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A Quick Outline

1. Brief overview of the Vub extraction method
[Gambino, Giordano, Ossola, Uraltsevc][GGOU]

(JHEP 0710:058,2007, arXiv:0707.2493)

2. Introduction to Artificial Neural Networks

3. Applying ANN to Vub extraction

4. Obstacles and Feasibility

Kristopher J. Healey MITP : 2015 2/ 17



Introduction Neural Networks Conclusions

Inclusive B → Xu`ν̄ Determination of |Vub|

Starting Point is the triple-differential distribution:
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Structure Functions in the valid range of the local OPE :
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The structure functions are expressed as convolutions with the light-cone distribution
function :
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Inclusive B → Xu`ν̄ Determination of |Vub|

Include sub-leading effects to all orders; as a result they are
non-universal, with one shape function corresponding to each
structure function.

The kn
+ moments can be computed in the OPE and related to

observables (µπ,G , ρD,LS) and to the shape functions defined.
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LHS calculated inc. power corrections; RHS simplified and can be rewritten as:∫
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Shape Functions

We know the q2 dependence of the first few moments of each structure
function from the OPE :

We expect a breakdown at high q2
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Previous Modeling of Shape Functions

A few ansatz for Fi (k+):

Exponential suppression at −k+

Positive Definite

Explicit θ(Λ̄ − k+)

Non-universal (F1,2,3)

Modeled with mutliple 2-parameter forms :

Fi (k+) = Ni (Λ̄ − k+)ai ebi k+ θ(Λ̄ − k+) (exponential)

Fi (k+) = Ni (Λ̄ − k+)ai e−bi (Λ̄−k+)2
θ(Λ̄ − k+) (gaussian)

Fi (k+) = Ni e
−ai

(
Λ̄−k++

bi
Λ̄−k+

)2

θ(Λ̄ − k+) (roman)

Model dependent, parameters solved by binning for qs, etc.

also introduces bias, error estimated by varying parameters
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Previous Modeling of Shape Functions

Can also modify forms and/or include functional distortions

Goal of Neural Networks : Remove this model
dependence/uncertainty
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Previous Modeling of Shape Functions

Two different methods used for tail at high q2

Freezout : Fix q2 dependence at some cutoff q2∗, use in
convolutions q2 > q2∗

Damping of Singularity :

dΓ
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
Neural Network method may predict into high q region

Any experimental results in this region can help train NN
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An Introduction to Neural Networks

Trained to reproduce outputs given specific inputs

Commonly used in pattern recognition (OCR/Facial Recog/etc.)

Successful in HEP/EXP [NNPDF : Ball, Bertone, Carrazza, Deans,
Del Debbio, Forte, Guffanti, Hartland, Latorre, Rojo, Ubiali]

Provides a predictive, unbiased, and statistically controlled output.

*Computationally expensive
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An Introduction to Neural Networks

General Principle : Neurons ”Activate” if Σ weighted inputs > 0

*Use sigmoidal activation function for smoother activation

Train ”weights” to achieve desired response

Develop a network of Neurons to mimic a continuous function
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Feed Forward Neural Networks

Increased function complexity requires more neurons.

Proven : any continuous function →∞ Neurons in 1 hidden layer

Multiple hidden layers [2], speeds up training

Variable number of neurons in each layer [2-5-5-1]
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Training Process

NN Adjustable Parameters are the weights connecting neurons.

1. Randomize All Weights

2. Feed inputs, get outputs

3. Use a ”Goodness Of Fit” (compare with desired output)

4. Adjust weights [Genetic Algorithm/ Backpropagation]

5. GOTO 2

6. Stop training (N Epochs or validation set required)
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Our Training Process

Three Neural Networks : F1,2,3(k+, q
2) (2 in/ 1 out)

Goodness Of Fit from moments:∫
dk+ kn

+ Fi (k+, q
2) =

(
2mb

∆

)n
[
δn0 +

I
(n),pow
i

I
(0),tree
i

]

Generated over a sampling of q2 ∈ [0, 13GeV2]
*Also experiment input (< Mn

X > spectra)

Embedded in Vub fitting code (all available pow+pert corr)

Validation set for finishing from q2 ∈ [0, 13GeV2]
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Training Methods

Back propagation :
Work backwards from output finding how each weight affects error,
and adjust in the correct direction every at every node.

Genetic Algorithm :
Randomly (MC) choose weights and vary them to create new
children. Vary many times, choosing ”best child”, it becomes
parent, repeat.

Randomly initialize NP [10] parents
Randomly choose one parent network
Vary n = (1..4) nodes. Save 1000 children.
Choose 10 best, replace parents. End of Epoch.
1000+ Epochs (NNPDF - 1000x10000)
Allows complete probing of the space (avoids local minima)
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Stopping

If run too long will overlearn the data (no predictive power)

Stop when Error[Validation] Diverges

Programmatically : Automatically stop when test error increases
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Error Analysis

Need full correlation matrix/dependence : Fi vs (mb, µπ,G , ρD,LS)

Create a space of ”replicas” with varying input parameters

For full description see [Rojo : 0607122]

Very computationally expensive

Can speed up by assuming shape conditions
Fi = ek+NNi (k+) or even Fi = a0e

a1k+ (k+ − Λ)a2NNi (k+)

More computation time needed to validate range of validity.
(All NN’s should converge to similar forms regardless of initial
shapes)

OPTIMIZATION

Need to vary nodes/layer (requires entire training)

Need to vary ”random” variation in weights (learning parameter)

Need to vary over number of children per epoch
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Benefits and Issues

Neural Networks are a powerful tool for fitting shape functions
without modeling the form

High-q2 tail (beyond OPE)

As q2 → m2
b, process is no longer hard.

WA/Higher Dimensional Operators appear.
Could predict into high-q2 region if trained on relative exp.
data

Need to complete full error analysis before any meaningful results
can be obtained.
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