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standard observable to study relative τ channel effect:

R(D(∗)) =
B(B → D(∗)τν)

B(B → D(∗)�ν)
, � = e, µ



Λb decays

Flavor physics
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[Feldmann, Yip, PRD 85 (2012) 014035]
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VI. PREDICTIONS FOR THE Λb → p �−ν̄� AND Λb → Λc �
−ν̄� DECAY RATES

In this section, we present predictions for the Λb → p �−ν̄� and Λb → Λc �−ν̄� differential and integrated decay rates
using our form factor results. Including possible right-handed currents with real-valued �Rq , the effective Hamiltonian
in Eq. (2) leads to the following expression for the differential decay rate in terms of the helicity form factors,
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where, as before, X = p,Λc denotes the final-state baryon, and

s± = (mΛb ±mX)2 − q2. (85)

Expressions for the individual helicity amplitudes and the angular distributions can be found in Refs. [27, 28, 65]. By
combining experimental data with our form factor results, novel constraints in the (V L

qb, �
R
q ) plane can be obtained.

In the following, we consider the Standard Model with V L
qb = Vqb and �Rq = 0. Our predictions of the Λb → p �−ν̄�

and Λb → Λc �−ν̄� differential decay rates for � = e, µ, τ are shown in Figs. 14 and 15. The central values, statistical
uncertainties, and systematic uncertainties have been calculated using Eq. (83); all baryon and lepton masses were
taken from Ref. [1]. Our results are most precise in the high-q2 region, where the form factor shapes are most tightly
constrained by the lattice QCD data. We obtain the following partially integrated decay rates

1

|Vub|2

� q2max

15 GeV2

dΓ(Λb → p µ−ν̄µ)

dq2
dq2 = (12.32± 0.93± 0.80) ps−1, (86)

1

|Vcb|2

� q2max

7 GeV2

dΓ(Λb → Λc µ−ν̄µ)

dq2
dq2 = (8.39± 0.18± 0.32) ps−1, (87)

and their ratio

|Vcb|2

|Vub|2

� q2max

15 GeV2
dΓ(Λb→p µ−ν̄µ)

dq2 dq2

� q2max

7 GeV2
dΓ(Λb→Λc µ−ν̄µ)

dq2 dq2
= 1.470± 0.115± 0.104, (88)

where the first uncertainty is statistical and the second uncertainty is systematic. Together with experimental data,
Eqs. (86), (87), and (88) will allow determinations of |Vub|, |Vcb|, and |Vub/Vcb| with theory uncertainties of 5.0%,
2.2%, and 5.3%, respectively. The predicted total decay rates for all possible lepton flavors are

Γ(Λb → p e−ν̄e)/|Vub|2 = (24.8± 2.8± 4.2) ps−1 (89)

Γ(Λb → p µ−ν̄µ)/|Vub|2 = (24.8± 2.8± 4.2) ps−1, (90)

Γ(Λb → p τ−ν̄µ)/|Vub|2 = (17.5± 1.5± 1.9) ps−1, (91)

Γ(Λb → Λc e
−ν̄e)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (92)

Γ(Λb → Λc µ
−ν̄µ)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (93)

Γ(Λb → Λc τ
−ν̄µ)/|Vcb|2 = (7.13± 0.17± 0.29) ps−1. (94)

Motivated by the R(D(∗)) puzzle [14], we also provide predictions for the following ratios:

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc e−ν̄µ)
= 0.3378± 0.0079± 0.0085, (95)

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc µ−ν̄µ)
= 0.3388± 0.0078± 0.0085. (96)

QED corrections to the decay rates, which may be relevant at this level of precision, have been neglected here.



Λb decays

Flavor physics
Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

V

u

b W

ub

d s b

→ V =

u

c

t





1 − λ
2 λ Aλ3(ρ − iη)

−λ 1 − λ
2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1




+O(λ4)

→ scalar product of d−b columns =0
⇒ unitarity triangle

In experiment, must account for confining QCD interactions

d
u

b
W+

B0

π−

νl

l+

∼ |Vub|× �π−|b̄γµu|B0�

→ lattice QCD (or LCSR)

Laurent Lellouch DESY Zeuthen, 12 December 2011

Λb

p/Λcd

u/cu

2

and quark models [17–28]. Nonperturbative QCD calculations of the Λb → p and Λb → Λc form factors can be
performed using lattice gauge theory. The first lattice QCD calculation of Λb → p form factors, published in Ref. [29],
employed static b quarks (i.e., leading-order heavy-quark effective theory) to simplify the analysis. The static limit
reduces the number of independent Λb → p form factors to two [30–32], but introduces systematic uncertainties of
order ΛQCD/mb and |p�|/mb in the Λb → p µ−ν̄µ differential decay rate (where p� is the momentum of the proton in
the Λb rest frame). Here we present a new lattice calculation which improves upon Ref. [29] by replacing the static b
quarks by relativistic b quarks, eliminating this systematic uncertainty. In addition to the six form factors describing
the hadronic part of the decay Λb → p µ−ν̄µ in fully relativistic QCD, we also compute the six analogous form factors
for Λb → Λc µ−ν̄µ (note that early lattice studies of Λb → Λc form factors in the quenched approximation can be
found in Refs. [33, 34]). Preliminary results from the present work were shown in Ref. [35].

In Sec. II we provide the definitions of the form factors employed here. The lattice actions and parameters, as well
as the matching of the b → u and b → c currents from the lattice renormalization scheme to the continuum MS scheme
are discussed in Sec. III. This calculation is based on the same lattice gauge-field ensembles as Ref. [29]; the ensembles
include 2+1 flavor of dynamical domain-wall fermions and were generated by the RBC and UKQCD Collaborations
[36]. Section IV explains our method for extracting the form factors from ratios of three-point and two-point correlation
functions and removing excited-state contamination by extrapolating to infinite source-sink separation. Our fits of
the quark-mass, lattice-spacing, and momentum-dependence of the form factors are discussed in Sec. V. The form
factors in the physical limit are presented in terms of z-expansion [37] parameters and their correlation matrices. Two
different sets of parameters, referred to as the “nominal parameters” and the “higher-order parameters” are given.
The nominal parameters are used to obtain the central values and statistical uncertainties of the form factors (and
of derived quantities), while the higher-order parameters are used to calculate systematic uncertainties. In Sec. VI
we then present predictions for the Λb → p �−ν̄� and Λb → Λc �−ν̄� differential and integrated decay rates using our
form factors. Combined with experimental data, our results for the Λb → p µ ν̄µ and Λb → Λc µ ν̄µ decay rates in the
high-q2 region will allow determinations of |Vub| and |Vcb| with theory uncertainties of 5.0% and 2.2%, respectively.

