosmologically time scales

[Kim 79;Shifman,Vainshtein,Zakharov 80;Zhitnitsky 80;Dine,Fischler,Srednicki 81;...]

- automatically produced in early universe by misalignment mechanism [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]
- Belongs to the generic class of **Ultralight Dark Matter** candidates



[US Cosmic Visions: New Ideas in Dark Matter 2017]

### **Axion Dark Matter**

### Wavy dark matter

• De Broglie wave length of dark matter in our neighborhood in Milky Way:

$$\lambda_{\rm dB} = \frac{2\pi}{m_{\rm DM} v_{\rm d}} = 1.49 \,\mathrm{m} \,\left(\frac{\mathrm{meV}}{m_{\rm DM}}\right) \left(\frac{250 \,\mathrm{km/s}}{v_{\rm d}}\right)$$

• For  $m_{\rm DM} \ll 30 \, {\rm eV}$ , large occupation number per de Broglie volume in our neighborhood in Milky Way:

$$N_{\rm DM} \mid_{\rm dB} = n_{\rm DM} \,\lambda_{\rm dB}^3 = \frac{\rho_{\rm DM}}{m_{\rm DM}} \, \left(\frac{2\pi}{m_{\rm DM} \, v_{\rm d}}\right)^3 = 1.3 \times 10^{18} \left(\frac{\rm meV}{m_{\rm DM}}\right)^4 \left(\frac{250 \,\rm km/s}{v_{\rm d}}\right)^3 \left(\frac{\rho_{\rm DM}}{0.4 \,\rm GeV/cm^3}\right)^3 \left(\frac{\rho_{\rm DM}}{0.4 \,$$

- Invisible axion dark matter ( $f_a \gtrsim 10^9 \, {
  m GeV} \leftrightarrow m_a \lesssim 6 \, {
  m meV}$ ) best described by classical waves.
- Therefore also known as

#### **Coherent-Field Dark Matter or Wave Dark Matter**

• For  $m_{\rm DM} \lesssim 10^{-22} \, {\rm eV}$ , de Broglie wave length exceeds size of dwarf galaxies. Therefore,

Axion Dark Matter Candidates must have a mass  $\gtrsim 10^{-22}\,{
m eV}$