Discussion questions for exclusive $|V_{cb}|$ session

Bob Kowalewski Aida El-Khadra

$B \to D^* \ell \nu$

♦ |V_{cb}| is determined from this decay by extrapolating the experimental data to zero recoil using the CLN parameterization and LQCD calculations of $\mathcal{F}(1)$. The current uncertainties are:

```
Exp: 1.3% LQCD: 1.4% QED: 0.5% What should be done about radiative corrections?
```

- The exp. and LQCD errors are small enough that EM effects matter. Is it possible on the exp. side to report results for charged and neutral B meson decays separately?
- ✦ What are the prospects for improving the exp. and LQCD errors respectively?
- What are the prospects on the theory side for form factor calculations at nonzero recoil?
- What are the pros and cons of the CLN parameterization vs. using a zexpansion?
- What are the prospects on the experimental side for shape measurements parameterized with the z-expansion?
- ✦ Belle II will be able to measure the form factor parameters ρ², R₁(0), R₂(0) more precisely. How well do we need to know them?

$B \to D \ell \nu$

- ← The exp. measurement of $\eta_{EW} \mathcal{G}(1) |V_{cb}|$ has a precision of 3.6%, and the most recent LQCD calculation of $\mathcal{G}(1)$ has an error of 0.8%. What are the prospects for improving the exp. precision at Belle II?
- ✦ There now exists an unquenched LQCD calculation of the form factors at nonzero recoil, allowing for a determination of $|V_{cb}|$ from a simultaneous *z*-fit to the lattice form factors together with experiment. Is there any reason why this shouldn't become the new standard (as in the determinations of $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$)?
- The 2009 BaBar measurement quotes a systematic error of 3.3% at low recoil. What are the prospects for improving this error? In addition, what are the prospects for obtaining a systematic error away from the low recoil region?

 $B_s \to D_s^{(*)} \ell \nu$

- ✦ From a theoretical point of view, what are the advantages of using B_s decay processes for |V_{cb}| determinations?
- How precisely can the corresponding form factors be calculated with LQCD compared to the case of B_d and B_u decays?
- What are the prospects for B_s decay measurements at Belle II?
- ✦ Can LHCb contribute in this area?

 $\Lambda_b \to \Lambda_c \ell \nu$

- From a theoretical point of view, what are the advantages of using Λ_b decay for a $|V_{cb}|$ determination?
- How precisely can the corresponding form factors be calculated with LQCD compared to the case of *B* decays?
- What are the prospects for Λ_b decay measurements at LHCb?

Can the z expansion be applied to baryons (Gil Paz slides)

Higher mass states

- ✦ How important is it to understand the detailed composition? How much will better knowledge of these higher mass modes improve |V_{cb}| determinations, measurements of B → D^(*)τν, or measurements of the hadronic mass moments in inclusive b → cℓν decay?
- ★ There is still a gap (now reduced in light of the recent BaBar $D^{(*)}\pi^+\pi^-\ell\nu$ observation) in the sum of exclusive $B \to X_c\ell\nu$ decay relative to the inclusive $b \to c\ell\nu$. Unmeasured modes include $D^{(*)}\eta\ell\nu$, $D^{(*)}\pi^-\pi^0\ell\nu$,... What are the prospects for improving this at Belle II?
- Is the 1/2-3/2 puzzle worth pursuing? Can the broad P-wave states be reliably measured at Belle II?
- ◆ Charm spectroscopy (as, for example, in Dalitz analyses of exclusive B decays) tends to be done by a different set of experimenters than those who work on semileptonic decays. How hard should we push to have measurements such as $\bar{B} \rightarrow D(2S)\pi^-$ (suggested in arXiv:1202.1834) done at LHC*b* or Belle II?

Absolute *D* branching fractions

♦ What are the prospects for improvements in measurements of absolute branching fractions of D⁰ and D⁺ decay from BES III or elsewhere? Their uncertainties are not far from limiting the accuracy of exclusive |V_{cb}| analyses.