II. DEFINITIONS OF THE FORM FACTORS

Allowing for possible right-handed currents beyond the Standard Model, the effective weak Hamiltonian for b →
q �− ν̄� transitions (where q = u, c) can be written as

Heff =
GF√
2
V L
qb

�
(1 + �Rq )q̄γ

µb− (1− �Rq ) q̄γ
µγ5b

�
�̄γµ(1− γ5)ν (2)

(in the Standard Model, �Rq = 0 and V L
qb = Vqb). To calculate the differential decay rate and other observables, we

therefore need the hadronic matrix elements of the vector and axial vector currents, q̄γµb and q̄γµγ5b. In the following,
we denote the final-state baryon by X (X = p,Λc). Lorentz and discrete symmetries imply that the matrix elements
�X|q γµ b|Λb� and �X|q γµγ5 b|Λb� can each be decomposed into three form factors. In this work we primarily use a
helicity-based definition of the Λb → X form factors, which was introduced in Ref. [38] and is given by

�X(p�, s�)|q γµ b|Λb(p, s)� = uX(p�, s�)

�
f0(q
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q2
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2)

�
γµ − 2mX

s+
pµ − 2mΛb

s+
p�µ

��
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�X(p�, s�)|q γµγ5 b|Λb(p, s)� = −uX(p�, s�) γ5

�
g0(q
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��
uΛb(p, s). (4)

In these expressions, q = p− p� is the four-momentum transfer (whereas q̄ is the ū or c̄ quark field), and s± is defined
as

s± = (mΛb ±mX)2 − q2. (5)

“helicity-based” FF parametrisation

[Feldmann, Yip, PRD 85 (2012) 014035]
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hadronic effects in flavour physics

we are in an era of precision flavour physics, where hadronic effects can be ...

mostly irrelevant:

under good theoretical control:

relevant, difficult, but measured indirectly:

relevant and difficult to compute:

µ→ eγ, dn

K → πνν̄

(g − 2)µ

Vxy, K → ππ, ∆md,s, . . .

use first-principles technique to deal with low-energy hadronic physics: lattice QCD

(complement with other first-principles/systematic approaches: effective theories, 
dispersion relations, ...)



lattice QCD
Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
effects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a→ 0, L→∞ and m→ 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

[Wilson 1974]

first-principles, systematically improvable approach to strongly coupled quantum 
field theories



[Wilson 1974]

take continuum, infinite volume limits

tune irrelevant couplings to preserve 
symmetries, improve scaling to CL ...

Slat = S0 + aS1 + a2S2 + . . .

Olat = O0 + aO1 + a2
O2 + . . .

several different lattice actions: universality

fermion actions:  (improved) Wilson, (improved) staggered, domain-wall, perfect 
actions, Neuberger fermions, twisted-mass QCD, ....

first-principles, systematically improvable approach to strongly coupled quantum 
field theories
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Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
effects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a→ 0, L→∞ and m→ 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

control scaling (Symanzik improvement)

non-perturbative renormalisation and 
matching (e.g. to effective theories)

lattice regularisations with exact chiral 
symmetry

...

many tools developed along the last 20+ years:

[Wilson 1974]

first-principles, systematically improvable approach to strongly coupled quantum 
field theories

lattice QCD



Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
effects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a→ 0, L→∞ and m→ 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

get rid of cutoffs (                        )

compute in / extrapolate to physical SSB 
regime (light quarks, isospin breaking)

keep all relevant scales far from cutoffs

crucial: control systematic uncertainties

a→ 0, L→∞

what is the current physics reach of LQCD?

lattice QCD

[Wilson 1974]

first-principles, systematically improvable approach to strongly coupled quantum 
field theories



lattice QCD reach: scales and cost

Lattice QCD
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Fig. 6.1 Quark masses.

• It would allow to study QCD in different conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)

ΛQCD

L−1 � µ� a−1
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scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)

overall cost (⇒ cpu power)
physics reach

for a long time: serious difficulties in reaching light dynamical quark masses

ΛQCD
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main cost factor: reiterated inversion of lattice Dirac operator on fixed gauge field
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• It would allow to study QCD in different conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)

ΛQCD

Simulations of lattice QCD with light sea quarks turn out to be much less
“expensive” than previously estimated

No of operations [in Tflops×year] required for an ensemble of 100 gauge fields∗
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Giusti, Tucson 2006

∗Two-flavour QCD, O(a) improved Wilson quarks, quark mass m, 2L× L3 lattice, spacing a

Niels Bohr Institute, 16.–18. August 2006 Numerical Lattice QCD 3/31• Wilson fermions, Hybrid Monte Carlo Algorithm:

L >∼ 2.5 fm, a <∼ 0.1 fm, mmin

π
<∼ 250 MeV

→ Computer must sustain several TFlops/s

7

[Ukawa 2001]

[Giusti 2006]
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main cost factor: reiterated inversion of lattice Dirac operator on fixed gauge field

physics “taught” to algorithms
[Sexton-Weingarten 1990s]

 [Hasenbusch, Lüscher 2000s]
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• It would allow to study QCD in different conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)
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• It would allow to study QCD in different conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)
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• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)
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Flavour Lattice Averaging Group

covers several phenomenologically relevant quantities, big effort to maximise 
representativity across lattice collaborations / geographical regions

FLAG: your one-stop repository of lattice results, world averages / estimates

FLAG-2 review published in 2014, includes results up to Nov 2013

advisory board: S. Aoki, C. Bernard, C. Sachrajda
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what FLAG provides (for each quantity):

complete list of references

summary of relevant formulae and notation

summary of essential aspects of each computation, in easily readable colour-
coded tables

averages / estimates (if sensible)

a “lattice dictionary” for non-experts

thorough appendix tables with details of all computations

always quote original references too

what FLAG begs readers for:
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lattice QCD reach: a precision era
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Figure 1: Mass of the strange quark (MS scheme , running scale 2 GeV). The central and
top panels show the lattice results listed in tables 2 and 3. For comparison, the bottom
panel collects a few sum rule results and also indicates the current PDG estimate. Diamonds
represent results based on perturbative renormalization, while squares indicate that, in the
relation between the lattice regularized and renormalized MS masses, nonperturbative effects
are accounted for. The black squares and the grey bands represent our estimates (13) and
(14). The significance of the colours is explained in section 2.

the continuum for the determination of mc. To calculate mud HPQCD 10 [73] use the MILC
09 determination of the quark-mass ratio ms/mud [15].

The high precision quoted by HPQCD 10 on the strange-quark mass relies in large part on
the precision reached in the determination of the charm-quark mass [73, 85]. This calculation
uses an approach based on the lattice determination of moments of charm-quark pseudoscalar,
vector and axial-vector correlators. These moments are then combined with four-loop results
from continuum perturbation theory to obtain a determination of the charm-quark mass in
the MS scheme . In the preferred case, in which pseudoscalar correlators are used for the
analysis, there are no lattice renormalization factors required, since the corresponding axial-
vector current is partially conserved in the staggered lattice formalism.

Instead of combining the result for mc/ms of [72] with mc from [73], one can use it with
the PDG [74] average mc(mc) = 1.275(25)GeV, whose error is four times as large as the
one obtained by HPQCD 10. If one does so, one obtains ms = 92.3(2.2) in lieu of the value
ms = 92.2(1.3) given in Table 3, thereby nearly doubling HPQCD 10’s error. Though we plan
to do so in the future, we have not yet performed a review of lattice determinations of mc.
Thus, as for the results of Dürr 11 [61] in the Nf = 2 case, we postpone its inclusion in our
final averages until we have performed an independent analysis of mc, emphasizing that this
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2 (mu +md) (for details see Fig. 1).

novel strategy for computing the light-quark masses may very well turn out to be the best
way to determine them.

