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The proton electric radius problem

[Richard J. Hill, GP PRD 82 113005 (2010)]
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Form Factors
Matrix element of EM current between nucleon states

give rise to two form factors (q = pf − pi )

〈N(pf )|
∑
q

eq q̄γ
µq|N(pi )〉 = ū(pf )

[
γµF1(q2) +

iσµν
2m

F2(q2)qν
]
u(pi )

Sachs electric and magnetic form factors

GE (q2) = F1(q2) +
q2

4m2
p

F2(q2) GM(q2) = F1(q2) + F2(q2)

Gp
E (0) = 1 Gp

M(0) = µp ≈ 2.793

The slope of Gp
E

〈r2〉pE = 6
dGp

E

dq2

∣∣∣∣∣
q2=0

determines the charge radius rpE ≡
√
〈r2〉pE
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Charge radius from atomic physics

Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]
rpE = 0.84184(67) fm
more recently rpE = 0.84087(39) fm [Antognini et al. Science 339, 417 (2013)]

CODATA value [Mohr et al. RMP 80, 633 (2008)]
rpE = 0.87680(690) fm
more recently rpE = 0.87750(510) fm [Mohr et al. RMP 84, 1527 (2012)]

extracted mainly from (electronic) hydrogen

(more than) 5σ discrepancy!
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How to resolve the puzzle?
Almost 5 years after first measurement puzzle is still not resolved

(Cover story of February 2014 Scientific American)

Is it new physics?

Is it a problem with the theoretical prediction?

[Richard. J. Hill, GP PRL 107 160402 (2011), and in progress]

We can also extract it from electron-proton scattering data

What does the PDG say?
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What does the PDG say?
K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)
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z expansion
Analytic properties of Gp

E (t) are known
Gp
E (t) is analytic outside a cut t ∈ [4m2

π,∞]
[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]
e − p scattering data is in t < 0 region
We can map the domain of analyticity onto the unit circle

z(t, tcut, t0) =

√
tcut − t −

√
tcut − t0√

tcut − t +
√
tcut − t0

where tcut = 4m2
π, z(t0, tcut, t0) = 0

Expand Gp
E in a Taylor series in z : Gp

E (q2) =
∞∑
k=0

ak z(q2)k
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Comparison of series expansions
Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
Q2 < 0.04GeV2 ⇒ 0 ≤ z ≤ 0.1 (B → π : |z | . 0.3, B → D : |z | . 0.03)

rpE in 10−18m

polynomial

continued fraction

z expansion (no bound)

z expansion (|ak | ≤ 10)

kmax = 1

836+8
−9

882+10
−10

918+9
−9

918+9
−9

2

867+23
−24

869+26
−25

868+28
−29

868+28
−29

3

866+52
−56

−

879+64
−69

879+38
−59

4

959+85
−93

−

1022+102
−114

880+39
−61

5

1122+122
−137

−

1193+152
−174

880+39
−62

- Fit with two parameters agree well

- As we increase kmax the errors for the first three fits grow

- For the continued fraction fit for kmax > 3 the slope is not positive

- To get a meaningful answer we must constrain ak . How?
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Comparison of Taylor and constrained z fits
Taylor fit
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Constrained z fit
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See also:

“Constrained curve fitting” : Lepage et al. Nucl.Phys.Proc.Suppl. 106 (2002) 12-20

Gil Paz (Wayne State University) Lessons from Nucleon EM Form Factors 9



Analytic structure and ak

z(t, tcut, t0) =

√
tcut − t −

√
tcut − t0√

tcut − t +
√
tcut − t0

Analytic structure implies:

Information about ImGp
E (t + i0)⇒ information about ak

G (t) =
∞∑
k=0

ak z(t)k , zk are orthogonal over |z | = 1

a0 = G (t0)

ak =
2

π

∫ ∞
tcut

dt

t − t0

√
tcut − t0

t − tcut
ImG (t) sin[kθ(t)] , k ≥ 1

∑
k

a2
k =

1

π

∫ ∞
tcut

dt

t − t0

√
tcut − t0

t − tcut
|G |2

How to constrain ImG (t)?
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Size of ak : vector dominance ansatz

The isovector and isoscalar form factors are

G
(0)
E = Gp

E + Gn
E , G

(1)
E = Gp

E − Gn
E

Assume vector dominance ansatz [Höhler NPB 95, 210 (1975)]

F
(I=0)
i ∼ αim

2
ω

m2
ω − t − iΓωmω

, F
(I=1)
i ∼

βim
2
ρ

m2
ρ − t − iΓρmρ

,

αi and βi are fixed by F I
i (0)

For G (t) ∼ 1/(t −m2
V ), ImG (t + i0) = −iπδ(t −m2

V )

⇒ |ak/a0| ≤ 2
√

(tcut − t0)/(m2
v − tcut)

Taking t0 = 0: |ak | < 1.3 for G
(0)
E ,|ak | < 0.78 for G

(1)
E

Conclusion: |ak | ≤ 10 is a very conservative estimate for this ansatz
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Size of ak : ππ continuum
π π is the lightest state that can contribute to ImG

(1)
E

ImG
(1)
E (t) =

2

mN

√
t

(
t/4−m2

π

) 3
2 Fπ(t)∗f 1

+(t)

Fπ(t) pion form factor, f 1
+(t) is a partial amplitude for ππ → NN̄

[Federbush et al. Phys. Rev. 112, 642 (1958), Frazer et al. Phys.
Rev. 117, 1609 (1960), Belushkin et al. PRC 75, 035202 (2007)]

Since they share the same phase up to t < 16m2
π, we can use |Fπ|

(For determining bound on ak we assume phase equality through ρ
peak)

Using |Fπ(t)| data from

- NA7 experiment [Amendolia et al. PLB 138, 454 (1984)]

- SND experiment [Achasov et al. arXiv:hep-ex/0506076]

Using f 1
+(t) tables from [G. Höhler, Pion-nucleon scattering,

Springer-Verlag, Berlin, 1983]

For t0 = 0: a0 ≈ 2.1 a1 ≈ −1.4, a2 ≈ −1.6, a3 ≈ −0.9, a4 ≈ 0.2
Using | sin(kθ)| ≤ 1 in the integral gives |ak | . 2.0 for k ≥ 1.

