# status and prospects of lattice QCD input for $|V_{cb}|$

Carlos Pena







Challenges in Semileptonic B decays — MITP, 20-24 April 2015

## outline

relevant channels, form factors

- lattice QCD in the precision era
  - reach of lattice simulations
  - summaries of lattice results: FLAG
  - O issues for B-physics
- l status
  - pre-2014: form factors at zero recoil
  - recent developments: improved precision,  $q^2$  dependence, baryon channels

### outlook

## outline

### relevant channels, form factors

- lattice QCD in the precision era
  - reach of lattice simulations
  - summaries of lattice results: FLAG
  - O issues for B-physics
- status
  - O pre-2014: form factors at zero recoil
  - recent developments: improved precision,  $q^2$  dependence, baryon channels

### outlook





$$\frac{\mathrm{d}\Gamma(B \to D\ell\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_\ell^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^*\ell\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_\ell^2}{q^2}\right)$$

 $w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}}$ 

zero recoil (w = 1):

- single form factor
- in D<sup>\*</sup> channel:  $\chi(1) = 1$ , no  $\mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$  corrections



$$\frac{\mathrm{d}\Gamma(B \to D\ell\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_\ell^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^*\ell\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_\ell^2}{q^2}\right)$$

 $w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}}$ 

zero recoil (w = 1):

- not good enough for  $\tau$  final state
- improved precision requires shape knowledge



standard observable to study relative  $\tau$  channel effect:

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \qquad \ell = e, \mu$$



### "helicity-based" FF parametrisation

[Feldmann, Yip, PRD 85 (2012) 014035]

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= \frac{G_F^2 |V_{qb}^L|^2 \sqrt{s_+ s_-}}{768\pi^3 m_{\Lambda_b}^3} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \\ &\times \left\{ 4 \left(m_\ell^2 + 2q^2\right) \left(s_+ \left[(1 - \epsilon_q^R)g_\perp\right]^2 + s_- \left[(1 + \epsilon_q^R)f_\perp\right]^2\right) \right. \\ &\left. + 2\frac{m_\ell^2 + 2q^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 - \epsilon_q^R\right)g_+\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 + \epsilon_q^R\right)f_+\right]^2\right) \right. \\ &\left. + \frac{6m_\ell^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 + \epsilon_q^R\right)f_0\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 - \epsilon_q^R\right)g_0\right]^2\right)\right\}, \end{aligned}$$



## outline

relevant channels, form factors

- lattice QCD in the precision era
  - O reach of lattice simulations
  - summaries of lattice results: FLAG
  - O issues for B-physics
  - status
  - O pre-2014: form factors at zero recoil
  - recent developments: improved precision,  $q^2$  dependence, baryon channels

### outlook

### hadronic effects in flavour physics

we are in an era of precision flavour physics, where hadronic effects can be ...

- mostly irrelevant:  $\mu \rightarrow e\gamma, \ \mathbf{d}_{\mathrm{n}}$
- under good theoretical control:  $K \to \pi \nu \bar{\nu}$
- relevant, difficult, but measured indirectly:  $(g-2)_{\mu}$
- relevant and difficult to compute:  $V_{xy}, K \to \pi\pi, \Delta m_{d,s}, \ldots$

use first-principles technique to deal with low-energy hadronic physics: lattice QCD

(complement with other first-principles/systematic approaches: effective theories, dispersion relations, ...)

first-principles, systematically improvable approach to strongly coupled quantum field theories

[Wilson 1974]



first-principles, systematically improvable approach to strongly coupled quantum field theories



- take continuum, infinite volume limits
- tune irrelevant couplings to preserve symmetries, improve scaling to CL ...

$$S_{\text{lat}} = S_0 + aS_1 + a^2S_2 + \dots$$
$$\mathcal{O}_{\text{lat}} = \mathcal{O}_0 + a\mathcal{O}_1 + a^2\mathcal{O}_2 + \dots$$

several different lattice actions: universality

fermion actions: (improved) Wilson, (improved) staggered, domain-wall, perfect actions, Neuberger fermions, twisted-mass QCD, ....