This discussion leaves us with three results for our final average for ms, those of MILC
09A [37], BMW 10A, 10B [22, 23] and RBC/UKQCD 12 [25], and the result of HPQCD 10 [73]
as an important cross-check. Thus, we first check that the three other results which will
enter our final average are consistent with HPQCD 10’s result. To do this we implement the
averaging procedure described in Sect. 2.2 on all four results. This yields ms = 93.0(1.0)MeV
with a χ2/dof = 3.0/3 = 1.0, indicating overall consistency. Note that in making this average,
we have accounted for correlations in the small statistical errors of HPQCD 10 and MILC
09A. Omitting HPQCD 10 in our final average results in an increase by 50% of the average’s
uncertainty and by 0.8 σ of its central value. Thus, we obtain ms = 93.8(1.5)MeV with
a χ2/dof = 2.26/2 = 1.13. When repeating the exercise for mud, we replace MILC 09A
by the more recent analysis reported in MILC 10A [75]. A fit of all four results yields
mud = 3.41(5)MeV with a χ2/dof = 2.6/3 = 0.9 and including only the same three as
above gives mud = 3.42(6)MeV with a χ2/dof = 2.4/2 = 1.2. Here the results are barely
distinguishable, indicating full compatibility of all four results. Note that the outcome of
the averaging procedure amounts to a determination of ms and mud of 1.6%. and 1.8%,
respectively.

The heavy sea-quarks affect the determination of the light-quark masses only through
contributions of order 1/m2

c , which moreover are suppressed by the Okubo-Zweig-Iizuka-rule.
We expect these contributions to be small. However, note that the effect of omitted sea quarks
on a given quantity is not uniquely defined: the size of the effect depends on how the theories
with and without these flavours are matched. One way to set conventions is to ensure that
the bare parameters common to both theories are fixed by the same physical observables and
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! Estimates obtained from an analysis of the lattice data within the Standard Model, see section 4.5.

[125]
[127]
[128]

[114]

Figure 6: Results for |Vus| and |Vud| that follow from the lattice data for f+(0) (triangles)
and fK±/fπ± (squares), on the basis of the assumption that the CKM matrix is unitary.
The black squares and the grey bands represent our estimates, obtained by combining these
two different ways of measuring |Vus| and |Vud| on a lattice. For comparison, the figure also
indicates the results obtained if the data on nuclear β decay and τ decay are analysed within
the Standard Model.

reads |Vu|2 = 0.987(10). Still, it is fair to say that at this level the Standard Model passes a
nontrivial test that exclusively involves lattice data and well-established kaon decay branching
ratios. Combining the lattice results for f+(0) and fK±/fπ± in (38) and (41) with the β decay
value of |Vud| quoted in (33), the test sharpens considerably: the lattice result for f+(0) leads
to |Vu|2 = 0.9993(5), while the one for fK±/fπ± implies |Vu|2 = 1.0000(6), thus confirming
CKM unitarity at the permille level.

Repeating the analysis for Nf = 2, we find |Vu|2 = 1.029(35) with the lattice data alone.
This number is fully compatible with 1, in accordance with the fact that the dotted curve
penetrates the blue contour. Taken by themselves, these results are perfectly consistent with
the value of |Vud| found in nuclear β decay: combining this value with the data on f+(0)
yields |Vu|2 = 1.0004(10), combining it with the data on fK±/fπ± gives |Vu|2 = 0.9989(16).
With respect to the first edition of the FLAG report the ellipse for Nf = 2 has moved slightly
to the left because we have now taken into account isospin breaking effects.

For Nf = 2 + 1 + 1 we can carry out the test of unitarity only with input from fK±/fπ±

which leads to |Vu|2 = 0.9998(7).
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fK/fπ fK±/fπ±

ETM 13F [154] 2+1+1 C ◦ ! ◦ 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [155] 2+1+1 A ! ◦ ! 1.1916(15)(16)
MILC 13A [156] 2+1+1 A ! ◦ ! 1.1947(26)(37)
MILC 11 [24] 2+1+1 C ◦ ◦ ◦ 1.1872(42)†stat.
ETM 10E [157] 2+1+1 C ◦ ◦ ◦ 1.224(13)stat

RBC/UKQCD 12 [25] 2+1 A ! ◦ ! 1.199(12)(14)
Laiho 11 [77] 2+1 C ◦ ◦ ◦ 1.202(11)(9)(2)(5)††

MILC 10 [158] 2+1 C ◦ ! ! 1.197(2)(+3
−7)

JLQCD/TWQCD 10 [159] 2+1 C ◦ " ! 1.230(19)
RBC/UKQCD 10A [78] 2+1 A ◦ ◦ ! 1.204(7)(25)
PACS-CS 09 [20] 2+1 A ! " " 1.333(72)
BMW 10 [160] 2+1 A ! ! ! 1.192(7)(6)
JLQCD/TWQCD 09A [161] 2+1 C ◦ " " 1.210(12)stat
MILC 09A [37] 2+1 C ◦ ! ! 1.198(2)(+6

−8)
MILC 09 [15] 2+1 A ◦ ! ! 1.197(3)( +6

−13)
Aubin 08 [162] 2+1 C ◦ ◦ ◦ 1.191(16)(17)
PACS-CS 08, 08A [19, 163] 2+1 A ! " " 1.189(20)
RBC/UKQCD 08 [79] 2+1 A ◦ " ! 1.205(18)(62)
HPQCD/UKQCD 07 [164] 2+1 A ◦ ! ◦ 1.189(2)(7)
NPLQCD 06 [165] 2+1 A ◦ " " 1.218(2)(+11

−24)
MILC 04 [36] 2+1 A ◦ ◦ ◦ 1.210(4)(13)

ALPHA 13 [166] 2 C ! ! ! 1.1874(57)(30)
BGR 11 [167] 2 A ! " " 1.215(41)
ETM 10D [144] 2 C ◦ ! ◦ 1.190(8)stat
ETM 09 [168] 2 A ◦ ! ◦ 1.210(6)(15)(9)
QCDSF/UKQCD 07 [169] 2 C ◦ ◦ ! 1.21(3)

† Result with statistical error only from polynomial interpolation to the physical point. †† This work is the continuation of Aubin 08.

Table 9: Colour code for the data on the ratio of decay constants: fK/fπ is the pure QCD
SU(2)-symmetric ratio and fK±/fπ± is in pure QCD with the SU(2) isospin breaking applied
after simulation.
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significant differences in estimates of systematics by different collaborations

MILC: fK±/fπ± |Nf=2+1+1 = 1.1947(26)(33)(17)(2)

HPQCD: fK±/fπ± |Nf=2+1+1 = 1.1916(15)(12)(1)(10)

[MILC 2013]

[HPQCD 2013]



lattice QCD reach: data analysis

significant differences in estimates of systematics by different collaborations

MILC: fK±/fπ± |Nf=2+1+1 = 1.1947(26)(33)(17)(2)

HPQCD: fK±/fπ± |Nf=2+1+1 = 1.1916(15)(12)(1)(10)

[MILC 2013]

[HPQCD 2013]

stat      CL      FV     e.m.

stat      CL      FV     (misc)

ensembles very similar (HPQCD uses MILC ensembles without finest lattice 
spacing, has some additional masses)

strong effect of data analysis / fitting strategies



lattice QCD reach: small lattice spacing

HMC algorithm efficiency degrades rapidly below lattice spacings ∼0.05 fm 

(“topology freezing”) [Del Debbio, Panagopoulos, Vicari 2002]
[Schaefer, Sommer, Virotta 2010]

Topological charge

Topological charge shows dramatic slow down.
Already in pure gauge theory.
How does this match with 1/a expectation for HMC?