Gil Paz (Wayne State University) Lessons from Nucleon EM Form Factors 12



Size of ak : t > 4m2
N region

For the region t > 4m2
N we can use e+e− → NN̄ data, e.g.

- p − p̄: BES collaboration [Ablikim et al. arXiv:hep-ex/0506059]

- n − n̄: FENICE experiment [Antonelli et al. NPB 517, 3 (1998)]

We find a very small contribution from this region

- |δak | . 0.006 + 0.002 for the proton

- |δak | . 0.013 + 0.025 for the neutron
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Size of ak : Summary

In all of the above |ak | ≤ 10 appears very conservative

In practice we find max |ak | ∼ 2

Final results are presented for both |ak | ≤ 5 and |ak | ≤ 10
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Results: Summary
Proton: Q2 < 0.5GeV2

rpE = 0.870± 0.023± 0.012 fm

Proton and neutron data

rpE = 0.880+0.017
−0.020 ± 0.007 fm

Proton, neutron and π π data

rpE = 0.871± 0.009± 0.002± 0.002 fm

Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]

rpE = 0.84184(67) fm

more recently rpE = 0.84087(39) fm [Antognini et al. Science 339, 417 (2013)]

CODATA value [Mohr et al. RMP 80, 633 (2008)]

rpE = 0.87680(690) fm

more recently rpE = 0.87750(510) fm [Mohr et al. RMP 84, 1527 (2012)]
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The proton magnetic radius problem

[Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]
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The proton magnetic radius problem

The proton magnetic radius

〈r2〉pM =
6

Gp
M(0)

dGp
M(q2)

dq2

∣∣∣∣
q2=0

PDG 2012:

- Recent high precision data from A1 experiment at Mainz

rpM = 0.777± 0.017 fm [Bernauer et al. PRL 105, 242001 (2010)]

Older data sets

- rpM = 0.876± 0.019 fm [Borisyuk et al. 2010]

- rpM = 0.854± 0.005 fm [Belushkin et al. 2007]

Are we facing a magnetic radius puzzle too?

We need a model independent extraction of rpM !
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Bound on |ak |
Analyzing p and n data separate Gp

M and Gn
M to isospin channels

G
(0)
M = Gp

M + Gn
M G

(1)
M = Gp

M − Gn
M

G
(0)
M (0) = µp + µn ≈ 0.88 G

(1)
M (0) = µp − µn ≈ 4.7

⇒ I = 0, a0 = 0.88 ⇒ I = 1, a0 = 4.7

Vector dominance ansatz:
- I = 0 (ω exchange) |ak | ≤ 1.1
- I = 1 (ρ exchange) |ak | ≤ 5.1

Between t = 4m2
π and t = 16m2

π only ππ contributes
I = 1: |ak | ≤ 7.2

Above t = 4m2
N use e+e− → NN̄: negligible contribution to ak

Two options
- Use |ak | ≤ 10 and |ak | ≤ 15 (default)
- Use |ak/a0| ≤ 5 and |ak/a0| ≤ 10 (used as a check)
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r pM extraction: results

Results from model independent extraction

- Proton data :rpM = 0.91+0.03
−0.06 ± 0.02 fm

- Proton and neutron data: rpM = 0.87+0.04
−0.05 ± 0.01 fm

- Proton, neutron and π π data: rpM = 0.87± 0.02 fm

- Proton, neutron and π π data: rnM = 0.89± 0.03 fm

PDG 2014:

- rpM = 0.777± 0.017 fm [Bernauer et al. PRL 105, 242001 (2010)]

- rpM = 0.876± 0.019 fm [Borisyuk NPA 843, 59 (2010)]

- rpM = 0.854± 0.005 fm [Belushkin et al. PRC 75, 035202 (2007)]

Other non-PDG values:

- rpM = 0.855± 0.035 fm [Sick Prog.Part.Nucl.Phys. 55, 440 (2005)]

- rpM = 0.86+0.02
−0.03 fm [Lorenz et al. EPJA 48, 151 (2012)]

- rpM = 0.78± 0.08 fm [Karshenboim PRD 90 053013 (2014) 5]
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r pM extraction: comments

Our results

- do not depend on the number of parameters

- are very consistent over the range of Q2

- barely change (less than 1 σ)

using |ak | ≤ 20 , or |ak/a0| ≤ 5, or |ak/a0| ≤ 10

The reduction in the error bar by inclusion of ππ data

arises from the increase in tcut to 16m2
π for G

(1)
M
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Lessons for flavor-changing form factors
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Lessons for flavor-changing form factors

Successful use of the z expansion requires bounds on the coefficients

For H → L meson form factors singularity starts at

(mH + mL)2 (H̄L threshold )

Removing possible sub-threshold poles allows to bound∑∞
k=0 |ak |2 using unitarity, see e.g.

[Richard J. Hill, FPCP 2006 proceedings (hep-ph/0606023)]

For H → L baryon form factors singularity starts much “earlier ”

e.g. 4m2
π = 0.02 GeV2 instead of 4m2

p = 4 GeV2

Need to work harder to bound the coefficients

Still, can get good determination (a few %) of rpE , r
p
M , r

n
M
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