Inclusive $|V_{ub}|$ from SIMBA

Zoltan Ligeti

[On behalf of F. Bernlochner, H. Lacker, ZL, I. Stewart, F. Tackmann, K. Tackmann]

- Model independent shape function treatment
- Fits for $B \to X_s \gamma$
- Fits for $B \to X_u \ell \bar{\nu}$
- Future progress
- Conclusions

V_{ub} — the beginning

FIG. 1. Sum of the *e* and μ momentum spectra for ON data (filled squares), scaled OFF data (open circles), the fit to the OFF data (dashed line), and the fit to the OFF data plus the $b \rightarrow clv$ yield (solid line). Note the different vertical scales in (a) and (b).

" $|V_{ub}/V_{cb}|$... is approximately 0.1; it is sensitive to the theoretical model."

Fig. 5. Combined lepton momentum spectrum for direct $\Upsilon(4S)$ decays: the histogram is a b \rightarrow c contribution normalized in the region 2.0-2.3 GeV/c.

"If interpreted as a signal of $b \rightarrow u$ coupling ..., $|V_{ub}/V_{cb}|$ of about 10%."

$25\ {\rm years}\ {\rm later}\ - {\rm situation}\ {\rm still}\ {\rm confusing}$

• By now, 5000 times more data, persistent tensions — I think the jury is still out:

$25 \ {\rm years} \ {\rm later} \ - {\rm situation} \ {\rm still} \ {\rm confusing}$

By now, 5000 times more data, persistent tensions — I think the jury is still out:

• What would it take to conclude that there is unambiguous evidence for NP?

Tensions in $|V_{ub}|$ determinations

8

6

3

-0.4

 $|V_{\rm ub}{}^L|\times 10^3$

$\sim 3 \sigma$ tension among $|V_{ub}|$ measurements

Tim Gershon @ FPCP 2014: "Understanding this will involve a great deal of effort, but is essential for continued progress in the field"

- Too early to conclude:
 - Inclusive determination can improve
 - Exclusive measured better with full reco
 - Lattice QCD results will improve
- A BSM possibility:

$$\mathcal{L} = -rac{4G_F}{\sqrt{2}} V^L_{ub} \, (ar{u} \gamma_\mu P_L b + \epsilon_{I\!\!R} \, ar{u} \gamma_\mu P_R b) (ar{
u_\ell} \gamma^\mu P_L \ell)$$

Can we construct observables which give "more vertical" constraints?

HFAG BLNP

HFAG avg. w/ Lattice

HFAG

 $B \rightarrow X_{\mu} l \nu$

 $B \rightarrow \tau \nu$

 $B \rightarrow \pi l \nu$

Features of SIMBA

- Optimally combine all information on $B \to X_u \ell \bar{\nu} \& B \to X_s \gamma$ Consistently treat uncertainties and their correlations (exp, theo, parameters)
- Simultaneously determine:
 - Overall normalization: $\mathcal{B}(B \to X_s \gamma)$, $|V_{ub}|$
 - Parameters: m_b , shape function(s)
- Utilize all measurements:
 - Different $B \to X_s \gamma$ spectra, or partial rates
 - Different $B \to X_u \ell \bar{\nu}$ spectra, or partial rates
 - Include other constraints on m_b , λ_1 , etc.
 - Eventually use or predict $B \to X_s \ell^+ \ell^-$
- Same strategy as for inclusive $|V_{cb}|$, just a lot more complicated...

Shape function

The challenge of inclusive $|V_{ub}|$ measurements

- Total rate calculable with $\sim 4\%$ uncertainty, similar to $\mathcal{B}(B \to X_c \ell \bar{\nu})$
- To remove the huge charm background $(|V_{cb}/V_{ub}|^2 \sim 100)$, need phase space cuts Phase space cuts can enhance perturbative and nonperturbative corrections drastically
- Hadronic parameters are functions (like PDFs) Leading order: universal & related to $B \rightarrow X_s \gamma$; $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$: several new unknown functions
- Nonperturbative effects shift endpoint $\frac{1}{2}m_b \rightarrow \frac{1}{2}m_B$ & determine its shape
- Shape in the endpoint region is determined by b quark PDF in B ["shape function"] Related to $B \rightarrow X_s \gamma$ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]

• Both spectra determined at lowest order by the b quark PDF in B meson

Start with $B o X_s \gamma$

Regions of $B ightarrow X_s \gamma$ photon spectrum

• Current practice: Compare rate extrapolated to 1.6 GeV with theoretical prediction

Con: (i) extrapolation uses theory, so comparison of theory and data is effectively done at the measured values; (ii) best use of the most precise measurements?

