Status of the DMRadio Program

Nicholas Rapidis Stanford University – Irwin Group DMRadio Collaboration Shoot for the Stars, Aim for the Axions – October 6, 2022

DMRadio Collaboration

H.M. Cho, W. Craddock, D. Li, C. P. Salemi, W. J. Wisniewski SLAC National Accelerator Laboratory

J. Corbin, P. W. Graham, K. D. Irwin, F. Kadribasic, S. Kuenstner, N. M. Rapidis, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. Wells Department of Physics Stanford University - Experiment Location

A. Droster, A. Keller, A. F. Leder, K. van Bibber Department of Nuclear Engineering University of California Berkeley

S. Chaudhuri, R. Kolevatov Department of Physics Princeton University

L. Brouwer Accelerator Technology and Applied Physics Division Lawrence Berkeley National Lab

CAL STATE EAST BAY

B. A. Young Department of Physics Santa Clara University

J. W. Foster, J. T. Fry, J. L. Ouellet, K. M. W. Pappas, L. Winslow Laboratory of Nuclear Science Massachusetts Institute of Technology

R. Henning Department of Physics University of North Carolina Chapel Hill Triangle Universities Nuclear Laboratory

Y. Kahn Department of Physics University of Illinois at Urbana-Champaign

A. Phipps California State University, East Bay

B. R. Safdi Department of Physics University of California Berkeley

Outline

- 1. Axions and low frequency haloscopes
- 2. DMRadio 50L
 - 1. Overview
 - 2. Status
- 3. DMRadio m³
 - 1. Overview

2. Status

4. Outlook, future, & collaboration

Outline

- 1. Axions and low frequency haloscopes
- 2. DMRadio 50L
 - 1. Overview
 - 2. Status
- 3. DMRadio m³
 - 1. Overview
 - 2. Status
- 4. Outlook, future, & collaboration

Axion to photon conversion:

$$\nu_a = \frac{m_a c^2}{h}$$

Axion to photon conversion:

$$\nu_a = \frac{m_a c^2}{h}$$

 $f_a \sim g_{a\gamma\gamma}^{-1}$

QCD axion symmetry breaking scale:

Axion to photon conversion:

$$\nu_a = \frac{m_a c^2}{h}$$

QCD axion symmetry breaking scale:

$$f_a \sim g_{a\gamma\gamma}^{-1}$$

Axion parameter space is well motivated for:

$$\Lambda_{\text{inflation}} < f_a \lesssim m_{\text{Planck}}$$

Axion-photon coupling:

Axion-photon coupling:

$$\mathcal{L} \supset g_{a\gamma\gamma} aF\tilde{F} \sim g_{a\gamma\gamma} a\vec{E} \cdot \vec{B}$$

For axion haloscopes:

Axion + magnetic field photon

 \rightarrow electric field photon

Axion-photon coupling:

Expected axion number density (for neV axion) $n_a \sim 10^{17} {\rm cm}^{-3} \gg 1$ per quantum state

Axion can be modeled as classical wave

Axion-photon coupling:

 \rightarrow electric field photon

Expected axion number density (for neV axion) $n_a \sim 10^{17} \mathrm{cm}^{-3} \gg 1$ per quantum state Axion can be modeled as classical wave $\nabla \cdot \vec{E} = -g_{a\gamma\gamma}\vec{B} \cdot \nabla a$ $\nabla \cdot \vec{B} = 0$ $\nabla\times\vec{E}=-\partial_t\vec{B}$ $\nabla \times \vec{B} = \partial_t \vec{E} - g_{a\gamma\gamma} \left(\vec{E} \times \nabla a - \partial_t a \vec{B} \right)$

Axion-photon coupling:

Axion + magnetic field photon

 \rightarrow electric field photon

Expected axion number density (for neV axion) $n_a \sim 10^{17} \mathrm{cm}^{-3} \gg 1$ per quantum state Axion can be modeled as classical wave $\nabla \cdot \vec{E} = -g_{a\gamma\gamma}\vec{B} \cdot \nabla a$ $\nabla \cdot \vec{B} = 0$ $\vec{J}_{\rm eff} = g_{a\gamma\gamma}\partial_t a\vec{B}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\partial_t \vec{B}$ $\nabla \times \vec{B} = \partial_t \vec{E} - g_{a\gamma\gamma} \left(\vec{E} \times \nabla a - \left[\partial_t a \vec{B} \right] \right)$

Axion Parameter Space

Wavelength $\lambda \gg 1 \ {\rm m}$

Axion frequency matches resonance of LC oscillator

Pre-inflationary axion

Outline

1. Axions and low frequency haloscopes

2. DMRadio 50L

- 1. Overview
- 2. Status

3. DMRadio m³

1. Overview

2. Status

4. Outlook, future, & collaboration

50L Goals

50L Goals

Demonstration of LC resonator + magnet

50L Goals

Demonstration of LC resonator + magnet

Testbed for novel quantum devices

Slit (+ sleeve) allows currents to flow outside-

Built at Stanford University

BlueFors Dil Fridge at Stanford

BlueFors Dil Fridge at Stanford

Cryostat currently being manufactured

BlueFors Dil Fridge at Stanford

Cryostat currently being manufactured

Magnet being manufactured by SSI

BlueFors Dil Fridge at Stanford

Cryostat currently being manufactured

Magnet being manufactured by SSI

Sheath design being finalized

BlueFors Dil Fridge at Stanford

Cryostat currently being manufactured

Science starting in 2023

Magnet being manufactured by SSI

Sheath design being finalized

Outline

- 1. Axions and low frequency haloscopes
- 2. DMRadio 50L
 - 1. Overview
 - 2. Status
- 3. DMRadio m³
 - 1. Overview

2. Status

4. Outlook, future, & collaboration

DMRadio m³ Goals

DMRadio m³ Goals

DMRadio m³ Goals

DMRadio m³ Design

50L-like geometry non optimal – problems at high frequency

DMRadio m³ Design

Parasitic capacitive coupling shorts out signal!