first-principles, systematically improvable approach to strongly coupled quantum field theories



many tools developed along the last 20+ years:

- control scaling (Symanzik improvement)
- non-perturbative renormalisation and matching (e.g. to effective theories)
- lattice regularisations with exact chiral symmetry

0 ...

first-principles, systematically improvable approach to strongly coupled quantum field theories



- crucial: control systematic uncertainties
  - O get rid of cutoffs (  $a 
    ightarrow 0, \ L 
    ightarrow \infty$
  - compute in / extrapolate to physical SSB regime (light quarks, isospin breaking)
  - keep all relevant scales far from cutoffs

what is the current physics reach of LQCD?

### lattice QCD reach: scales and cost



### lattice QCD reach: scales and cost



main cost factor: reiterated inversion of lattice Dirac operator on fixed gauge field



for a long time: serious difficulties in reaching light dynamical quark masses

### lattice QCD reach: scales and cost



main cost factor: reiterated inversion of lattice Dirac operator on fixed gauge field



### lattice QCD reach: simulation landscape



### lattice QCD reach: simulation landscape



### lattice QCD reach: simulation landscape



[plot courtesy of G Herdoíza + P Dimopoulos]

FLAG: your one-stop repository of lattice results, world averages / estimates

covers several phenomenologically relevant quantities, big effort to maximise representativity across lattice collaborations / geographical regions

```
advisory board: S. Aoki, C. Bernard, C. Sachrajda
editorial board: G. Colangelo, H. Leutwyler, A. Vladikas, U. Wenger
working groups:
   quark masses
                                       T. Blum, L. Lellouch, V. Lubicz
                                     A. Jüttner, T. Kaneko, S. Simula
   V_{ud}, V_{us}
   LECs
                                        S. Dürr, H. Fukaya, S. Necco
   B_K
                                        J. Laiho, S. Sharpe, H. Wittig
                                   R. Horsley, T. Onogi, R. Sommer
   \alpha_{\mathbf{s}}
   f_D, f_B, B_B
                              Y.Aoki, M. Della Morte, A. El Khadra
   D, B \to P\ell\nu + \text{other}
                                     E. Lunghi, CP, R. Van de Water
```

FLAG-2 review published in 2014, includes results up to Nov 2013

[S Aoki et al, Eur Phys J C (2014) 74]

# FLAG-3

what FLAG provides (for each quantity):

- o complete list of references
- o summary of relevant formulae and notation
- summary of essential aspects of each computation, in easily readable colourcoded tables
- averages / estimates (if sensible)
- a "lattice dictionary" for non-experts
- thorough appendix tables with details of all computations

what FLAG begs readers for:

O always quote original references too

### FLAG-3

update scheduled for end-2015, extended to include heavy quark masses and BSM matrix elements for  $\epsilon_{K}$ 

```
advisory board: S. Aoki, C. Bernard, H. Leutwyler, C. Sachrajda
editorial board: G. Colangelo, S. Hashimoto, A. Jüttner, S. Sharpe,
A.Vladikas, U.Wenger
working groups:
                                          T. Blum, L. Lellouch, V. Lubicz
   quark masses
                                           P. Boyle, T. Kaneko, S. Simula
   V_{ud}, V_{us}
   LECs
                                           S. Dürr, H. Fukaya, U. Heller
                               P. Dimopoulos, B. Mawhinney, H. Wittig
   B_K
                                      R. Horsley, T. Onogi, R. Sommer
   \alpha_{\mathbf{s}}
   f_D, f_B, B_B
                                        Y. Aoki, D. Lin, M. Della Morte
   D, B \to P\ell\nu + \text{other}
                                D. Bećirević, S. Gottlieb, E. Lunghi, CP
```

### lattice QCD reach: a precision era



[FLAG 2013]

### lattice QCD reach: a precision era



[FLAG 2013]