The shape function (b quark PDF in B)

- The shape function $S(\omega, \mu)$ contains nonperturbative physics and obeys a RGE Even if $S(\omega, \mu_{\Lambda})$ has exponentially small tail, RGE $\mu_{\Lambda}=2.5~{
 m GeV}$ 1.5 $S(\omega, 2.5 \text{ GeV}) \, [\text{GeV}^{-1}]$ running gives long tail and divergent moments $\mu_{\Lambda} = 1.8 \text{ GeV}$ $\mu_{\Lambda} = 1.3 \text{ GeV}$ 1 $S(\omega, \mu_i) = \int d\omega' U_S(\omega - \omega', \mu_i, \mu_\Lambda) S(\omega', \mu_\Lambda)$ $\mu_{\Lambda} = 1.0 ~{
 m GeV}$ 0.5 [Balzereit, Mannel, Kilian] 0 Constraint: moments (OPE) + $B \rightarrow X_s \gamma$ shape perturbative on pert. -0.5• Derive: $S(\omega, \mu_{\Lambda}) = \int dk C_0(\omega - k, \mu_{\Lambda}) F(k)$ 0.5 1.5 0 1 2 $\mathbf{2.5}$ ω [GeV] [ZL, Stewart, Tackmann, 0807.1926] Model $\begin{cases} S & (dash) \\ F & (solid) \end{cases}$ run to 2.5 GeV- Can use any (mass) scheme, work to any order - Stable results for varying μ_{Λ} (SF modeling scale, part of uncertainty, often ignored)
 - Similar to how all matrix elements are defined [e.g., $B_K(\mu) = \widehat{B}_K \times [\alpha_s(\mu)]^{2/9}(1 + ...)$]
- Consistent to impose moment constraints on F(k), but not on $S(\omega, \mu_{\Lambda})$ w/o cutoff

Shape function: the bottom line

$$S(\omega,\mu_\Lambda) = \int \mathrm{d}k \, \widehat{F}(k) \, \widehat{C}_0(\omega-k,\mu_\Lambda)$$

 \widehat{F} : nonperturbative determines peak region well-defined moments fit from data \widehat{C}_0 : perturbative

generates tail consistent with RGE divergent moments calculable

Designer orthonormal functions

Devise suitable orthonormal basis functions
 (avoid: fit parameters of model functions to data) 0.5

$$\widehat{F}(\lambda x) = \frac{1}{\lambda} \left[\sum c_n f_n(x) \right]^2$$
, *n* th moment $\sim \Lambda_{\text{QCD}}^n$
 $f_n(x) \sim P_n[y(x)] \leftarrow \text{Legendre polynomials}$

• Approximating a model shape function

Better to add a new term in an orthonormal basis than a new parameter to a model:

- less parameter correlations
- uncertainties easier to quantify

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." (John von Neumann)

Details of fitting the data

• $\widehat{F}(k)$ enters the spectra linearly

 \Rightarrow can calculate independently the contribution of $f_m f_n$ in the expansion of $\widehat{F}(k)$:

$$d\Gamma = \sum \underbrace{c_m c_n}_{\text{fit}} \underbrace{d\Gamma_{mn}}_{\text{compute}}$$
$$d\Gamma_{mn} = \Gamma_0 H(p_X^{\pm}) \int_0^{p_X^{\pm}} dk \frac{\widehat{P}(p^-, k)}{\lambda} \underbrace{f_m \left(\frac{p_X^+ - k}{\lambda}\right) f_n \left(\frac{p_X^+ - k}{\lambda}\right)}_{\text{basis functions}}$$

Fit the c_i coefficients from all measured (binned) spectra (similar to $|V_{cb}|$ fit)

- SIMBA includes:
 - Simultaneous fit using all available information
 - Correlations in data, propagation of SF uncertainties
 - Validate the fits with pseudo-experiments
 - Check model independence by varying number of basis functions in fit (up to 5)

Fit results for $B o X_s \gamma$

• Fit with $\lambda = 0.5 \text{ GeV}$ with 2 (yellow), 3 (green), 4 (blue), and 5 (orange) coefficients Can change the basis by varying λ — find consistent results

