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The proton electric radius problem

[Richard J. Hill, GP PRD 82 113005 (2010)]
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Form Factors
@ Matrix element of EM current between nucleon states

give rise to two form factors (¢ = pr — pi)
_ _ 10 v
(N(p)| D eq@r"alN(pi)) = Tpr) |7 F1(a”) + 522 Fala)g” | u(pi)
q

@ Sachs electric and magnetic form factors

2
q
Ge(q®) = Fu(a”) + ;= F(q®)  Gu(q®) = Fa(a®) + Fa(a?)
p
GE(0) =1 GP(0) = 1 ~ 2.793
@ The slope of G£
dGP
=62
dq -0
determines the charge radius rf = /(r?)2
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Charge radius from atomic physics

@ Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]
rg = 0.84184(67) fm
more recently rg = 0.84087(39) fm [Antognini et al. Science 339, 417 (2013)]

o CODATA value [Mohr et al. RMP 80, 633 (2008)]
rg = 0.87680(690) fm
more recently rg = 0.87750(510) fm [Mohr et al. RMP 84, 1527 (2012)]
extracted mainly from (electronic) hydrogen

@ (more than) 50 discrepancy!
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How to resolve the puzzle?
@ Almost 5 years after first measurement puzzle is still not resolved

(Cover story of February 2014 Scientific American)
@ Is it new physics?

@ Is it a problem with the theoretical prediction?
[Richard. J. Hill, GP PRL 107 160402 (2011), and in progress|

@ We can also extract it from electron-proton scattering data
What does the PDG say?
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What does the PDG say?

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

p CHARGE RADIUS

This is the rms charge radius, ‘/(r2).
VALUE (fm) DOCUMENT ID TECN  COMMENT
0.8768:0.0069 MOHR 08 RVUE 2006 CODATA value I
e o o We do not use the following data for averages, fits, limits, etc. ® @
0.897 +0.018 BLUNDEN 05 SICK 03 + 27y correction
0.8750+0.0068 MOHR 05 RVUE 2002 CODATA value
0.895 +0.010 +0.013 SICK 03 ep — ep reanalysis
0.830 +0.040 +0.040 24ESCHRICH 01 ep— ep
0.883 +0.014 MELNIKOV 00 1S Lamb Shift in H
0.880 +0.015 ROSENFELDR.00 ep + Coul. corrections
0.847 +0.008 MERGELL 96 ep + disp. relations

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.Ibl.gov)

0.877 +0.024 WONG 94 reanalysis of Mainz e p data
0.865 +0.020 MCCORD 91 ep— ep

0.862 +0.012 SIMON 80 ep— ep

0.880 +0.030 BORKOWSKI 74 ep— ep

0.810 +0.020 AKIMOV 72 ep— ep

0.800 +0.025 FREREJACQ... 66 ep — ep (CHj tgt.)
0.805 +0.011 HAND 63 ep— ep

24 ESCHRICH 01 actually gives (r2) = (0.69 = 0.06 = 0.06) fm?.
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Z expansion
o Analytic properties of GE(t) are known
GE(t) is analytic outside a cut t € [4m2, o]
[Federbush, Goldberger, Treiman, Phys. Rev. 112, 642 (1958)]
e — p scattering data is in t < 0 region
@ We can map the domain of analyticity onto the unit circle
o \/tcut_t_\/tcut_to
\/tcut_ t+\/tcut_t0

where toy = 4m72r, z(to, teut, to) =0

Z(t, tCllt7 tO)

t |

2 2
- Qmax 4m7r

o
o Expand Gf in a Taylor series in z: GE(g°) = Zak z(q°)*
k=0
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

P 10-18
re in 107°°m

polynomial
continued fraction
z expansion (no bound)

z expansion (|ax| < 10)
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

r,'__—7 in 10~ ¥m
kmax =1
polynomial 83678
continued fraction 882710
z expansion (no bound) 918"

z expansion (|ax| < 10) 9189
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

rfin 107¥m
kmax = 1 2
polynomial 8361“3 867’_%3
continued fraction ~ 882710 86972
z expansion (no bound) 91879 86872

z expansion (|ax| < 10) 918" 86873
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

rfin 107¥m
kmax = 1 2 3
polynomial 83675 867735 86673
continued fraction ~ 882710 86972 -
z expansion (no bound) 91879 86872 879™%;

z expansion (|a| < 10) 918%5 ~ 868%55 87973
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

rfin 107¥m
Kmax = 1 2 3 4
polynomial 83675 86713, 866732 959185
continued fraction ~ 882710 86972 - _
z expansion (no bound) 918%% 868725  8797% 1022113

z expansion (|a| < 10) 918*5 868728 87973 880+
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with