### lattice QCD reach: a precision era

|                 |                    |         |              | tion stati.     | the de  | tur, ching | olumo <sup>20</sup> 0 <sup>et</sup> ion |                                       |
|-----------------|--------------------|---------|--------------|-----------------|---------|------------|-----------------------------------------|---------------------------------------|
| Collaboration   | Ref.               | $N_{f}$ | Dublic       | Chiral Contract | Contin  | finite .   | $f_K/f_\pi$                             | $f_{K^{\pm}}/f_{\pi^{\pm}}$           |
| ETM 13F         | [154]              | 2+1+1   | С            | 0               | *       | 0          | 1.193(13)(10)                           | 1.183(14)(10)                         |
| HPQCD 13A       | [155]              | 2+1+1   | A            | *               | 0       | *          |                                         | 1.1916(15)(16)                        |
| MILC 13A        | [156]              | 2+1+1   | А            | *               | 0       | *          |                                         | 1.1947(26)(37)                        |
| MILC 11         | [24]               | 2+1+1   | C            | 0               | 0       | 0          |                                         | $1.1872(42)_{\text{stat.}}^{\dagger}$ |
| ETM 10E         | [157]              | 2+1+1   | С            | 0               | 0       | 0          | $1.224(13)_{\rm stat}$                  |                                       |
| RBC/UKQCD 12    | [25]               | 2+1     | А            | *               | 0       | *          | 1.199(12)(14)                           |                                       |
| Laiho 11        | [77]               | 2 + 1   | $\mathbf{C}$ | 0               | 0       | 0          |                                         | $1.202(11)(9)(2)(5)^{\dagger\dagger}$ |
| MILC 10         | [158]              | 2 + 1   | $\mathbf{C}$ | 0               | *       | *          |                                         | $1.197(2)(^{+3}_{-7})$                |
| JLQCD/TWQCD 10  | [159]              | 2 + 1   | $\mathbf{C}$ | 0               |         | *          | 1.230(19)                               |                                       |
| RBC/UKQCD 10A   | [78]               | 2 + 1   | Α            | 0               | 0       | $\star$    | 1.204(7)(25)                            |                                       |
| PACS-CS 09      | [20]               | 2 + 1   | Α            | *               |         |            | 1.333(72)                               |                                       |
| BMW 10          | [160]              | 2 + 1   | А            | *               | *       | *          | 1.192(7)(6)                             |                                       |
| JLQCD/TWQCD 09A | [161]              | 2 + 1   | $\mathbf{C}$ | 0               |         |            | $1.210(12)_{\rm stat}$                  |                                       |
| MILC 09A        | [37]               | 2 + 1   | $\mathbf{C}$ | 0               | $\star$ | $\star$    |                                         | $1.198(2)(^{+6}_{-8})$                |
| MILC 09         | [15]               | 2 + 1   | А            | 0               | *       | $\star$    |                                         | $1.197(3)(^{+6}_{-13})$               |
| Aubin 08        | [162]              | 2 + 1   | $\mathbf{C}$ | 0               | 0       | 0          |                                         | 1.191(16)(17)                         |
| PACS-CS 08, 08A | [19,  163]         | 2 + 1   | А            | *               |         |            | 1.189(20)                               |                                       |
| RBC/UKQCD 08    | [79]               | 2 + 1   | А            | 0               |         | $\star$    | 1.205(18)(62)                           |                                       |
| HPQCD/UKQCD 07  | [164]              | 2 + 1   | А            | 0               | $\star$ | 0          | 1.189(2)(7)                             |                                       |
| NPLQCD 06       | [165]              | 2 + 1   | Α            | 0               |         |            | $1.218(2)(^{+11}_{-24})$                |                                       |
| MILC 04         | [36]               | 2+1     | А            | 0               | 0       | 0          |                                         | 1.210(4)(13)                          |
| ALPHA 13        | [166]              | 2       | С            | *               | *       | *          | 1.1874(57)(30)                          |                                       |
| BGR 11          | [167]              | 2       | А            | *               |         |            | 1.215(41)                               |                                       |
| ETM 10D         | $\left[144\right]$ | 2       | $\mathbf{C}$ | 0               | *       | 0          | $1.190(8)_{\rm stat}$                   |                                       |
| ETM 09          | [168]              | 2       | А            | 0               | *       | 0          | 1.210(6)(15)(9)                         |                                       |
| QCDSF/UKQCD 07  | [169]              | 2       | $\mathbf{C}$ | 0               | 0       | *          | 1.21(3)                                 |                                       |
|                 |                    |         |              |                 |         |            | , ,                                     |                                       |