SOMMER, VIROTTA, ST.S’10
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statistical uncertainties may be easily (and severely) underestimated for fine lattice 
spacings



lattice QCD reach: small lattice spacing

HMC algorithm efficiency degrades rapidly below lattice spacings ∼0.05 fm 

(“topology freezing”) [Del Debbio, Panagopoulos, Vicari 2002]
[Schaefer, Sommer, Virotta 2010]

work with open boundary conditions?
[Lüscher, Schaefer 2011, CLS Nf=2+1]
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issues for B-physics: accessing the b scale

the fact that current lattice spacings are below or around the b scale means that 
some form of effective theory has to be (heavily) relied upon to perform B-physics 
computations on the lattice



NRQCD: combined expansion in                     , perturbative matching to QCD
+ easy to carry out to high orders, allows to work at large lattice spacing
− only works in scaling window                             , no continuum limit

npHQET: expansion in       , matched non-perturbatively to QCD (using small V)
+ continuum limit exists at any order in the expansion, systematic tool
− difficult to go beyond           order (⇒ percent systematic uncertainties) 

combined: (smartly) interpolate between charm region and static limit
+ well-controlled systematics in either end
− systematics associated to true mass dependence not easy to control

relativistic b-quark: (HQET-inspired) tuning of counterterms to improve scaling
+ easy to carry out to high orders in the O(a) improvement philosophy
− systematics difficult to test (perturbative matching, true mass dependence)

v2, Λ/mb, a

aΛ� 1, mha � 1

m−1
h

1/mh

[HPQCD]

[ALPHA]

[ETMC, ALPHA]

[FNAL/MILC, HPQCD]

issues for B-physics: accessing the b scale



Flavor physics
Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix
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b W

ub
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1 − λ
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2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1




+O(λ4)

→ scalar product of d−b columns =0
⇒ unitarity triangle

In experiment, must account for confining QCD interactions

d
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b
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B0

π−

νl

l+

∼ |Vub|× �π−|b̄γµu|B0�

→ lattice QCD (or LCSR)

Laurent Lellouch DESY Zeuthen, 12 December 2011
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, c ∼ |Vqb| �X|b̄γµq|B0� → f+(q2), f0(q2)

→ f+(q2), f0(q2)
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from the inverse of the parameter Hessian matrix that result
from a fit using the full covariance matrix determined from
the bootstrap distributions of chiral-continuum extrapo-
lated values of fk and f?, including systematics.

Because the shapes of the lattice calculation and experi-
mental measurement of the form factor are consistent, we
now proceed to fit them simultaneously to the z expansion
and determine jVubj. The numerical lattice and measured

experimental data are independent, so we construct a
block-diagonal covariance matrix, where one block is the
total lattice error matrix and the other is the total experi-
mental error matrix. The combined fit function includes the
series coefficients (ak’s) plus an additional parameter for
the relative normalization between the lattice and experi-
mental results (jVubj). In order to account for the system-
atic uncertainty in jVubj due to poorly constrained higher-
order terms in z, we continue to add terms in the series until
the error in jVubj reaches a maximum. This occurs once we
include the term proportional to z3. The resulting combined

FIG. 10 (color online). Lattice calculation of the B ! !l" form factor. The left plot shows fþ vs q2, while the right plot shows
Pþ#þfþ vs z. The inner error bars indicate the statistical error, while the outer error bars indicate the sum of the statistical and
systematic added in quadrature. A 3-parameter z fit is needed to describe the lattice data with a good $2=d:o:f:

FIG. 9 (color online). Experimental data for the B ! !l" form factor times the CKM element jVubj from the BABAR Collaboration
[42]. The left plot shows jVubj% fþ versus q2, while the right plot shows jVubj% fþ multiplied by the functions Pþ#þ and plotted
against the new variable z. Both the 2-parameter fit (dashed blue line) and 3-parameter fit (solid red curve) have good $2=d:o:f:’s.
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simultaneous solution: use dispersion relations, analyticity, unitarity to find well-
behaved parametrisation [Okubo et al. 71; Bourrely et al. 81]

[Boyd, Grinstein, Lebed 95; Bourrely, Caprini, Lellouch 09] 
[several other contributions... ]

Recent parametrizations: unitarity . . . (cont’d)

Perform conformal mapping

z ≡ z(q2, t0) =
�

t+ − q2 −
√

t+ − t0�
t+ − q2 +

√
t+ − t0

Laurent Lellouch DESY Zeuthen, 12 December 2011

Analytic structure of B!"l! form factor

Well-established that analyticity (plus crossing-symmetry) and unitarity  can be used 
to constrain form factors [Bourrely et. al. (1981); Boyd, Grinstein, & Lebed 

(1996); ...; Arnesen et al. (2005); Bourrely, Caprini, Lellouch (2008)]

f(q2) analytic below the production region except when q2=m2 of a physical state
(for B!"l! occurs at the B* pole):

Exploit property that analytic functions can always be written as power series to obtain 
parameterization of form factor based on general principals of quantum field theory

5

F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 
F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 

F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 

Production 
region

(B! production )

Semileptonic 
region

(B!! decay )

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−
≡ (mB − mπ)2

Analytic structure of B!"l! form factor

Well-established that analyticity (plus crossing-symmetry) and unitarity  can be used 
to constrain form factors [Bourrely et. al. (1981); Boyd, Grinstein, & Lebed 

(1996); ...; Arnesen et al. (2005); Bourrely, Caprini, Lellouch (2008)]

f(q2) analytic below the production region except when q2=m2 of a physical state
(for B!"l! occurs at the B* pole):

Exploit property that analytic functions can always be written as power series to obtain 
parameterization of form factor based on general principals of quantum field theory

5

F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 
F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 

F(q2) analytic except when q2=m2 of physical state: 

B !

q
µ

B

!

q
µ

semileptonic region 
(B!" decay)

production region
(B" production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 

Production 
region

(B! production )

Semileptonic 
region

(B!! decay )

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−
≡ (mB − mπ)2

z(q2, t0) =
�

t+ − q2 −
√

t+ − t0�
t+ − q2 +

√
t+ − t0

→ f+(q2) =
1

B(q2)φ(q2, t0)

�

n≥0

an(t0) z(q2, t0)n

technique adopted by B-factories, HFAG, FLAG

issues for B-physics: parametrisation of form factors



-0.2 -0.1 0 0.1 0.2
z(q2, topt)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1
-q

2 /m
2 B* ) 

 f +
(q

2 )

FNAL/MILC 08A
HPQCD 06
Belle
3-parameter BCL fit

-0.2 -0.1 0 0.1 0.2
z(q2, topt)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1
-q

2 /m
2 B* ) 

 f +
(q

2 )
 FNAL/MILC 08A
 HPQCD 06
 Babar
3-parameter BCL fit

Figure 22: Lattice and experimental data for (1 − q2/m2
B∗)f+(q2) versus z. The filled green

symbols denote lattice-QCD points included in the fit, while the open green symbols show
those that are not included in the fit (either because of unknown correlations or strong
correlations). The blue stars show the experimental data divided by the value of |Vub| obtained
from the fit. The grey band in the left (right) plots shows the preferred three-parameter BCL
fit to the lattice-QCD and Belle (Babar) data with errors.

8.6 Determination of |Vcb|

We now interpret the lattice-QCD results for the B → D(∗)!ν form factors as determinations
of the CKM matrix element |Vcb| in the Standard Model.

