Exclusive semileptonic decays and $|V_{ub}|$

Status and challenges at Belle II

Jochen Dingfelder University of Bonn

$B \rightarrow \pi \ell \nu$: The pseudoscalar case

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_{\rm F}^2}{24\pi^2} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2$$

10 measurements:

- 4 untagged (CLEO, 2×BaBar, Belle)
- 2 semilep. tag (BaBar, Belle)
- 2 hadronic tag (BaBar, Belle)

B $\rightarrow \pi$ form factor calculations:

- LQCD: FNAL/MILC
 - HPQCD
 - RBD/UKQCD
- LCSR: Ball-Zwicky
 - Khodjamirian et al.
 - Bharucha
- Quark models, e.g. ISGW2

$B \rightarrow \pi \ell \nu$ measurements: Two examples

Signal extracted in bins of q^2 using the following discriminating variables:

Untagged

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$
 , $\Delta E = E_B^* - E_{\rm beam}^*$

Hadronic tag

$$M_{\rm miss}^2 = (P_B - P_\ell - P_X)^2$$

$B \rightarrow \pi \ell \nu$ branching fraction

Efficiency and tag correction vs. q²

 \Rightarrow uniform efficiencies/corrections as a function of q²

 \Rightarrow minimizes model dependence for q² spectrum measurement

q^2 spectrum and $|V_{ub}|$

Fit BCL parameterization of $f_+(q^2)$ to data:

$$f_{+}(q^{2},\vec{b}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K} b_{k}(t_{0}) z(q^{2})^{k} \qquad z(q^{2},t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

Data in agreement with form factor shapes from LQCD and LCSR

|V_{ub}| from "classic method"

Compute $|V_{ub}|$ using $|V_{ub}| = \sqrt{\frac{C_v \Delta B}{\tau_B \Delta \zeta}}$ with theory input $\Delta \zeta = \int d\Gamma / |V_{ub}|^2$

Lincortainty:		• /		
$ V_{ub} \ (10^{-3})$	$3.41 \pm 0.06^{+0.37}_{-0.32}$	$3.52\pm0.08^{+0.61}_{-0.40}$	$3.36\pm0.08^{+0.37}_{-0.31}$	$3.81 \pm 0.09^{+0.17}_{-0.15}$
$\Delta \zeta_{ m th} ~({ m ps}^{-1})$	$4.59\substack{+1.00 \\ -0.85}$	$2.02{\pm}0.55$	$2.21\substack{+0.47 \\ -0.42}$	1.72 ± 0.14
q^2 range (GeV ²)	0-12	16-26.4	16-26.4	16 - 26.4
	LCSR	HPQCD	FNAL/MILC (2008)	FNAL/MILC (2015)

 $|V_{ub}|$ from combined fit to data and LQCD

- Fit of BCL parameterization to (most recent) experimental $B \to \pi \ell \nu$ data and FNAL/MILC results
- Makes use of form factor shape measurement over full q² range

 $|V_{ub}|$ from combined fit to data and LQCD

• Tried to include new FNAL/MILC results in HFAG fit, using **12 discrete lattice points** (thanks to Daping Du for providing them!)

First attempt gives ~ consistent results. Update HFAG fit to use 4 parameters.

Combined fit with LCSR point at q²=0

FNAL only: $|V_{ub}| = (3.61 \pm 0.13) \times 10^{-3}$ FNAL+LCSR: $|V_{ub}| = (3.59 \pm 0.12) \times 10^{-3}$ LCSR only: $|V_{ub}| = (3.53 \pm 0.29) \times 10^{-3}$

Inclusion of **LCSR point at q²=0** further slightly improves the precision.

Some questions:

- Should we include LCSR in the fit?
- Should we include both FNAL/MILC and RBC/UKQCD in the fit?
- Can we expect LQCD results at lower q² in the near future?
- Should we include LCSR results at q²>0 in the fit (correlation matrix?)?
- Shouldn't we treat stat. and syst. part of LQCD errors separately (Gaussian distributed vs. flat)? ⇒ breakdown of theory uncertainties

Systematic uncertainties / challenges for Belle II

Decay mode			$\pi^-\ell^+\nu$	
q^2 range (GeV ²)	$q^2 < 12$	$q^2 < 16$	$q^2 > 16$	$0 < q^2 < 26.4$
Unfolded yield	5604.1	6982.4	2314.2	9296.5
$\Delta \mathcal{B}(q^2) \ (10^{-4})$	0.83	1.07	0.40	1.47
Statistical error	4.3	3.8	6.7	3.5
Detector effects	3.4	3.5	3.2	2.8
Continuum bkg	0.4	0.4	1.4	0.4
$b \to u \ell \nu$ bkg	1.6	1.4	2.1	1.3
$b \to c \ell \nu$ bkg	0.6	0.5	0.6	0.5
Total uncertainty	6.2	5.8	8.1	5.1

X_u *l* v bkg has a sizeable uncertainty (BFs, FFs, incl.-excl. mix), important at high q²

- Detector effects impact neutrino reconstruction from whole event (needed to reduce background!)
- Continuum background relevant at low and high q²
 - \Rightarrow offres. data and continuum MC tuning

Systematic uncertainties / challenges for Belle II

Hadronic tag

Detector Simulation:

Track reconstruction	0.35	-
π^0 reconstruction	-	2.0
Lepton identification	1.0	1.0
Kaon veto	0.9	-
Continuum description	1.0	0.5
X_u cross-feed	0.9	-
Tag calibration	4.5	4.2
Combined	4.9	4.8
Form Factor Shapes:	1.1	1.9
Total systematic error	5.0	5.1