Comments on uncertainties

- Theoretical inputs:
 - Scale variations: μ_i and profiles
 - Subleading SF: tree level C_7^2 terms absorbed in C_7^{incl} estimate uncertainty due to $\mathcal{O}(\alpha_s \Lambda_{\text{QCD}}/m_b)$ shape functions
 - Non- C_7^2 subleading SF (4-quark) less important than sometimes claimed, since $\mathcal{O}(\alpha_s \Lambda_{\rm QCD}/m_b)$ in peak region, which dominates the fit
 - λ_2 , ρ_2 , m_c mild sensitivity
- Fit procedure and validation:
 - Measurements with all available correlations
 - Shape function basis, number of terms in fit, test with toys

Fit results for $B o X_s \gamma$ (2)

- Have complete NNLO + NNLL' (2-loop matching & running, 3-loop cusp) [1303.0958]
- $\chi^2/\mathrm{ndf} = 41.7/48$
- SM prediction: $|C_7^{\text{incl}}|^{\text{SM}} = 0.354^{+0.011}_{-0.012}$ $|V_{tb}V_{ts}| = (40.4 \pm 0.1) \times 10^{-3}$
- Fit: $|C_7^{\text{incl}} V_{tb} V_{ts}| = (14.83 \pm 0.53_{\text{[exp]}} \pm 0.37_{\text{[th]}}) \times 10^{-3}$
- Data slightly above SM prediction, as in HFAG combination vs. Misiak *et al.*

Future of $B o X_s \gamma$

• Toy fits few years ago for 75/ab:

5 coefficients $\lambda = 0.5 \, \mathrm{GeV}$

Theory uncert. will dominate

[BELLE2-NOTE-0021]	Statistical	Systematic	Total Exp
	(reducible, irreducible)		
$\mathcal{B}(B \to X_s \gamma)$ inclusive (untagged)			
605 fb^{-1}	4.2	(10.3, 5.3)	12.3
5 ab^{-1}	1.5	(3.6, 5.3)	6.6
50 ab^{-1}	0.5	(1.1, 5.3)	5.4
$\mathcal{B}(B \to X_s \gamma)$ inclusive (hadron tagged	d)		
$210 \text{ fb}^{-1\dagger}$	23.2	(15.7, 4.8)	28.4
5 ab^{-1}	4.8	(3.2, 4.8)	7.5
50 ab^{-1}	1.5	(1.0, 4.8)	5.1

We assumed factor of 3 reduction in systematic uncertainty, slightly (but not wastly) optimistic

High precision data can be used to fit with more coefficients and constrain subleading effects

$$B o X_u \ell ar{
u}$$

$B ightarrow X_u \ell ar{ u}$ is more complicated

• "Natural" kinematic variables: $p_X^{\pm} = E_X \mp |\vec{p}_X|$ (ratio is "jettiness" of hadrons) $B \to X_s \gamma$: $p_X^+ = m_B - 2E_\gamma$ & $p_X^- \equiv m_B$ — independent variables in $B \to X_u \ell \bar{\nu}$

Existing results based on theory in one region, extrapolated / modeled to rest

Other approaches

- BLNP [Bosch et al.] based on SCET region, tied to "shape function scheme"
- DGE [Andersen & Gardi] based on SCET region + perturbative model for the SF
- GGOU [Gambino et al.] based on local OPE region + SF smearing
- BLL [Bauer, ZL, Luke] based on local OPE at large q^2 (but expansion scale is smaller) – combine q^2 and m_X cuts, such that SF effect is kept small
- Shape function independent relations [Leibovich, Low, Rothstein; Hoang, ZL, Luke; Lange, Neubert, Paz; Lange]
 - beautiful at leading order, less so when ${\cal O}(\Lambda_{
 m QCD}/m_b)$ included

Exploratory: $|V_{ub}|$ w/ NLO + NLL' only

- $B \to X_u \ell \bar{\nu}$ hadronic tag
 - BaBar m_X , $m_X q^2$, p_X^+
 - Belle m_X
- $B \to X_u \ell \bar{\nu}$ lepton endpoint
 - BaBar $E_{\ell}^{\Upsilon} > 2.2 \,\mathrm{GeV}$
 - Belle $E_{\ell}^{\Upsilon} > 2.3 \,\mathrm{GeV}$
- $B \to X_s \gamma$ spectra
 - Belle latest result (shown)
 - BaBar sum over exclusive + hadronic tag

