3-Pole Approximation to $D^0 \to \pi^- e^+ \nu$ Form Factors

Becirevic et al. arXiv:1407.1019

 As recently proposed, the addition of a 3rd effective pole greatly improves the prediction

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{m_{D^{*}}^{2} - q^{2}} + \frac{\gamma_{1}}{m_{D^{*'}}^{2} - q^{2}} + \frac{\gamma_{eff}}{m_{eff}^{2} - q^{2}} \quad \text{with} \quad \boxed{\gamma_{n} = \underset{q^{2} = m_{D_{n}}^{2}}{\operatorname{Res}} f_{+}^{D\pi}(q^{2})}{\gamma_{n}^{2} = m_{D_{n}}^{2}}$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{m_{D^{*}}^{2} - q^{2}} + \frac{\gamma_{eff}}{m_{eff}^{2} - q^{2}} \quad \text{with} \quad \boxed{\gamma_{n} = \underset{q^{2} = m_{D_{n}}^{2}}{\operatorname{Res}} f_{+}^{D\pi}(q^{2})}{\gamma_{n}^{2} = m_{D_{n}}^{2}}$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{m_{D^{*}}^{2} - q^{2}} + \frac{\gamma_{eff}}{m_{eff}^{2} - q^{2}} \quad \text{with} \quad \boxed{\gamma_{n} = \underset{q^{2} = m_{D_{n}}^{2}}{\operatorname{Res}} f_{+}^{D\pi}(q^{2})}{\gamma_{n}^{2} = m_{D_{n}}^{2}}$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{m_{D^{*}}^{2} - q^{2}} + \frac{\gamma_{eff}}{m_{eff}^{2} - q^{2}} \quad \text{with} \quad \boxed{\gamma_{n} = \underset{q^{2} = m_{D_{n}}^{2}}{\operatorname{Res}} f_{+}^{D\pi}(q^{2})}{\gamma_{n}^{2} = 1 + 1 \pm 0.4 \text{ GeV}^{2}}$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{eff}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{eff}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{eff}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

$$f_{+}(q^{2}) = \frac{\gamma_{0}}{q^{2} + 1} + \frac{\gamma_{0}}{q^{2} + 1} = 0$$

3-Pole Fit to $B \rightarrow \pi I^+ \nu$ Decay Rate

Following suggestions by theorists, we applied the same ansatz to B decays

$$f^{B\pi}_{+}(q^2) = \frac{\beta_0}{m^2_{B^*} - q^2} + \frac{\beta_1}{m^2_{B^{*\prime}} - q^2} + \frac{\beta_{\text{eff}}}{m^2_{\text{eff}} - q^2}$$

constraining the residua β_0 and β_1 to expectation,

 β_0 = 24.9±4.2 GeV² β_1 = - 8±2 GeV²

based on various LQCD calculations

and imposing $\beta_{eff} + \beta_0 + \beta_1 = 0$ with $m_{B^*}=5.325 \text{ GeV}$ $m_{B^{*}}=5.491 \text{ GeV}$ we obtain

 $m_{eff} = (7.4 \pm 0.4) \text{ GeV}$ $|V_{ub}| = (2.6 \pm 0.2_{exp} \pm 0.4_{LQCD})$

Uncertainties (15%) dominated by uncertainty in coupling constants $g_{B^*B\pi}$, taken from LQCD!

V. Lüth

Extrapolation of FF from D⁰ $\rightarrow \pi^- e^+ \nu$ to B⁰ $\rightarrow \pi^- I^+ \nu$

- It has been suggested years ago, that dynamics of D and B meson decays should be closely related.
- Specifically, for w_B=w_D kinematic factors cancel

 $\frac{d\mathcal{B}^B}{dw} = \left. \frac{d\mathcal{B}^D}{dw} \right|_{\text{meas.}} \frac{m_B \tau_B}{m_D \tau_D} \left(\begin{array}{c} |V_{ub}| \\ |V_{cd}| \end{array} \right)^2 R_{BD}^2$

Kinematically, there is a common range for $w_B = w_D \{ 1.0 - 6.7 \} q_{max}^2 \longrightarrow w=1$

- Future LQCD calculation might determine the FF ratio R_{BD} with high precision.
- Preliminary calculation by HPQCD indicate small variation of the ratio of individual FF R_{BD} as function of w; average for w>4: <R_{BD}>=1.8 ± 0.2

Extrapolation of FF from $D^0 \rightarrow \pi^- e^+ \nu$ to $B^0 \rightarrow \pi^- I^+ \nu$

Derive $\mathcal{B}(B^0 \rightarrow \pi^- l^+ \nu)$ from $D^0 \rightarrow \pi^- e^+ \nu$ data with R_{BD} =1.8±0.2 and adjust $|V_{ub}|$ to 3.65x10⁻³

- Agreement very good, may not be a surprise: Translation based on same LQCD calculation for B s.l. decays, used to extract |V_{ub}|
- Alternatively, use 3-pole FF fit to fit to $\mathcal{B}(D^0 \to \pi^- l^+ v)$ and extrapolate to unphysical region, obtain independent result for $|V_{ub}|$

 $|V_{ub}| = (3.65 \pm 0.18_{exp} \pm 0.40_{RD}) \times 10^{-3}$

Need improvement in LQCD calculation!