[FLAG 2013]

<sup>†</sup> Result with statistical error only from polynomial interpolation to the physical point. <sup>††</sup> This work is the continuation of Aubin 08.

significant differences in estimates of systematics by different collaborations

MILC: 
$$f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{\rm f}=2+1+1} = 1.1947(26)(33)(17)(2)$$

**HPQCD:**  $f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{\rm f}=2+1+1} = 1.1916(15)(12)(1)(10)$ 

significant differences in estimates of systematics by different collaborations

MILC:  
[MILC 2013]  
HPQCD: 
$$f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{f}=2+1+1} = 1.1947(26)(33)(17)(2)$$
  
[HPQCD:  $f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{f}=2+1+1} = 1.1916(15)(12)(1)(10)$   
[HPQCD 2013]  
stat CL FV (misc)

ensembles very similar (HPQCD uses MILC ensembles without finest lattice spacing, has some additional masses)

strong effect of data analysis / fitting strategies

HMC algorithm efficiency degrades rapidly below lattice spacings ~0.05 fm ("topology freezing")

[Schaefer, Sommer, Virotta 2010]

10000 k₁ a<sup>-5</sup>  $k_2 e^{(0.37/a)}$  $Q_5^2$ 1000 k'₁a<sup>-0.6</sup> םt. ⊒נו 100 10 W<sub>1</sub>(0.5 fm, 0.5 fm) 1 0.047 0.07 0.093 0.14 a[fm]

statistical uncertainties may be easily (and severely) underestimated for fine lattice spacings

### lattice QCD reach: small lattice spacing

HMC algorithm efficiency degrades rapidly below lattice spacings ~0.05 fm ("topology freezing")

a[fm]

[Schaefer, Sommer, Virotta 2010] 10000 k₁ a<sup>-5</sup>  $k_2^{} e^{(0.37/a)}$  $Q_5^2$ 1000 k'₁a<sup>-0.6</sup> 100 10 W<sub>1</sub>(0.5 fm, 0.5 fm) 1 0.047 0.07 0.093 0.14

**n.b.**:  $0.05 \text{ fm} \times 4 \text{ GeV} \approx 1$ 

work with open boundary conditions?

םt. ⊒נו

[Lüscher, Schaefer 2011, CLS  $N_{\rm f}$ =2+1]

the fact that current lattice spacings are below or around the b scale means that some form of effective theory has to be (heavily) relied upon to perform B-physics computations on the lattice

## issues for B-physics: accessing the b scale

• NRQCD: combined expansion in  $v^2$ ,  $\Lambda/m_b$ , a, perturbative matching to QCD + easy to carry out to high orders, allows to work at large lattice spacing - only works in scaling window  $a\Lambda \ll 1$ ,  $m_{\rm h}a \gtrsim 1$ , no continuum limit

• npHQET: expansion in  $m_h^{-1}$ , matched non-perturbatively to QCD (using small V) + continuum limit exists at any order in the expansion, systematic tool

- difficult to go beyond  $1/m_{\rm h}$  order ( $\Rightarrow$  percent systematic uncertainties)

[ALPHA]

- combined: (smartly) interpolate between charm region and static limit
   + well-controlled systematics in either end
  - systematics associated to true mass dependence not easy to control

[ETMC, ALPHA]

relativistic b-quark: (HQET-inspired) tuning of counterterms to improve scaling
 + easy to carry out to high orders in the O(a) improvement philosophy
 - systematics difficult to test (perturbative matching, true mass dependence)





#### to find well-



technique adopted by B-factories, HFAG, FLAG

simultaneous solution: use dispersion relations, analyticity, unitarity to find wellbehaved parametrisation

[Boyd, Grinstein, Lebed 95; Bourrely, Caprini, Lellouch 09]

[several other contributions...]