•
$$m_b^{1S}$$
, λ_1 from $B \to X_c \ell \bar{\nu}$ fit
- $m_b^{1S} = (4.66 \pm 0.05) \,\text{GeV}$
- $\lambda_1 = (-0.34 \pm 0.05) \,\text{GeV}^2$

Exploratory: $|V_{ub}|$ w/ NLO + NLL' only

• Including it, favors lower values of $|V_{ub}|$

 $E_{\gamma} \, [\text{GeV}]$

Future of $B o X_u \ell \bar{
u}$

• Spectra generated with $\lambda = 0.6 \text{ GeV}$ and $c_0 = 1$ (Assumed uncertainties & correlations similar to BaBar full reco analysis, 1112.0702 — by now Belle hadronic tagging efficiency is better)

Future of $B o X_u \ell ar{
u}$

• Spectra generated with $\lambda = 0.6 \text{ GeV}$ and $c_0 = 1$ (Assumed uncertainties & correlations similar to BaBar full reco analysis, 1112.0702 — by now Belle hadronic tagging efficiency is better)

• Measure spectra — the rate with low E_{ℓ} or high m_X cut cannot give optimal $|V_{ub}|$

- Uncertainties grow, as for $d\Gamma(B \to X_s \gamma)/dE_\gamma$
- Experimental analysis needs input on shape in any case
- Large data sets will push analysis to the limits, constain subleading SF effects

Future of $B \to X_u \ell \bar{\nu}$ (2)

• Toy fit with 5 coefficients for 75/ab:

- With Belle II data sets:
 - Combination with $B \rightarrow X_s \gamma$ will be essential for ultimate sensitivity
 - Combination with $B \to X_c \ell \bar{\nu}$ (moments, shapes?) also possible

Final comments

Some comments on $|V_{ub}|$ inclusive

- Is {in/ex}clusive tension a nuisance or tip of an iceberg? (right-handed currents?)
- Recently $\Gamma(D_s \to X \ell \bar{\nu})$ gave some indication of what the resolution is not
- Qualitatively better analyses are possible than those implemented so far
 - Fitting F(k) instead of modeling $S(\omega, \mu)$
 - Designer orthonormal functions reduce role of shape function modeling
 - Fully consistent combination of all phase space regions
 - Decouple SF shape variation from m_b variation
- Inclusive $|V_{cb}|$ uses a combined fit; clearly the right method for $|V_{ub}|$ as well Combine all $B \to X_s \gamma, X_u \ell \bar{\nu}, X_c \ell \bar{\nu}$ data to constrain short distance physics & SFs Need all available spectra and correlations
- $|V_{ub}|$ is tricky: to draw conclusions about new physics, we'll want ≥ 2 extractions with different uncertainties to agree well (inclusive, exclusive, leptonic)

Conclusions

- Current status of $|V_{ub}|$ unsettled improvement crucial to better constrain NP Hope to see measurements w/ different uncertainties agree (incl., excl., leptonic)
- Qualitatively better inclusive $|V_{ub}|$ analysis possible than those implemented so far Full hadronic reconstruction B sample at Belle II is crucial for this
- Measure all possible **SPECtra** with best possible precision
- SIMBA allows: eliminate shape function modeling constrain subleading shape functions consistently combine all $B \to X_u \ell \bar{\nu}$ measurements consistently include $B \to X_s \gamma$ measurements consistently include $B \to X_c \ell \bar{\nu}$ constraints eventually include/predict $B \to X_s \ell^+ \ell^-$

Backup slides

Derivation of the magic formula (1)

• The shape function is the matrix element of a nonlocal operator:

$$S(\omega,\mu) = \langle B | \underbrace{\bar{b}_v \,\delta(iD_+ - \delta + \omega) \, b_v}_{O_0(\omega,\mu)} | B \rangle, \qquad \delta = m_B - m_b$$

Integrated over a large enough region, $0 \le \omega \le \Lambda$, one can expand O_0 as

$$O_0(\omega,\mu) = \sum C_n(\omega,\mu) \underbrace{\overline{b}_v (iD_+ - \delta)^n b_v}_{Q_n} + \ldots = \sum C_n(\omega - \delta,\mu) \underbrace{\overline{b}_v (iD_+)^n b_v}_{\widetilde{Q}_n} + \ldots$$

The C_n are the same for Q_n and \widetilde{Q}_n (since O_0 only depends on $\omega - \delta$)

