

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Why measure $|V_{cb}|$?

- Large part of uncertainty in ε_K
- Normalisation for UT sides
 - " Δm_d , Δm_s side"
 - "V_{ub} side"
- Theoretical side:
 - FF parametrization
 - Understanding of $R(D^{(*)})$.
- Ultimate test of CKM unitarity
 - In particular comparing with $\sin 2\beta$.
- Whole picture a bit confused...

Inclusive vs exclusive

• Unitarity test is disturbed by inclusive – exclusive discrepancy (both for V_{ub} and V_{cb}):

PDG:
$$\begin{aligned} |V_{cb}| &= (42.2 \pm 0.7) \times 10^{-3} \text{ (inclusive)} \\ |V_{cb}| &= (39.5 \pm 0.8) \times 10^{-3} \text{ (exclusive)} \end{aligned}$$

- PDG scales uncertainty by 2.6. Inclusive dominates the average.
- Latest FNAL/MILC calculation further increases the tension:

$$|V_{cb}|_{
m excl.} = (39.04 \pm 0.75) imes 10^{-3}$$
 [Phys. Rev. D 89, 114504 (2014)]

What can the LHC contribute?

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg 21/04

Designed to study b and c decays

Large production of beauty quarks:

 $\sigma(pp \to b\bar{b}X) = (284 \pm 20 \pm 49)\mu b @ \sqrt{s} = 7 \,\text{TeV}$

Phys. Lett. B 694 (2010) 209 (obtained from semileptonic decays).

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

21/04/2015

All *b*-hadrons produced

 $B^{0}, B^{+}, B_{s}, B_{c}, \Lambda_{b}, \dots$

Excellent performance

• Collected 3/fb in run 1 at 7-8 TeV.

- Expect to collect another 5/fb in run 2.
 - Note that at 13 TeV *bb* cross-section roughly doubles.
 - i.e. 4 times larger data sample than current.

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Large and clean samples

[LHCb: PRL 114, 041601 (2015)]

Millions of *B* candidates available.

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg 2

Allow precision measurements

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

But...

dirty hadronic enviroment

- Many other particles produced in the *pp* collision.
 - No possibility to use beam energy constraints.
- No kinematic constraints from other (tagging) *B*.
 - Also *b*-hadron production fractions poorly known.

What is possible at LHCb?

Exclusive measurements already challenging

- Fully inclusive measurements impossible?
- First exclusive $|V_{ub}|$ using $\Lambda_b \rightarrow p \ \mu \nu$
 - See talk by Ulrik on Thursday!
 - Well-identified proton gives clean signature
 - ... but combinatoric background is relatively low.
- Paves the way for other semileptonic decays
 - $\Lambda_b \to \Lambda_c \ \mu \ \nu$
 - $B_s \rightarrow K \mu \nu$ and $B_s \rightarrow D_s \mu \nu$
 - $B \rightarrow \rho(\pi\pi)\mu\nu$
 - Other options: B_c ?

Exclusive V_{cb} at LHCb?

• Problem: cannot normalize to CF decay (as in V_{ub}).

- Normalization uncertainties:
 - $b\overline{b}$ cross-section $\rightarrow 19\%$ LHCb: [PLB 694 (2010) 209]
 - Need normalization channel, or
 - use (almost) fully reconstructed OS tag.
 - b-hadron production fractions
 LHCb: [PRD 85 (2012) 032008]
 - Branching fractions for B_s and Λ_b not well known.
- Precision on rest-frame observables (q^2) .
 - Neutrino reconstruction
 - Same-side tagging

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Neutrino reconstruction

- Use pointing constraint to solve q^2 up to 2-fold ambiguity.
- Need to pick one solution.
- Need to worry about resolution effects (unfolding, bin-to-bin migration).