For the experimental branching fractions at zero recoil, we use the latest experimental
averages from the Heavy Flavour Averaging Group [125]:35

FB→D∗
(1)ηEW|Vcb| = 35.90(45) , GB→D(1)ηEW |Vcb| = 42.64(1.53) . (161)

For FB→D∗
(1), there is only a single Nf = 2 + 1 lattice-QCD calculation that satisfies the

FLAG criteria, while there is currently no such calculation of GB→D(1). Using the result
given in Eq. (157), we obtain our preferred value for |Vcb|:

B → D∗!ν : |Vcb| = 39.36(56)(50) × 10−3 , Nf = 2 + 1 (162)

where the errors shown are from the lattice calculation and experiment (plus non-lattice
theory), respectively. Table 31 compares the determination of |Vcb| from exclusive B → D∗!ν
decays to that from inclusive B → Xc!ν decays, where Xc denotes all possible charmed
hadronic final states. The results, also shown in Fig. 23, differ by approximately 2.7σ. The
exclusive determination of |Vcb| will improve significantly over the next year or two with new
lattice-QCD calculations of the B → D(∗)!ν form factors at nonzero recoil.

35We note that HFAG currently averages results for neutral and charged B meson decays without first
removing the correction due to the Coulomb attraction between the charged final-state particles for the neutral
B meson decays.
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[Okubo et al. 71; Bourrely et al. 81]
[Boyd, Grinstein, Lebed 95; Bourrely, Caprini, Lellouch 09] 

[several other contributions... ]
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fit to the lattice-QCD and Belle (Babar) data with errors.
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theory), respectively. Table 31 compares the determination of |Vcb| from exclusive B → D∗!ν
decays to that from inclusive B → Xc!ν decays, where Xc denotes all possible charmed
hadronic final states. The results, also shown in Fig. 23, differ by approximately 2.7σ. The
exclusive determination of |Vcb| will improve significantly over the next year or two with new
lattice-QCD calculations of the B → D(∗)!ν form factors at nonzero recoil.
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some issues still remain, active discussion
[Bećirević et al, arXiv:1407.1019]

[Okubo et al. 71; Bourrely et al. 81]
[Boyd, Grinstein, Lebed 95; Bourrely, Caprini, Lellouch 09] 

[several other contributions... ]



relevant channels, form factors

lattice QCD in the precision era

reach of lattice simulations

summaries of lattice results: FLAG

issues for B-physics

status

pre-2014: form factors at zero recoil

recent developments: improved precision, q2 dependence, baryon channels

outlook

outline



results at zero recoil

Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

ch
ir
al
ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

re
no
rm

al
iz
at
io
n

he
av
y-
qu
ar
k
tr
ea
tm

en
t

form factor

FNAL/MILC 13B[446] 2+1 C! ! ◦ ! ◦ " FB→D∗
(1) 0.906(4)(12)

FNAL/MILC 10 [443] 2+1 C§ ! ◦ ! ◦ " FB→D∗
(1) 0.9017(51)(87)(83)(89)(30)(33) ‡

FNAL/MILC 08 [444] 2+1 A ! ◦ ! ◦ " FB→D∗
(1) 0.921(13)(8)(8)(14)(6)(3)(4)

FNAL/MILC 13B[446] 2+1 C ! ◦ ! ◦ " GB→D(1) 1.081(25)

FNAL/MILC 04A[445] 2+1 C # # ◦∗ ◦† " GB→D(1) 1.074(18)(16)

FNAL/MILC 12A[452] 2+1 A ◦ ◦ ! ◦ " R(D) 0.316(12)(7)

Atoui 13 [448] 2 P ! ! ! — " GB→D(1) 1.033(95)

Atoui 13 [448] 2 P ! ! ! — " GBs→Ds(1) 1.052(46)

! Update of FNAL/MILC 08 for Lattice 2013.
§ Update of FNAL/MILC 08 for CKM 2010.
‡ Value of F(1) presented in Ref. [443] includes 0.7% correction ηEW . This correction is unrelated to the
lattice calculation and has been removed here.

∗ No explicit estimate of FV error, but expected to be small.
† No explicit estimate of perturbative truncation error in vector current renormalization factor, but expected
to be small because of mostly-nonperturbative approach.

Table 29: Lattice results for the B → D∗!ν, B → D!ν, and Bs → Ds!ν semileptonic form
factors and R(D).

have therefore become important and timely. FNAL/MILC has published the first un-
quenched lattice determination of R(D) [452]. They use a subset of the MILC ensembles
from the ongoing B → D!ν semileptonic project [447], namely two light-quark masses each
on a ≈ 0.12 and 0.09 fm lattices, and find,

R(D) = 0.316(12)(7). (155)

This SM prediction is about ∼ 1.7σ lower than the Babar measurement.

8.4.4 Ratios of B and Bs semileptonic decay form factors

In addition to B → D!ν semileptonic decays there is also interest in Bs → Ds!ν semileptonic
decays. In particular, [Bs → Ds!ν]/[B → D!ν] semileptonic form factor ratios can be used to
obtain ratios of Bq meson (q = d, s) fragmentation fractions, fs/fd. This latter ratio enters

137

FNAL/MILC 13B: proceedings, full B!D* published in Bailey et al, PRD 89 (2014) 114504
FNAL/MILC 12A: PRL 109 (2012) 071802
Atoui 13: Eur.Phys.J. C74 (2014) 5, 2861
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Figure 23: Comparison of the results for |Vub| and |Vcb| obtained from lattice methods with
non-lattice determinations based on inclusive semileptonic B decays. In the left plot, the
results denoted by squares are from leptonic decays, while those denoted by triangles are
from semileptonic decays. The grey band indicates our Nf = 2 + 1 average.
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from |Vub|× 103

our result for Nf = 2 B → τν 4.21(53)(18)
our result for Nf = 2 + 1 B → τν 4.18(52)(9)
our result for Nf = 2 + 1 + 1 B → τν 4.28(53)(9)

our result for Nf = 2 + 1 B → π$ν (Babar) 3.37(21)
our result for Nf = 2 + 1 B → π$ν (Belle) 3.47(22)

Bauer 01 [458] B → Xu$ν 4.62(20)(29)
Lange 05 [459] B → Xu$ν 4.40(15)(+19

−21)
Andersen 05 [460], Gardi 08 [461] B → Xu$ν 4.45(15)(+15

−16)
Gambino 07 [462] B → Xu$ν 4.39(15)(+12

−14)
Aglietti 07 [463] B → Xu$ν 4.03(13)(+18

−12)

HFAG inclusive average [125] B → Xu$ν 4.40(15)(20)

Table 30: Comparison of exclusive determinations of |Vub| (upper panel) and inclusive deter-
minations (lower panel). For B → τν, the two uncertainties shown come from experiment
(plus non-lattice theory) and from the lattice calculation, respectively. Each inclusive deter-
mination corresponds to a different theoretical treatment of the same experimental partial
branching fractions compiled by the Heavy Flavour Averaging Group [464]; the errors shown
are experimental and theoretical, respectively.