0.8 FLAG2013 0.8 FLAG2013 0.7 0.7  $(1-q^2/m^2_{B^*}) f_+(q^2)$ 0.6 (d) $(\frac{m^2}{2}m^2_{B^*})$  0.4 FNAL/MILC 08A FNAL/MILC 08A 0.3 0.3 HPQCD 06 HPOCD 06 Belle Babar 3-parameter BCL fit 3-parameter BCL fit 0.2 0.2 -0.2 -0.1 0.1 0.2 -0.2 -0.1 0.2 0.1 0 0  $z(q^2, t_{opt})$  $z(q^2, t_{opt})$ 

technique adopted by B-factories, HFAG, FLAG

simultaneous solution: use dispersion relations, analyticity, unitarity to find wellbehaved parametrisation

[Boyd, Grinstein, Lebed 95; Bourrely, Caprini, Lellouch 09]



some issues still remain, active discussion

## outline

relevant channels, form factors

- lattice QCD in the precision era
  - O reach of lattice simulations
  - O summaries of lattice results: FLAG
  - O issues for B-physics
- 🕨 status
  - pre-2014: form factors at zero recoil
  - recent developments: improved precision,  $q^2$  dependence, baryon channels

### outlook

### results at zero recoil

| in the state of th |                   |                                                           |             |             |             |                     |              |                                                                                        |                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------|-------------|-------------|-------------|---------------------|--------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Collaboration Ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $N_{f}$           | Ignot                                                     | OO CONT     | CHI.        | finić.      | tien of             | hear         | form                                                                                   | factor                                                                                                        |
| FNAL/MILC 13B[446]<br>FNAL/MILC 10 [443]<br>FNAL/MILC 08 [444]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2+1<br>2+1<br>2+1 | $\mathbf{C}^{ abla}$<br>$\mathbf{C}^{\S}$<br>$\mathbf{A}$ | *<br>*<br>* | 0<br>0<br>0 | *<br>*<br>* | 0<br>0<br>0         | √<br>√<br>√  | $\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$ | $\begin{array}{c} 0.906(4)(12) \\ 0.9017(51)(87)(83)(89)(30)(33) \\ 0.921(13)(8)(8)(14)(6)(3)(4) \end{array}$ |
| FNAL/MILC 13B[446]<br>FNAL/MILC 04A[445]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2+1<br>2+1        | C<br>C                                                    | *           | 0           | ★<br>○*     | 0<br>0 <sup>†</sup> | $\checkmark$ | $\mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1)$                                 | $1.081(25) \\ 1.074(18)(16)$                                                                                  |
| FNAL/MILC 12A[452]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2+1               | А                                                         | 0           | 0           | *           | 0                   | ✓            | R(D)                                                                                   | 0.316(12)(7)                                                                                                  |
| Atoui 13 [448]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                 | Р                                                         | *           | *           | *           |                     | $\checkmark$ | $\mathcal{G}^{B \to D}(1)$                                                             | 1.033(95)                                                                                                     |
| Atoui 13 [448]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                 | Р                                                         | *           | *           | *           |                     | ✓            | $\mathcal{G}^{B_s \to D_s}(1)$                                                         | 1.052(46)                                                                                                     |

FNAL/MILC 13B: proceedings, full B→D\* published in Bailey et al, PRD 89 (2014) 114504
FNAL/MILC 12A: PRL 109 (2012) 071802
Atoui 13: Eur.Phys.J. C74 (2014) 5, 2861