\rightarrow see next slide

 \rightarrow mostly from B $\rightarrow \rho \ell v$ cross-feed

Tagging bias and calibration

- BF's and dynamics of many hadronic decay modes not well known
 ⇒ Cannot rely on tagging efficiency from MC
- Use well-known $B \rightarrow X_c \ell v$ decays in data to derive tagging eff. correction

 $N(B \to \text{had}, B \to X_c \ell \nu) = N_{B\overline{B}} \times \mathcal{B}(B \to \text{had}) \times \mathcal{B}(B \to X_c \ell \nu) \times \varepsilon^{\text{rec}}(B \to \text{had}, B \to X_c \ell \nu)$ $\varepsilon^{\text{rec}}(B \to \text{had}, B \to X_c \ell \nu) = \varepsilon^{\text{rec}}(B \to \text{had}) \times \varepsilon^{\text{rec}}(B \to X_c \ell \nu) \times C$

- For each tag mode, determine average correction factor over all $B{\rightarrow} X_c \ell v$ modes and reweight MC

|V_{ub}| extrapolation for Belle II

$B \rightarrow \rho \ell \nu$: The vector meson case

$$H_{\pm}(q^{2}) = (m_{B} + m_{V}(A_{1}^{V}(q^{2}) \mp \frac{2m_{B}|\vec{p}_{V}|}{m_{B} + m_{V}}V^{V}(q^{2}), \quad q^{2}\text{-dependent form factors}$$
$$H_{0}(q^{2}) = \frac{1}{2m_{V}\sqrt{q^{2}}} \Big[(m_{B}^{2} - m_{V}^{2} - q^{2})(m_{B} + m_{V})A_{1}^{V}(q^{2}) - 4\frac{m_{B}^{2}|\vec{p}_{V}|^{2}}{m_{B} + m_{V}}A_{2}^{V}(q^{2}) \Big].$$

- Ideally, measure fully differential decay rate by extracting B → ρℓv (V = ρ) signal in bins of q², cosθ_ℓ, cosθ_V, χ ⇒ reduce model dependence
- However, not yet feasible with current data statistics
- Perform measurement in bins of q² only

$B \to \rho \ell \nu$

- Hadronic-tag measurement already the most precise
- Extraction of signal in fit to M^2_{miss} in **bins of q**²

$B \rightarrow \rho \ell \nu$ branching fraction

Hadronic-tag measurement already now the most precise! ⇒ promising for Belle II

Systematic uncertainties

Source of uncertainty [%]

X_u	$ ho^+$	$ ho^0$
Detector Simulation:		
Track reconstruction	0.35	0.7
π^0 reconstruction	2.0	-
Lepton identification	1.0	1.0
Kaon veto	1.0	2.0
Continuum description	0.5	0.7
X_u cross-feed	5.0	2.4
Tag calibration	4.5	4.2
Combined	7.2	5.4
Form Factor Shapes:	1.7	1.3
Total systematic error	7.4	5.6

Systematic uncertainty dominated by tagging calibration and X_u cross-feed

Understanding the $\pi\pi$ mass peak

What we call a ρ may not be a ρ !

- Currently not possible to disentagle these contributions experimentally
- With higher statistics at Belle II, can separate S- and P-wave through angular analysis
- Non-resonant P-Wave contribution \Rightarrow need guidance from theory

$B \rightarrow \pi \pi \ell \nu$: Fit in bins of $M_{\pi \pi}$

To constrain $B \rightarrow X_u \ell v$ cross-feed components, perform fit in bins of $M_{\pi\pi}$

$B \rightarrow \pi \pi \ell \nu$: Fit in bins of $M_{\pi\pi}$

- Signal yield for $B \rightarrow \rho \ell v$ in good agreement with $M^2_{miss} q^2$ fits.
- No significant evidence for non-resonant B → ππℓν (as modeled by PYTHIA6.2) seen in data.
- $B \rightarrow f_2 \ell \nu$ yield 2-3× higher than ISGW2 prediction

Angular analysis for $B \rightarrow \rho \ell \nu$

E.g. in the context of a search for right-handed currents Bernlochner, Ligeti, Turczyk hep-ph/1408.2516

For full angular analysis, need ~10,000 $B \rightarrow \rho \ell v$ decays

 \Rightarrow Belle II with > 10 ab⁻¹

Angular analysis: Constraints on NP observables

Interesting at Belle II: Constrain NP-sensitive observables (in analogy to $B \rightarrow K^* \ell \ell$)

Bernlochner, Ligeti, Turczyk hep-ph/1408.2516

$|V_{ub}|$ from $B \rightarrow \rho \ell \nu$

Ball/Zwicky

PRD 71, 014015 (2005) PRD 71, 014029 (2005)

UKQCD

PLB 416, 392 (1998)

ISGW2

PRD 52, 2783 (1995) Theory error is not available.

BaBar untagged measurement:

	q^2 Range	$\Delta \mathcal{B}$	$\Delta \zeta$	$ V_{ub} $
	(GeV^2)	(10^{-4})	(ps^{-1})	(10^{-3})
$B ightarrow ho \ell u$				
LCSR [17]	0 - 16.0	1.48 ± 0.28	13.79	2.75 ± 0.24
ISGW2 [14]	0-20.3	1.75 ± 0.31	14.20	2.83 ± 0.24

Other charmless modes: $B \rightarrow \omega \ell \nu, B \rightarrow \eta / \eta' \ell \nu$

Conclusions

- Large step forward in $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$, precision of 4% reached!
- $B \rightarrow \rho \ell \nu$ at Belle II very interesting as cross-check of $|V_{ub}|$, to study angular distributions (NP sensitivity) and to shed light on $B \rightarrow \pi \pi \ell \nu$.
- Other charmless modes can be studied precisely at Belle II, but we need LQCD caluculations to derive $|V_{ub}|$

|V_{ub}| remains extremely interesting!