Ref. from |Vcb|× 103

our average for Nf = 2 + 1 [443] B → D∗$ν 39.36(56)(50)

Inclusive (Gambino 13) [465] B → Xc$ν 42.42(86)

Table 31: Determinations of |Vcb| obtained from semileptonic B decay. The errors shown
in the first row indicate those from lattice and experimental (plus non-lattice theory) uncer-
tainties, respectively, while the error shown in the second row is the total (experimental plus
theoretical) uncertainty.
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FNAL/MILC results for B→D*

Nf=2+1 rooted staggered sea quarks

Fermilab heavy quarks

several lattice spacings (finest 0.045 fm) 
and (not very) light masses

mostly non-perturbative renormalisation

This work uses the MILC Nf = 2+1 ensembles. The bottom and charm quarks are simulated
using the clover action with the Fermilab interpretation and light quarks are treated via the
Asqtad staggered fermion action. At zero recoil FB→D∗

(1) reduces to a single form factor,
hA1(1), coming from the axial-vector current

〈D∗(v, ε′)|Aµ|B(v)〉 = i
√
2mB2mD∗ ε′µ

∗hA1(1), (151)

where ε′ is the polarization of the D∗. Reference [444] introduces a new ratio of three-point
correlators which directly gives |hA1(1)|:

RA1 =
〈D∗|c̄γjγ5b|B〉 〈B|b̄γjγ5c|D∗〉

〈D∗|c̄γ4c|D∗〉 〈B|b̄γ4b|B〉 = |hA1(1)|
2. (152)

In reference [444] simulation data are obtained on MILC ensembles with three lattice spacings,
a ≈ 0.15, 0.12, and 0.09 fm, for 2, 4 or 3 different light-quark masses respectively. Results
are then extrapolated to the physical, continuum/chiral, limit employing staggered χPT.

The D∗ meson is not a stable particle in QCD and decays predominantly into a D plus a
pion. Nevertheless, heavy-light meson χPT can be applied to extrapolate lattice simulation
results for the B → D∗#ν form factor to the physical light-quark mass. The D∗ width is quite
narrow, 0.096 MeV for the D∗±(2010) and less than 2.1MeV for the D∗0(2007), making this
system much more stable and long lived than the ρ or the K∗ systems. The fact that the
D∗ −D mass difference is close to the pion mass leads to the well known “cusp” in RA1 just
above the physical pion mass [449–451]. This cusp makes the chiral extrapolation sensitive to
values used in the χPT formulas for the D∗Dπ coupling gD∗Dπ. The error budget in reference
[444] includes a separate error of 0.9% coming from the uncertainty in gD∗Dπ in addition to
general chiral extrapolation errors in order to take this sensitivity into account.

The final value presented in [444], FB→D∗
(1) = hA1(1) = 0.921(13)(20), where the first

error is statistical, and the second the sum of systematic errors added in quadrature, has
a total error of 2.6%. This result is updated in Ref. [443] after increasing statistics and
adding data from a ≈ 0.06 fm lattices, and even further in Ref. [446] adding data from an
a ≈ 0.045 fm ensemble. The latest value is

FB→D∗
(1) = 0.906(4)stat(12)sys , (153)

with the total error reduced to 1.4%. The largest systematic uncertainty comes from dis-
cretization errors followed by effects of higher-order corrections in the chiral perturbation
theory ansatz.

8.4.3 B → D(∗)τν decays

Another interesting semileptonic process is B → D(∗)τν. Here the mass of the outgoing
charged lepton cannot be neglected in the decay rate formula, so that both vector and scalar
form factors come into play. Recently Babar announced their first observations of the semilep-
tonic decays of B mesons into third generation leptons at a rate in slight excess over SM ex-
pectations. Since the lepton mass is now large enough for the branching fraction B(B → Dτν)
to be sensitive to the scalar form factor f0(q2), this could be a hint for some New Physics
scalar exchange contribution. Accurate SM predictions for the ratio

R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)#ν) with # = e, µ (154)
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb| is one of the fundamental

parameters of the Standard Model (SM). Together with |Vus|, |Vub|, and arg V ∗
ub, it allows

for a full SM determination of flavor and CP violation via processes that proceed at the

tree level of the electroweak interaction. In the case of |Vcb|, one requires a measurement

of the differential rate of B mesons decaying semileptonically to a charmed final state. The

hadronic part of the final state can be exclusive—e.g., a D∗ or D meson—or inclusive.

The 2012 edition of the Review of Particle Physics by the Particle Data Group (PDG) [1]

notes that the exclusive and inclusive values of |Vcb| are marginally consistent with each other.

Furthermore, global fits to a comprehensive range of flavor- and CP -violating observables

tend to prefer the inclusive value [2–4]: when direct information on |Vcb| is omitted from the

fit, one of the outputs of the fit is a value of |Vcb| that agrees better with the inclusive than

the exclusive value. One should bear in mind that some tension in the global fits to the

whole CKM paradigm has been seen [5]. A full discussion of the possible resolutions of the

discrepancy lies beyond the scope of this article. We conclude merely that it is important

and timely to revisit the theoretical and experimental ingredients of both determinations.

In this paper, we improve the lattice-QCD calculation [6–8] of the zero-recoil form factor

for the exclusive decay B̄ → D∗�ν̄ (and isopin-partner and charge-conjugate modes). Our

analysis strategy is very similar to our previous work [7], but the lattice-QCD data set is

much more extensive, with higher statistics on all ensembles, smaller lattice spacings (as

small as a ≈ 0.045 fm) and light-quark masses as small as m̂� = ms/20 (at lattice spacing

a ≈ 0.09 fm). Figure 1 provides a simple overview of the new and old data sets; further details

are given in Sec. II. Our preliminary status report [8] encompassed the higher statistics but

not yet four of the ensembles in the lower left-hand corner of Fig. 1.

With this work, we improve the precision of |Vcb| as determined from exclusive decays
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FIG. 1. (color online) Range of lattice spacings and light-quark masses used here (colored or gray
discs) and in Ref. [7] (black circles). The area is proportional to the size of the ensemble. The
lattice spacings are a ≈ 0.15, 0.12, 0.09, 0.06, and 0.045 fm. Reference [8] did not yet include the
ensembles with (a, m̂�/ms) = (0.045 fm, 0.20), (0.06 fm, 0.14), (0.06 fm, 0.10), and (0.09 fm, 0.05).
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TABLE XI. Values of |Vcb| implied by different choices of experimental inputs when accounting
for electroweak and Coulomb corrections. The first column is the mode or combination of modes
that is taken from experiment, the second and third columns give the experimental value for
103|Vcb||η̄EW|F(1) and its source, the fourth column is our estimate of the correction factor |η̄EW|,
the last column is the resulting 103|Vcb| using the result in Eq. (9.1).

Mode 103|Vcb||η̄EW|F(1) Ref. |η̄EW| 103|Vcb|
B0 35.60± 0.57 [81] 1.0182± 0.0016 38.59± 0.62expt ± 0.52QCD ± 0.06QED

B± 35.14± 1.45 BaBar [82] 1.0066± 0.0016 38.53± 1.60expt ± 0.52QCD ± 0.06QED

Both 40.00± 2.04 CLEO [83] 1.0124± 0.0058 43.61± 2.22expt ± 0.59QCD ± 0.25QED

Both 35.83± 1.12 BaBar [84] 1.0124± 0.0058 39.06± 1.22expt ± 0.53QCD ± 0.22QED

Both 35.90± 0.45 HFAG [76] 1.015± 0.005 39.04± 0.49expt ± 0.53QCD ± 0.19QED

Coulomb effects, such that the total is closer to 1% than 2% [80]. Already now, and certainly
for any future determination of |Vcb|, a similar treatment is called for, theoretically first and
then in the combination of experimental measurements of neutral and charged decays.