### results at zero recoil

|   | ison in the second in the second ison of the second ison ison ison ison ison ison ison ison |                           |                   |                               |             |             |             |                                           |                    |                                                                                        |                                                                                                               |
|---|---------------------------------------------------------------------------------------------|---------------------------|-------------------|-------------------------------|-------------|-------------|-------------|-------------------------------------------|--------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|   | Collaboration                                                                               | Ref.                      | $N_{f}$           | Ind                           | oft         | E.          | Ani.        | A. C. | $h_{e_{\partial}}$ | form                                                                                   | factor                                                                                                        |
| * | FNAL/MILC 13<br>FNAL/MILC 10<br>FNAL/MILC 08                                                | BB[446]<br>[443]<br>[444] | 2+1<br>2+1<br>2+1 | $C^{\nabla}$<br>$C^{\S}$<br>A | *<br>*<br>* | 0<br>0<br>0 | *<br>*<br>* | 0<br>0<br>0                               | √<br>√<br>√        | $\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$ | $\begin{array}{c} 0.906(4)(12) \\ 0.9017(51)(87)(83)(89)(30)(33) \\ 0.921(13)(8)(8)(14)(6)(3)(4) \end{array}$ |
| - | FNAL/MILC 13<br>FNAL/MILC 04                                                                | BB[446] A[445]            | 2+1<br>2+1        | C<br>C                        | *           | 0           | ★<br>○*     | 0<br>0 <sup>†</sup>                       | $\checkmark$       | $\mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1)$                                 | $1.081(25) \\ 1.074(18)(16)$                                                                                  |
| - | FNAL/MILC 12                                                                                | 2A[452]                   | 2+1               | А                             | 0           | 0           | *           | 0                                         | $\checkmark$       | R(D)                                                                                   | 0.316(12)(7)                                                                                                  |
| - | Atoui 13                                                                                    | [448]                     | 2                 | Р                             | *           | *           | *           |                                           | ✓                  | $\mathcal{G}^{B \to D}(1)$                                                             | 1.033(95)                                                                                                     |
| - | Atoui 13                                                                                    | [448]                     | 2                 | Р                             | *           | *           | *           |                                           | $\checkmark$       | $\mathcal{G}^{B_s \to D_s}(1)$                                                         | 1.052(46)                                                                                                     |

FNAL/MILC 13B: proceedings, full B→D\* published in Bailey et al, PRD 89 (2014) 114504
FNAL/MILC 12A: PRL 109 (2012) 071802
Atoui 13: Eur.Phys.J. C74 (2014) 5, 2861

### results at zero recoil

|                               | Ref.  | from                 | $ V_{cb}  \times 10^3$ |
|-------------------------------|-------|----------------------|------------------------|
| our average for $N_f = 2 + 1$ | [443] | $B \to D^* \ell \nu$ | 39.36(56)(50)          |
| Inclusive (Gambino 13)        | [465] | $B \to X_c \ell \nu$ | 42.42(86)              |



FNAL/MILC 13B: proceedings, full B→D\* published in Bailey et al, PRD 89 (2014) 114504
FNAL/MILC 12A: PRL 109 (2012) 071802
Atoui 13: Eur.Phys.J. C74 (2014) 5, 2861

[Bailey et al, PRD 89 (2014) 114504]

$$\mathcal{F}^{B \to D^*}(1) = 0.906(4)_{\text{stat}}(12)_{\text{sys}}$$

- $O N_f = 2 + 1$  rooted staggered sea quarks
- Fermilab heavy quarks
- several lattice spacings (finest 0.045 fm) and (not very) light masses
- o mostly non-perturbative renormalisation