-

50L-like geometry non optimal – problems at high frequency

DMRadio m³ Design Parasitic capacitive coupling shorts out signal! $f_{\text{paras}} = 48.5 \text{ MHz} \left(\frac{0.05 \text{ m}^3}{V_{\text{sheath}}}\right)^{1/2} \left(\frac{1 \text{ rad}}{\theta}\right)^{1/2} \left(\frac{d}{1 \text{ cm}}\right)^{1/2}$ -DMRadio 50L 50L-like geometry non optimal – problems at high frequency Axion signal will destructively interfere with cavity modes of this coaxial structure (as $\lambda \sim l$)

m³ uses a solenoidal magnet + coaxial copper pickup

m³ uses a solenoidal magnet + coaxial copper pickup

m³ uses a solenoidal magnet + coaxial copper pickup

m³ uses a solenoidal magnet + coaxial copper pickup

m³ uses a solenoidal magnet + coaxial copper pickup

m³ uses a solenoidal magnet + coaxial copper pickup

No parasitic capacitance

Copper pickup in high B-field region

Coax design favorable for higher frequencies– need careful treatment nevertheless

m³ uses a solenoidal magnet + coaxial copper pickup

No parasitic capacitance

Copper pickup in high B-field region

Coax design favorable for higher frequencies– need careful treatment nevertheless

Outline

- 1. Axions and low frequency haloscopes
- 2. DMRadio 50L
 - 1. Overview
 - 2. Status
- 3. DMRadio m³
 - 1. Overview
 - 2. Status
- 4. Outlook, future, & collaboration

DMRadio GUT

RF Quantum Upconverters:

Magnet:

Low vs High T_C still under consideration – significant cryogenic constraints

16 T, 10 m³

Scan Rate:

$$\begin{split} \frac{d\nu_r}{dt} &\approx 41 \frac{\mathrm{kHz}}{\mathrm{year}} \left(\frac{3}{\mathrm{SNR}}\right)^2 \left(\frac{g_{a\gamma\gamma}}{10^{-19} \mathrm{~GeV}^{-1}}\right)^4 \left(\frac{\rho_{\mathrm{DM}}}{0.45 \mathrm{~GeV/cm}^3}\right)^2 \\ &\times \left(\frac{\nu_r}{100 \mathrm{~kHz}}\right) \left(\frac{c_{PU}}{0.1}\right)^4 \left(\frac{B_0}{16 \mathrm{~T}}\right)^4 \left(\frac{V}{10 \mathrm{~m}^3}\right)^{10/3} \left(\frac{Q}{2 \times 10^7}\right) \left(\frac{10 \mathrm{~mK}}{T}\right) \left(\frac{0.1}{\eta_A}\right) \,. \end{split}$$

 $Q \sim 20 \times 10^{6}$

DMRadio Outlook

DFSZ @ 0.4 neV < m_a < 800 neV Projects developed in parallel $f_a < 10^{19}$ GeV for QCD axion models Testbed for quantum devices

DMRadio Outlook

DFSZ @ 0.4 neV < m_a < 800 neV Projects developed in parallel $f_a < 10^{19}$ GeV for QCD axion models Testbed for quantum devices

Publications 50L: coming soon m³: arXiv: 2204.13781 GUT: arXiv: 2203.11246

RF Quantum Upconverters:

arXiv: 2210.xxxxxx 58

DMRadio Collaboration

H.M. Cho, W. Craddock, D. Li, C. P. Salemi, W. J. Wisniewski SLAC National Accelerator Laboratory

J. Corbin, P. W. Graham, K. D. Irwin, F. Kadribasic, S. Kuenstner, N. M. Rapidis, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. Wells Department of Physics Stanford University

A. Droster, A. Keller, A. F. Leder, K. van Bibber Department of Nuclear Engineering University of California Berkeley

S. Chaudhuri, R. Kolevatov Department of Physics Princeton University

L. Brouwer Accelerator Technology and Applied Physics Division Lawrence Berkeley National Lab

> CAL STATE EAST BAY

B. A. Young Department of Physics Santa Clara University J. W. Foster, J. T. Fry, J. L. Ouellet, K. M. W. Pappas, L. Winslow Laboratory of Nuclear Science Massachusetts Institute of Technology

R. Henning Department of Physics University of North Carolina Chapel Hill Triangle Universities Nuclear Laboratory

Y. Kahn Department of Physics University of Illinois at Urbana-Champaign

A. Phipps California State University, East Bay

B. R. Safdi Department of Physics University of California Berkeley

.....

BERKELEY LAB

PRINCETON

UNIVERSITY

Publications

m³: arXiv: 2204.13781

GUT: arXiv: 2203.11246

Backup Slides

Radiofrequency Quantum Upconverters

LIGO:

Identical Hamiltonian Formalism:

$$H = \hbar\omega_b \left(b^{\dagger}b + \frac{1}{2} \right) + \hbar\omega_a \left(a^{\dagger}a + \frac{1}{2} \right) + H_{\text{int}} \qquad H_{\text{int}} = -\frac{\hbar}{2}Fb^{\dagger}b(a^{\dagger} + a)$$

Radiofrequency Quantum Upconverters

shielded region = .29 T

63

Misalignment mechanism