Same-side tagging (Σ_b)

- Use $\Sigma_b \to \Lambda_b \pi$. Stone & Zhang: [Adv.High Energy Phys. 2014 (2014) 931257]
- Narrow width gives additional kinematic constraint.
- Challenge from the 4 overlapping states: Σ_b^{\pm} and $\Sigma_b^{*\pm}$.
- Possible usage:
 - Study backgrounds in $\Lambda_b \rightarrow p \mu v$.
 - Branching fraction of $\Lambda_b \rightarrow \Lambda_c \tau v$.

13

Same-side tagging (B_{s2}^{*})

• Also narrow width: $B_{s2}^* \rightarrow B^+ K^-$

- Possible use for:
 - $B^+ \rightarrow \rho(\pi \pi) \mu \nu$: Angular analysis to extract FFs and V_{ub}
 - $B^+ \rightarrow D \mu \nu$: Study of D^{**} states and in $D^0 \tau \nu$.
 - $B^+ \to KK \mu \nu$: $s\overline{s}$ -popping in $b \to u$. First measurement of $B^+ \to \phi \mu \nu$

Extend to neutral B mesons: $B_{s2}^* \rightarrow B^0 K^0$

b-hadron production fractions

[PRD 85 (2012) 032008]

- Use charm tag to determine *b*-hadron species
 - $B^{0+} \rightarrow D^{+0} \mu \nu X$, $B_s \rightarrow D_s \mu \nu X$, $\Lambda_b \rightarrow \Lambda_c \mu \nu X$
- Subtract prompt bkg and cross-feed, e.g.

 $B_s \rightarrow (D_s^{**} \rightarrow DK) X \mu^- \nu \implies B^{0/+} \rightarrow D_s K X \mu^- \nu$

- Do not separate B^+ and B^0 to avoid $D^0 D^+$ cross-feed.
- Assume semileptonic widths are universal
 - Small chromomagnetic correction for Λ_b .

$$f_q = BR(b \rightarrow B_q)$$

$$\frac{f_s}{f_u + f_d} = \frac{n_{\text{corr}}(B_s^0 \to D\mu)}{n_{\text{corr}}(B \to D^0\mu) + n_{\text{corr}}(B \to D^+\mu)} \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\bar{B}_s^0}},$$
$$\frac{f_{\Lambda_b}}{f_u + f_d} = \frac{n_{\text{corr}}(\Lambda_b^0 \to D\mu)}{n_{\text{corr}}(B \to D^0\mu) + n_{\text{corr}}(B \to D^+\mu)} \times \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\Lambda_b^0}} (1 - \xi) \qquad \xi = 4 \pm 2\%$$

B_s production fraction (from SL decays)

 $f_s/(f_u+f_d) = 0.134 \pm 0.004^{+0.011}_{-0.010}$

Compare with: $\frac{f_s}{f_u + f_d} = 0.128 \pm 0.012 \quad (LEP)$ $= 0.164 \pm 0.026 \quad (Tevatron)$

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg 21/04/2015

B_s production fraction (from hadronic decays)

Alternative method

(Fleischer, Tuning and Serra [PRD82 (2010) 034038])

 Use branching ratio of $B_s \rightarrow D_s^- \pi^+$ over $B^0 \rightarrow D^- K^+$

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

B_s production fraction (from hadronic decays)

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

B_s production fraction (from hadronic decays)

Improved kinematic dependence

(LHCb, 1/fb [JHEP 1304 (2013) 001])

• Using ratio: $B_s \rightarrow D_s^- \pi^+$ over $B^0 \rightarrow D^- \pi^+$

 $f_s/f_d (p_{\rm T}) = (0.256 \pm 0.020) + (-2.0 \pm 0.6) \times 10^{-3} / \,\text{GeV}/c \times (p_{\rm T} - \langle p_{\rm T} \rangle)$ $f_s/f_d (\eta) = (0.256 \pm 0.020) + (0.005 \pm 0.006) \times (\eta - \langle \eta \rangle),$

B_s production fraction (combined)

- Combined measurement gives:
 - Assuming isospin $f_u = f_d$
 - Updated $\mathcal{B}(D_s \rightarrow KK\pi)$