The current experiments do not take the Sirlin [10] and Coulomb effects into account.
Further, to our knowledge a study of QCD-scale photons, analogous to Ref. [80], is not
available for heavy-meson decays. In particular, charged and neutral decays are analyzed
and combined without different radiative corrections. The quantity reported to be |Vcb|F(1)
is really |Vcb||η̄EW|F(1), where η̄EW is a suitably charge-weighted average of Eq. (8.1) and
the Coulomb effect. Table XI shows results for |Vcb| from different choices for the experi-
mental input and the corresponding estimate of η̄EW. The first entry shows an average with
HFAG methods from B0 decays only [81], while the second shows the B±-only measurement
from BaBar [82]; then η̄EW is simply Eq. (8.2) with and without the Coulomb factor, re-
spectively. The third and fourth entries are the results from single experiments, CLEO [83]
and BaBar [84], in which both modes were combined; here, we compute η̄EW by assuming a
50-50 split, varying between 100-0 and 0-100 to estimate the error. This range is extreme,
but with one experiment, the QCD and QED errors are smaller than the experimental error.
The last row in Table XI shows the 2012 result from HFAG [76] with our estimate of the
appropriate charge-weighted average for η̄EW. The neutral data carry greater weight in the
HFAG average [81], so we take a value of η̄EW slightly larger than a 50-50 split, with generous
error range, to allow for other effects, such as photons at the QCD scale.

IX. RESULTS AND CONCLUSIONS

We have improved on our previous calculation of the zero-recoil form factor for B →
D∗�ν decay by increasing statistics, going to lighter quark masses at correspondingly larger
volumes, and going to finer lattice spacings. Our final result, given the error budget in
Table X, is

F(1) = hA1(1) = 0.906(4)(1)(5)(3)(9)(4)(1), (9.1)

where the errors are statistical, scale uncertainty, chiral extrapolation errors, parametric
uncertainty in gD∗Dπ, heavy-quark discretization errors, perturbative matching, and isospin
effects. Adding all systematic errors in quadrature, we obtain hA1(1) = 0.906(4)(12), which
is consistent with our previous published result hA1(1) = 0.921(13)(20) [7], but with a
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Nf=2+1 rooted staggered sea quarks

Fermilab heavy quarks

several lattice spacings (finest 0.045 fm) 
and (not very) light masses

mostly non-perturbative renormalisation

This work uses the MILC Nf = 2+1 ensembles. The bottom and charm quarks are simulated
using the clover action with the Fermilab interpretation and light quarks are treated via the
Asqtad staggered fermion action. At zero recoil FB→D∗

(1) reduces to a single form factor,
hA1(1), coming from the axial-vector current

〈D∗(v, ε′)|Aµ|B(v)〉 = i
√
2mB2mD∗ ε′µ

∗hA1(1), (151)

where ε′ is the polarization of the D∗. Reference [444] introduces a new ratio of three-point
correlators which directly gives |hA1(1)|:
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〈D∗|c̄γ4c|D∗〉 〈B|b̄γ4b|B〉 = |hA1(1)|
2. (152)

In reference [444] simulation data are obtained on MILC ensembles with three lattice spacings,
a ≈ 0.15, 0.12, and 0.09 fm, for 2, 4 or 3 different light-quark masses respectively. Results
are then extrapolated to the physical, continuum/chiral, limit employing staggered χPT.

The D∗ meson is not a stable particle in QCD and decays predominantly into a D plus a
pion. Nevertheless, heavy-light meson χPT can be applied to extrapolate lattice simulation
results for the B → D∗#ν form factor to the physical light-quark mass. The D∗ width is quite
narrow, 0.096 MeV for the D∗±(2010) and less than 2.1MeV for the D∗0(2007), making this
system much more stable and long lived than the ρ or the K∗ systems. The fact that the
D∗ −D mass difference is close to the pion mass leads to the well known “cusp” in RA1 just
above the physical pion mass [449–451]. This cusp makes the chiral extrapolation sensitive to
values used in the χPT formulas for the D∗Dπ coupling gD∗Dπ. The error budget in reference
[444] includes a separate error of 0.9% coming from the uncertainty in gD∗Dπ in addition to
general chiral extrapolation errors in order to take this sensitivity into account.

The final value presented in [444], FB→D∗
(1) = hA1(1) = 0.921(13)(20), where the first

error is statistical, and the second the sum of systematic errors added in quadrature, has
a total error of 2.6%. This result is updated in Ref. [443] after increasing statistics and
adding data from a ≈ 0.06 fm lattices, and even further in Ref. [446] adding data from an
a ≈ 0.045 fm ensemble. The latest value is

FB→D∗
(1) = 0.906(4)stat(12)sys , (153)

with the total error reduced to 1.4%. The largest systematic uncertainty comes from dis-
cretization errors followed by effects of higher-order corrections in the chiral perturbation
theory ansatz.

8.4.3 B → D(∗)τν decays

Another interesting semileptonic process is B → D(∗)τν. Here the mass of the outgoing
charged lepton cannot be neglected in the decay rate formula, so that both vector and scalar
form factors come into play. Recently Babar announced their first observations of the semilep-
tonic decays of B mesons into third generation leptons at a rate in slight excess over SM ex-
pectations. Since the lepton mass is now large enough for the branching fraction B(B → Dτν)
to be sensitive to the scalar form factor f0(q2), this could be a hint for some New Physics
scalar exchange contribution. Accurate SM predictions for the ratio

R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)#ν) with # = e, µ (154)
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TABLE X. Final error budget for hA1(1) where each error is discussed in the text. Systematic
errors are added in quadrature and combined in quadrature with the statistical error to obtain the
total error.

Uncertainty hA1(1)

Statistics 0.4%

Scale (r1) error 0.1%

χPT fits 0.5%

gD∗Dπ 0.3%

Discretization errors 1.0%

Perturbation theory 0.4%

Isospin 0.1%

Total 1.4%

between the D∗0 and the D∗+ is a much smaller effect. Thus, we quote an error of 0.1% due
to isospin effects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electromagnetic effects in the semileptonic
rate, Eq. (1.3). They do not enter the lattice-QCD calculation but are needed, in addition
to the hadronic form factor F(1) = hA1(1), to obtain |Vcb|. The factor ηEW (written as ηem
in Ref. [1]) takes the form [10]

ηEW = 1 +
α

π

�
ln

MW

µ
+ tan2 θW

M2
W

M2
Z −M2

W

ln
MZ

MW

�
, (8.1)

where the weak mixing angle is specified via cos θW = g2/(g22 + g21)
1/2; g2 and g1 are the

gauge couplings of SU(2)×U(1). The first (second) term stems from W -photon (W -Z) box
diagrams plus associated parts from vertex and wavefunction renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon lifetime, which is the case for GF

in Ref. [1]. In the SM, MW = MZ cos θW , and the bracket simplifies to ln(MZ/µ). With
this assumption, taking the factorization scale µ = MB± , and varying µ by a factor of 2 to
estimate the error, one finds

ηEW,SM = 1.00662(16). (8.2)

To reiterate, it is theoretically cleaner not to include this factor in F(w). This way makes
it more straightforward to study or remove the µ dependence in future work.