[Bailey et al, PRD 89 (2014) 114504]

$$\mathcal{F}^{B \to D^*}(1) = 0.906(4)_{\text{stat}}(12)_{\text{sys}}$$

- $O N_f = 2 + 1$  rooted staggered sea quarks
- Fermilab heavy quarks
- several lattice spacings (finest 0.045 fm) and (not very) light masses
- mostly non-perturbative renormalisation

| Uncertainty           | $h_{A_1}(1)$ |
|-----------------------|--------------|
| Statistics            | 0.4%         |
| Scale $(r_1)$ error   | 0.1%         |
| $\chi {\rm PT}$ fits  | 0.5%         |
| $g_{D^*D\pi}$         | 0.3%         |
| Discretization errors | 1.0%         |
| Perturbation theory   | 0.4%         |
| Isospin               | 0.1%         |
| Total                 | 1.4%         |

|           |                                                      | - • •        | -                    | 、 <i>、</i>                                                        |
|-----------|------------------------------------------------------|--------------|----------------------|-------------------------------------------------------------------|
| Mode      | $10^3  V_{cb}   \bar{\eta}_{\rm EW}  \mathcal{F}(1)$ | Ref.         | $ ar{\eta}_{ m EW} $ | $10^{3} V_{cb} $                                                  |
| $B^0$     | $35.60\pm0.57$                                       | [81]         | $1.0182 \pm 0.0016$  | $38.59 \pm 0.62_{\rm expt} \pm 0.52_{\rm QCD} \pm 0.06_{\rm QED}$ |
| $B^{\pm}$ | $35.14 \pm 1.45$                                     | BaBar $[82]$ | $1.0066 \pm 0.0016$  | $38.53 \pm 1.60_{\rm expt} \pm 0.52_{\rm QCD} \pm 0.06_{\rm QED}$ |
| Both      | $40.00\pm2.04$                                       | CLEO [83]    | $1.0124 \pm 0.0058$  | $43.61 \pm 2.22_{\rm expt} \pm 0.59_{\rm QCD} \pm 0.25_{\rm QED}$ |
| Both      | $35.83 \pm 1.12$                                     | BaBar $[84]$ | $1.0124 \pm 0.0058$  | $39.06 \pm 1.22_{\rm expt} \pm 0.53_{\rm QCD} \pm 0.22_{\rm QED}$ |
| Both      | $35.90\pm0.45$                                       | HFAG $[76]$  | $1.015\pm0.005$      | $39.04 \pm 0.49_{\rm expt} \pm 0.53_{\rm QCD} \pm 0.19_{\rm QED}$ |

# Atoui et al. results for $B_{(s)} \rightarrow D_{(s)}$

[Atoui, Bećirević, Morénas, Sanfilippo, Eur.Phys.J. C74 (2014) 5, 2861]

- $\circ$  N<sub>f</sub>=2 maximally tmQCD sea quarks
- o ETMC-like ratio method for heavy sector
- four lattice spacings, various masses
- o no renormalisation required
- O cover up to w=1.062
- O precision not competitive, mostly due to small statistics

$$\mathcal{G}^{B \to D}(1) = 1.033(95)$$
  
 $\mathcal{G}^{B_s \to D_s}(1) = 1.052(46)$ 

N.B. I: relative error size (mostly due to chiral extrapolations:  $m_{\pi} \gtrsim 270$  MeV, which are comparable to those of FNAL/MILC )

N.B. 2: related ETMC study has explored feasibility of  $B \rightarrow D^{**}$  computation

[ETMC, Atoui et al, arXiv:1312.2914]

[Bailey et al, arXiv:1503.07237]



- Fermilab heavy quarks
- several lattice spacings (finest 0.045 fm) and (not very) light masses
- mostly non-perturbative renormalisation
- O explore non-zero recoil and fit FF



$$\frac{\langle D(p_D) | \mathcal{V}^{\mu} | B(p_B) \rangle}{\sqrt{M_B M_D}} = h_+(w)(v+v')^{\mu} + h_-(w)(v-v')^{\mu}$$

$$f_{+}(q^{2}) = \frac{1}{2\sqrt{r}} \left[ (1+r)h_{+}(w) - (1-r)h_{-}(w) \right]$$
$$f_{0}(q^{2}) = \sqrt{r} \left[ \frac{w+1}{1+r}h_{+}(w) - \frac{w-1}{1-r}h_{-}(w) \right]$$

$$\mathcal{G}(w) = h_+(w) - \left(\frac{1-r}{1+r}\right)h_-(w)$$
$$r = M_D/M_B = 0.354$$