 $\frac{f_s}{f_d} = 0.259 \pm 0.015$

See [LHCb-CONF-2013-011]

- Systematics dominated by
 - SU(3) breaking of FF ratio (hadronic)
 - Backgrounds, FFs, cross feeds (SL)
 - $\mathcal{B}(D_s \rightarrow KK\pi)$ and $\mathcal{B}(D^- \rightarrow K\pi\pi)$ (correlated)

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Λ_b production fraction (from SL decays)

... but updates from Belle: $\mathcal{B}(\Lambda_c \rightarrow pK\pi) = (6.84^{+0.32}_{-0.34})\%$ [PRL113, 042002 (2014)] and lifetime ratio: $(\tau_{B^+} + \tau_{B^0})/2\tau_{\Lambda_b^0} = 1.071 \pm 0.008$

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

21/04/2015

21

Λ_{h} production fraction

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Separate higher $D_s \& \Lambda_c$ resonances [PRD 85 (2012) 032008] 2D fit to q^2 and m_{vis}

Use D and D^{*+} form factors for D_s and D_s^*

Fix fraction $D_{s}^{*}/D_{s}=D^{*}/D=2.42$

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

• Composition of inclusive $B \rightarrow X_c 1 v$ width not fully understood.

- Recent update by BaBar bridges half of the gap.
- 8.5% still unknown.

From F. Bernlocher, CKM14

- LHCb can study for resonant $B \rightarrow X_c 1 v$ structure
 - Including radial excitations D^{(*)'}
 - High statistics invariant mass spectrum
- **Example**: spectroscopy from **prompt** samples:

- Even less experimental information of exclusive *B_s* decays.
- Final states with D^0K can be used to measure $B_s \rightarrow D_s^{**} \mu \nu$.

$$D'_{s1}, D^*_{s2} \rightarrow D^{(*)}K$$

$$D_{sJ}^{(*)} \rightarrow D_s^{(*)+} + n(\pi^0 \text{ or } \gamma)$$

LHCb [PLB 698 (2011) 14]

21/04/2015

27

$\Lambda_b \rightarrow \Lambda_c$ form factor

- $\Lambda_{\rm b}$ form factors important for understanding of HQET.
 - Light di-quark has spin 0: not affected by chromomagnetic correction
- Form factor can be parameterized by a universal "Isgur-Wise" function $\xi(w)$

$$\frac{d\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}{dw} = \frac{G_F^2 m_{\Lambda_b}^5 |V_{cb}|^2}{24\pi^3} K(w) \boldsymbol{\xi}_{\Lambda_b}^2(w)$$

$$\xi_{\Lambda_b}(w) = e^{-\rho^2(w-1)}$$

• Measure differential rate to extract slope ρ^2 parameter

• QCD sum rules $\rho^2 > 1.5$

$\Lambda_b \rightarrow \Lambda_c$ form factor

- Use $\Lambda_b \rightarrow \Lambda_c \mu \nu$, with $\Lambda_c \rightarrow p K \pi$.
- Add 2 pions to observe of excited $\Lambda_c(2595)$ and $\Lambda_c(2625)$
 - Subtract from inclusive $\Lambda_c \mu X$
- Use neutrino-reconstruction to get 4-velocity transfer, w
 - Use SVD method for deconvolution
- Analysis in advanced state.
 - Expect uncertainty on $\rho^2 \approx 0.08$
 - Systematics from w resolution, detector efficiencies and Λ_c^* modeling
- Is there a good normalization channel to extract V_{cb} ?

$B_s \rightarrow D_s$ form factor

- Form factor shape for $B_s \rightarrow D_s$ can also be measured.
- Need to subtract $D_s^{*(*)}$ contributions.
 - $D_s^*/D_s=2.41$
- Possibly reconstruct $D_s^* \rightarrow D_s \gamma$
 - Recent LHCb paper on $B_s \rightarrow D_s^* h$
- Easier normalisation than $\Lambda_b \rightarrow \Lambda_c$?
 - Use favoured B^{0+} mode and take f_s/f_d (from hadronic measurement)

Normalization channel?