@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

rfin 107¥m

kmax =1
, 8
polynomial 83675
continued fraction 882710
: 9
z expansion (no bound) 918"

z expansion (|ax| < 10) 9189
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Comparison of series expansions

@ Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with
@R><0.04GeV?=0<2z<01(B—7:|2z/<03, B— D:|z] <0.03)

rfin 107¥m
kmax = 1 2 3 4 5
polynomial 836" 86773 86672 959785  112271%
continued fraction ~ 882710 86972 — — —
z expansion (no bound) 918%9 868725  8797% 1022719 1193113

z expansion (|a| <10) 0187  868%2%% 879+ 88073  880"%
- Fit with two parameters agree well

- As we increase kpyax the errors for the first three fits grow

- For the continued fraction fit for k.« > 3 the slope is not positive

- To get a meaningful answer we must constrain a,. How?
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Comparison of Taylor and constrained z fits
@ Taylor fit

LooFT . . . . T 1o
098 Bl
096 Bl
0995
0941
@ ol 1
0,990
090 1
0881 Bl
o086l ] oess
0,00 001 0.02 003 0.04 005 0,000
QAGeV)
@ Constrained z fit
100p 1 1.000
098} ] 0998
0961 1 099
0o4f ]
“‘d“ - 0.994
L 1 o
092 0.992
090p ] 0.990
ossr ] 0988
086F 3 .
. . . . . ! 0986}, . . . m
0.00 0.01 0.02 0.03 0.04 0.05 0.000 0.001 0.002 0.003 0.004
QGev) Q(Gev)
See also:

“Constrained curve fitting” : Lepage et al. Nucl.Phys.Proc.Suppl. 106 (2002) 12-20
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Analytic structure and ay

Lt lz
\/tcut —t— \/tcut — 1o ‘ J— J»
\/tcut —t+ \/tcut — tp ! N f ‘

Z(t, teut, tO) =

@ Analytic structure implies:
Information about ImGE(t + i0) = information about aj

o G(t)= Zakz , z¥ are orthogonal over |z| = 1
a = G(to)

2 > dt tcut
T T >
* m /t t—to \/?Imc(t)s'“[w(f)] k>1

1 [ dt t,
I 0|
T Jew t— 10

K t— tcut

@ How to constrain ImG(t)?
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Size of ai: vector dominance ansatz

@ The isovector and isoscalar form factors are
¢V =GP+ GE, GM=cP-qp
@ Assume vector dominance ansatz [Hohler NPB 95, 210 (1975)]

FU=0) aim? FU=1) gim?

I 9

a; and S3; are fixed by F/(0)

e For G(t) ~1/(t — m}), ImG(t + i0) = —imd(t — m3,)
= ’ak/30’ < 2\/ tcut - tO)/(m2 tcut)
Taking ty = 0: |ak| < 1.3 for G |ak| < 0.78 for G(l)

@ Conclusion: |ak| < 10 is a very conservative estimate for this ansatz
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Size of ax: 7w continuum

e 7 is the lightest state that can contribute to ImGg
t/4 — m2)2 Fo(t)*f(¢)
(- m)! Fa(eye!

F.(t) pion form factor, f1(t) is a partial amplitude for 7 — NN
[Federbush et al. Phys. Rev. 112, 642 (1958), Frazer et al. Phys.
Rev. 117, 1609 (1960), Belushkin et al. PRC 75, 035202 (2007)]

@ Since they share the same phase up to t < 16m2, we can use |F|
(For determining bound on a; we assume phase equality through p
peak)

e Using |F:(t)| data from

- NA7Y experiment [Amendolia et al. PLB 138, 454 (1984)]

- SND experiment [Achasov et al. arXiv:hep-ex/0506076]

@ Using fj(t) tables from [G. Hohler, Pion-nucleon scattering,
Springer-Verlag, Berlin, 1983]

@ Fortg=0: ag~21a;~—-14,a~—-16, a3~ —0.9, a4 = 0.2
Using |sin(kf)| < 1 in the integral gives |ax| < 2.0 for k > 1.