[Bailey et al, arXiv:1503.07237]



[Bailey et al, arXiv:1503.07237]

### comparison to quenched results for $\mathcal{G}(w)$

[De Divitiis, Molinaro, Petronzio, Tantalo, PLB 655 (2007) 45]



[Bailey et al, arXiv:1503.07237]

joint fit with BaBar data



 $|V_{cb}| = (39.6 \pm 1.7_{\text{QCD}+\text{exp}} \pm 0.2_{\text{QED}}) \times 10^{-3}$ 

[Bailey et al, arXiv:1503.07237]

joint fit with BaBar data



bonus:

# HPQCD results for $B \rightarrow D$

[unpublished, preliminary results provided by Heechang Na]

- N<sub>f</sub>=2+1 rooted staggered sea quarks
- O NRQCD bottom, HISQ charm and light valence quarks
- two lattice spacings (0.12 fm and 0.09 fm)
- one-loop matching of currents
- O explore non-zero recoil and fit FF

$$|V_{cb}| = 40.2(1.7)_{\text{lat}}(1.3)_{\text{exp}} \times 10^{-3}$$

Preliminary!

bonus: R(D) = 0.300(8)

## HPQCD results for $B \rightarrow D$

[unpublished, preliminary results provided by Heechang Na]



### FFs for $B \rightarrow D$ : HPQCD vs FNAL/MILC



[Detmold, Lehner, Meinel, arXiv:1503.01421]

- $O N_f = 2 + 1$  domain-wall fermion sea
- O anisotropic clover action for heavy quarks
- two lattice spacings (0.11 fm and 0.09 fm), few light masses
- mostly non-perturbative renormalisation
- O explore wide region in momentum transfer; fit to one-pole z-parametrisation à la BCL, allowing for simulation parameter dependence in fit parameters





[Detmold, Lehner, Meinel, arXiv:1503.01421]



[Detmold, Lehner, Meinel, arXiv:1503.01421]





[Detmold, Lehner, Meinel, arXiv:1503.01421]



$$\begin{split} & \text{stat} \quad \text{sys} \\ & \Gamma(\Lambda_b \to \Lambda_c \; e^- \bar{\nu}_e) / |V_{cb}|^2 = (21.1 \pm 0.8 \pm 1.4) \; \text{ps}^{-1}, \\ & \Gamma(\Lambda_b \to \Lambda_c \; \mu^- \bar{\nu}_\mu) / |V_{cb}|^2 = (21.1 \pm 0.8 \pm 1.4) \; \text{ps}^{-1}, \\ & \Gamma(\Lambda_b \to \Lambda_c \; \tau^- \bar{\nu}_\mu) / |V_{cb}|^2 = (7.13 \pm 0.17 \pm 0.29) \; \text{ps}^{-1}. \end{split}$$

$$\frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_\mu)}{\Gamma(\Lambda_b \to \Lambda_c \ e^- \bar{\nu}_\mu)} = 0.3378 \pm 0.0079 \pm 0.0085,$$
$$\frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_\mu)}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)} = 0.3388 \pm 0.0078 \pm 0.0085.$$

(e.m. effects neglected)

## summary and outlook

- significant recent advance in SL form factors
  - O few % precision in FFs, error in  $|V_{cb}|$  from meson channels dominated by exp

### immediate future

- only results (meson channels) based on MILC ensembles: need crosscheck with other regularisations (and heavy quark treatments)
- add existing ensembles with finer lattice spacings and lighter sea masses
- O fully understand analysis details (e.g. FF parametrisation, entanglement with chiral fits)
- what could be useful for the experiment???

## backup: error budget in FNAL/MILC results for $B \rightarrow D$

Bailey et al, arXiv:1503.07237



### backup: error budget in baryon FF