- Need B^{0+} decays.
 - All B_s and Λ_b decays already normalized to B^{0+} .
- SL decays not possible (already used for V_{cb})
 - To what extend is the ratio a test of LQCD or HQET?
- Possible hadronic channels:
 - $B^0 \rightarrow D^- \pi^+ \text{ or } B^+ \rightarrow J/\psi K^+$?
- For B_s and Λ_b need b-hadron fractions $(f_s/f_d \text{ or } \Lambda_b/f_d)$
 - From SL decays or from hadronic f_s/f_d
 - → Does this work?

Take *b*-fraction from ...?

• From SL decays:

$$\frac{f_s}{f_u + f_d} = \frac{N(B_s^0 \to D\mu X)}{N(B \to D^0 \mu X) + N(B \to D^+ \mu X)} \frac{\tau_{B^-} + \tau_{B^0}}{2\tau_{B_s^0}}$$

$$\mathcal{B}(B_s^0 \to D_s \mu \nu) = \frac{f_u + f_d}{f_s} \frac{N(B_s^0 \to D_s \mu \nu)}{N(\text{norm})} \mathcal{B}(\text{norm})$$

$$= \frac{N(B_s^0 \to D_s \mu \nu)}{N(B_s^0 \to D_s \mu X)} \frac{N(B \to D^0 \mu X) + N(B \to D^+ \mu X)}{N(\text{norm})} \mathcal{B}(\text{norm}) \frac{2\tau_{B_s^0}}{\tau_{B^-} + \tau_{B^0}}$$

SL width composition

- If norm is $B^{+,0} \rightarrow D^{-,0} \mu X \rightarrow$ measurement of SL width composition.
 - Are these ratios interesting for V_{cb} ?

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

• From hadronic $f_s/f_d \rightarrow$ Systematic from SU(3) breaking relies on SL decays

- Effectively measures ratios like: $N(B_s^0 \rightarrow D_s \mu \nu) N(B^0 \rightarrow D^- K^+)$
 - Can these ratios help V_{cb} ?

N(norm) $N(B_s^0 \to D_s^- \pi^+)$

Conclusions

- Better understanding of SL decays crucial for V_{cb} (and V_{ub})
- Experimental issues for LHCb
 - Normalization difficult
 - Partial reconstruction challenging in pp collider
 - Long lead time between data taking a d publication
 - ... but large statistics and access to other b-hadron species
- Experimental efforts at LHCb
 - b-hadron production fractions
 - Resonant structure of B^{0+} , B_s and Λ_b .
 - Λ_b form factor analysis
 - ...
- Future will tell what LHCb can say on V_{cb} .

Backup

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Setup

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

b-hadron production fractions

[PRD 85 (2012) 032008]

36

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg

Semileptonic publications

- CP violation and $\Delta m_{d,s}$ studies
 - Semileptonic asymmetries
 - CP violation in charm
 - B_s, B_d oscillations
- bb cross section at 7 TeV
- b-hadron production fractions
- $B_s \rightarrow D_s^{**} X \mu \nu$ branching ratio [PLB 698 (2011) 14]
- $V_{\mu b}$ measurement

 $a_{\rm sl}^{\ d}$ [PRL 114, 041601 (2015)] *a*_{sl}^s [PLB 728 (2014) 607] ΔA_{CP} [JHEP 07 (2014) 041] and [PLB 723 (2013) 33] A_{Γ} [arXiv:1501.06777] Δm_{ds} [EPJC 73 (2013) 12, 2655]

[PLB 694 (2010) 209]

[PRD 85 (2012) 032008]

[arXiv:1504.01568]

Semileptonic B decays, Exclusive Vcb, experimental issues @ LHCb, Jeroen van Tilburg