(1)

Im G(t) =
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Size of ax: t > 4m3 region

For the region t > 4m,2v we can use ete™ — NN data, eg.
p — p: BES collaboration [Ablikim et al. arXiv:hep-ex/0506059]
n — n: FENICE experiment [Antonelli et al. NPB 517, 3 (1998)]

We find a very small contribution from this region
|0ak| < 0.006 + 0.002 for the proton
|0ak| < 0.013 + 0.025 for the neutron
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Size of ax: Summary

@ In all of the above |ax| < 10 appears very conservative
@ In practice we find max |ax| ~ 2

o Final results are presented for both |ax| <5 and |ax| < 10
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Results: Summary

@ Proton: Q2 < 0.5GeV?

rg = 0.870 +0.023 & 0.012 fm

@ Proton and neutron data

rf = 0.8801505¢ & 0.007 fm

@ Proton, neutron and 7 7 data

rg = 0.871 + 0.009 £ 0.002 £ 0.002 fm

Gil Paz (Wayne State University)
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Results: Summary
Proton: Q? < 0.5GeV?

rE = 0.870 £0.023 & 0.012fm
Proton and neutron data
rf = 0.8801505¢ & 0.007 fm
Proton, neutron and 7 data

rg = 0.871 + 0.009 £ 0.002 £ 0.002 fm

Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]
rEp = 0.84184(67) fm
more recently rf = 0.84087(39) fm [Antognini et al. Science 339, 417 (2013)]

CODATA value [Mohr et al. RMP 80, 633 (2008)]
rP = 0.87680(690) fm
more recently rf = 0.87750(510) fm [Mohr et al. RMP 84, 1527 (2012)]
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The proton magnetic radius problem

[Zachary Epstein, GP, Joydeep Roy PRD 90, 074027 (2014)]
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The proton magnetic radius problem

@ The proton magnetic radius

6 dGp(a?)

r2 g
< >M GI\P;I(O) dq2 q%=0

e PDG 2012:

- Recent high precision data from Al experiment at Mainz
rhy = 0.777 £ 0.017 fm [Bernauer et al. PRL 105, 242001 (2010)]
Older data sets

- ryy = 0.876 +0.019 fm [Borisyuk et al. 2010]

- ryy = 0.854 £ 0.005 fm [Belushkin et al. 2007]
Are we facing a magnetic radius puzzle too?

@ We need a model independent extraction of r,’\;!
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Bound on |a|

Analyzing p and n data separate G,\’j, and Gy to isospin channels
G\ = Gk + Gy, Gy =GP, — Gp,
0 1
G(0) = pp + pin ~ 0.88 GL(0) = pp — pin ~ 4.7
= [=0, a=0.88 =1=1, a =47

Vector dominance ansatz:
| =0 (w exchange) |ax] < 1.1
I =1 (p exchange) |ax| < 5.1

Between t = 4m2 and t = 16m2 only 7r contributes
I =1: |ag| <7.2

Above t = 4mfv use ete~ — NN: negligible contribution to a

Two options
Use |ak| < 10 and |ak| < 15 (default)
Use |ak/ao| <5 and |ax/ap| < 10 (used as a check)
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ry extraction: results

Results from model independent extraction

Proton data :rf; = 0.9175- 83 +0.02 fm

Proton and neutron data: rf; = 0.8713-52 +0.01 fm
Proton, neutron and 7 7 data: ry, = 0.87 £0.02 fm
Proton, neutron and 7 7 data: ry, = 0.89 £0.03 fm

PDG 2014:

ryy = 0.777 £ 0.017 fm [Bernauer et al. PRL 105, 242001 (2010)]
rP = 0.876 4 0.019 fm [Borisyuk NPA 843, 59 (2010)]

rhy = 0.854 4 0.005 fm [Belushkin et al. PRC 75, 035202 (2007)]

Other non-PDG values:

ryy = 0.855 & 0.035 fm [Sick Prog.Part.Nucl.Phys. 55, 440 (2005)]
rP =0.867092 fm [Lorenz et al. EPJA 48, 151 (2012)]

riy = 0.78 £0.08 fm [Karshenboim PRD 90 053013 (2014) 5]
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ry, extraction: comments

Our results

do not depend on the number of parameters
are very consistent over the range of @

barely change (less than 1 o)

using |ax| <20, or |ax/ao| <5, or |ak/ap| < 10

The reduction in the error bar by inclusion of 77 data

arises from the increase in t.,; to 16m72r for GIS)
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Lessons for flavor-changing form factors
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Lessons for flavor-changing form factors

@ Successful use of the z expansion requires bounds on the coefficients

@ For H — L meson form factors singularity starts at
(my 4+ my)? (HL threshold )
Removing possible sub-threshold poles allows to bound
>0 lak|? using unitarity, see e.g.
[Richard J. Hill, FPCP 2006 proceedings (hep-ph/0606023)]

@ For H — L baryon form factors singularity starts much “earlier "
e.g. 4m2 = 0.02 GeV? instead of 4m? = 4 GeV?
Need to work harder to bound the coefficients

Still, can get good determination (a few %) of rg, ryy, rf)
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