• Matching: $\langle b_v | O_0(\omega + \delta, \mu) | b_v \rangle = \sum C_n(\omega, \mu) \langle b_v | \widetilde{Q}_n | b_v \rangle = C_0(\omega, \mu), \quad \langle b_v | \widetilde{Q}_n | b_v \rangle = \delta_{0n}$

$$\langle b_v(k_+)|O_0(\omega+\delta,\mu)|b_v(k_+)\rangle = C_0(\omega+k_+,\mu) = \sum \frac{k_+^n}{n!} \frac{\mathrm{d}^n C_0(\omega,\mu)}{\mathrm{d}\omega^n}$$

$$\langle b_v(k_+)|O_0(\omega+\delta,\mu)|b_v(k_+)\rangle = \sum C_n(\omega,\mu)\langle b_v|\tilde{Q}_n|b_v\rangle = \sum C_n(\omega,\mu)k_+^n$$

• Comparing last two lines: $C_n(\omega, \mu) = \frac{1}{n!} \frac{\mathrm{d}^n C_0(\omega, \mu)}{\mathrm{d}\omega^n}$

[Bauer & Manohar]

Derivation of the magic formula (2)

• Define the nonperturbative function F(k) by:

[ZL, Stewart, Tackmann; Lee, ZL, Stewart, Tackmann]

$$S(\omega,\mu_{\Lambda}) = \int \mathrm{d}k \, C_0(\omega-k,\mu_{\Lambda}) \, F(k), \qquad C_0(\omega,\mu) = \langle b_v | O_0(\omega+\delta,\mu) | b_v \rangle$$

uniquely defines F(k): $\widetilde{F}(y) = \widetilde{S}(y,\mu)/\widetilde{C}_0(y,\mu)$

• Expand in k:
$$S(\omega, \mu) = \sum_{n} \frac{1}{n!} \frac{\mathrm{d}^{n} C_{0}(\omega, \mu)}{\mathrm{d}\omega^{n}} \int \mathrm{d}k \, (-k)^{n} F(k)$$

Compare with previous page $\Rightarrow \int dk \, k^n F(k) = (-1)^n \langle B | Q_n | B \rangle$ $\langle B | Q_0 | B \rangle = 1, \quad \langle B | Q_1 | B \rangle = -\delta, \quad \langle B | Q_2 | B \rangle = -\frac{\lambda_1}{3} + \delta^2$

More complicated situation for higher moments, so stop here

• This treatment is fully consistent with the OPE

Weak annihilation

• Hard to estimate: $(16\pi^2) (\Lambda_{\rm QCD}^3/m_b^3) \varepsilon$, centered near $q^2 = m_B^2$ and $E_\ell = m_B/2$

$$\langle B | (\bar{b}\gamma^{\mu}P_{L}u) (\bar{u}\gamma_{\mu}P_{L}b) | B \rangle = \frac{f_{B}^{2} m_{B}}{8} B_{1}$$

$$\langle B | (\bar{b}P_{L}u) (\bar{u}P_{L}b) | B \rangle = \frac{f_{B}^{2} m_{B}}{8} B_{2}$$

$$Overall shift vs. splitting between B^{\pm} and B^{0}

$$Factorization + vacuum saturation: B_{1,2} = \begin{cases} 1, B^{\pm} \\ 0, B^{0} \end{cases} assume \varepsilon \equiv B_{1} - B_{2} \sim 0.1$$

$$Rate: \Gamma_{WA} = \frac{G_{F}^{2} m_{b}^{2} |V_{ub}|^{2}}{12\pi} f_{B}^{2} m_{B} (B_{2} - B_{1}) \sim 3\% \text{ of } \Gamma(B \rightarrow X_{u} \ell \bar{\nu})$$

$$[Voloshin, hep-ph/0106040]$$

$$Enters all |V_{ub}| \text{ measurements, enhanced by } (m_{b}/m_{c})^{3} \sim 30 \text{ in } D_{u,d,s} \text{ decays}$$

$$\Gamma(D^{0} \rightarrow X \ell \bar{\nu}) \approx \Gamma(D^{\pm} \rightarrow X \ell \bar{\nu}) \text{ to } \lesssim 3\%, \text{ recently } \Gamma(D_{s} \rightarrow X \ell \bar{\nu})$$

$$[CLEO-c, arXiv:0912.4232]$$

$$No evidence that WA \text{ is bigger when light quark in operator = spectator flavor}$$$$

• Probably a smaller effect in the determination of $|V_{ub}|$ than typically assumed [ZL, Luke, Manohar, arXiv:1003.1351; Gambino & Kamenik, arXiv:1004.0114]