In the experiments [76], the charged-lepton energy spectrum is corrected for bremsstrahl-
ung with the PHOTOS [77] generator. For charged B decay, this package has been shown [78]
to reproduce the exact formula [79]. For neutral B decay, the charged D− and l+ in the
final state attract each other, which is reflected in a slightly different formula for the ra-
diation [11]. Reference [12] recommends treating this effect with a Coulomb correction,
1 + απ/2 = 1.01146 on the amplitude, which is larger than the electroweak correction and
similar in size to the uncertainties from experiment and from QCD. Note, however, that a
detailed study of radiative corrections in K → πlν finds that QCD-scale effects reduce the
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Atoui et al. results for B (s) →D(s)

[Atoui, Bećirević, Morénas, Sanfilippo, Eur.Phys.J. C74 (2014) 5, 2861]

Nf=2 maximally tmQCD sea quarks

ETMC-like ratio method for heavy sector

four lattice spacings, various masses

no renormalisation required

cover up to w=1.062

precision not competitive, mostly due to 
small statistics

ETM Collaboration in their studies of B-meson decay constants (cf. Section 8.1) is employed:
the value of G(w) is computed at a fixed value of mc and several values of a heavier quark

mass m(k)
h = λkmc, where λ is a fixed scaling parameter, and step-scaling functions are built

as
Σk(w) =

G(w,λk+1mc,mc,a2)
G(w,λkmc,mc,a2)

. (148)

Each ratio is extrapolated to the continuum limit, σk(w) = lima→0 Σk(w). One then exploits
the fact that the mh → ∞ limit of the step-scaling is fixed — in particular, it is easy to find
from the heavy-quark expansion that limmh→∞ σ(1) = 1. In this way, the physical result at
the b-quark mass can be reached by interpolating σ(w) between the charm region (where the
computation can be carried out with controlled systematics) and the known static limit value.

In practice, the values of mc and ms are fixed at each value of the lattice spacing such that
the experimental kaon and Ds masses are reached at the physical point, as determined in [60].
For the scaling parameter λ = 1.176 is chosen, and eight step-scaling steps are performed,
reaching mh/mc = 1.1769 # 4.30, approximately corresponding to the ratio of the physical b
and c masses in the MS scheme at 2 GeV. All observables are obtained from ratios that do
not require (re)normalization. The ansatz for the continuum and chiral extrapolation of Σk

contains a constant and linear terms in msea and a2. Twisted boundary conditions in space
are used for valence-quark fields for better momentum resolution. Applying this strategy the
form factors are finally obtained at four reference values of w between 1.004 and 1.062, and,
after a slight extrapolation to w = 1, the result is quoted

GBs→Ds(1) = 1.052(46) . (149)

The authors also provide values for the form factor relevant for the meson states with light
valence quarks, obtained from a similar analysis to the one described above for the Bs → Ds

case. Values are quoted from fits with and without a linear msea/ms term in the chiral
extrapolation. The result in the former case, which safely covers systematic uncertainties, is

GB→D(1) = 1.033(95) . (150)

Given the identical strategy, and the small sensitivity of the ratios used in their method to
the light valence- and sea-quark masses, we assign this result the same ratings in Table 29
as those for their calculation of GBs→Ds(1). Currently the precision of this calculation is
not competitive with that of FNAL/MILC 13A, but this is due largely to the small number
of configurations analysed by Atoui et al. The viability of their method has been clearly
demonstrated, however, which leaves significant room for improvement on the errors of both
the B → D and Bs → Ds form factors with this approach by including either additional
two-flavour data or analysing more recent ensembles with Nf > 2.

Finally, Atoui et al. also study the scalar and tensor form factors, as well as the momentum
transfer dependence of f+,0. The value of the ratio f0(q2)/f+(q2) is provided at a reference
value of q2 as a proxy for the slope of G(w) around the zero-recoil limit.

8.4.2 B → D∗ decays

The most precise computation of the zero-recoil form factors needed for the determination
of |Vcb| from exclusive B semileptonic decays comes from the B → D∗#ν form factor at zero
recoil, FB→D∗

(1), calculated by the Fermilab Lattice and MILC Collaborations [443, 444].
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N.B. 1: relative error size (mostly due to chiral extrapolations:                         ,
which are comparable to those of FNAL/MILC )

mπ � 270 MeV

[ETMC, Atoui et al, arXiv:1312.2914]

N.B. 2: related ETMC study has explored feasibility of                  computationB → D∗∗
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Nf=2+1 rooted staggered sea quarks

Fermilab heavy quarks

several lattice spacings (finest 0.045 fm) 
and (not very) light masses

mostly non-perturbative renormalisation
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FIG. 1. (color online) Range of lattice spacings and light-quark masses used here. The area of
each disk is proportional to the number of configurations in the ensemble.

in Ref. [21] to implement the standard Dirac spin algebra. In this study, masses of the light
valence quarks are always equal to the sea-quark masses. For the heavy valence quarks we
use the Fermilab interpretation of the clover action with the parameters listed in Table II.

Two-point and three-point correlators are computed from four equally-spaced source
times per configuration, but with random offsets in time and space to reduce correlations
between successive gauge-field configurations within an ensemble. We performed a blocking
study to look for residual autocorrelations, and found that the statistical errors did not
change significantly with block size. Thus we do not block the data in this work. The
masses of the heavy valence quarks were tuned so that the kinetic masses of the Ds and
Bs mesons were equal to their physical values. A detailed discussion of tuning is given in
the appendix of Ref. [5], where we show that we get good agreement between the lattice
values of the Ds and Bs hyperfine splittings and their experimental values. The simulation
values of the heavy-quark masses are not quite the same as our best-tuned values, which
were determined a posteriori. Post-simulation adjustment for heavy-quark-mass tuning is
described in Sec. IIID.

After fixing the lattices to Coulomb gauge, two types of interpolating operators for the
D meson are used, namely, a local operator and a smeared operator based on a Richardson
1S wave function [22]. For the B meson we use only the 1S operator. These two operators
have different overlap with excited states, so computing both helps us remove excited-state
contributions. We generate three-point functions in a standard way by fixing the position of
the D and B mesons to a separation T in imaginary time and then varying the time t of the
vector current. Calculations at two adjacent time separations T are carried out in each case
to control the effects of oscillating staggered-fermion propagators. We rotate the heavy-quark
fields as in Eq. (2.9) using the tadpole-improved tree-level values for d1 listed in Table II,
so that the vector current is tree-level improved. Calculations are made at several choices
of three-momentum. In units of 2π/L, for this study we use five momenta (0,0,0), (0,0,1),
(0,1,1), (1,1,1), and (2,0,0). Results at larger momenta tend to have significantly larger

7

II. FORM FACTORS

A. Continuum form factors

The hadronic interaction in the process B → D�ν is determined by the transition matrix

element of the vector current Vµ
= c̄γµb, which is conventionally decomposed in terms of

the vector and scalar form factors f+(q2) and f0(q2) as

�D(pD)|Vµ|B(pB)� = f+(q
2
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qµ
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qµ . (2.1)

Here pB and pD are the momenta of the B and D mesons, MB and MD are the respective

masses, and q = pB − pD is the momentum transferred to the leptons. In the approximation

that the masses of the leptons � = e, µ, νe, νµ are much smaller than the B and D mass

difference MB −MD, the differential decay rate is

dΓ

dw
(B → D�ν) = |η̄EW|2G
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F |Vcb|2M5

B

48π3
(w2 − 1)

3/2r3(1 + r)2G(w)2 , (2.2)

where |η̄EW|2 accounts for electroweak corrections discussed below, GF is the Fermi weak

decay constant, |Vcb| is the desired CKM matrix element, w = v · v� is the recoil parameter,

v = pB/MB and v� = pD/MD are the hadronic velocities, and G is related to f+ through

f+(w)
2
=

(1 + r)2

4r
G(w)2 . (2.3)

for r = MD/MB = 0.354.
The alternative parameterization in terms of the form factors h+ and h− is convenient in

heavy-quark effective theory (HQET) and heavy-light meson chiral perturbation theory:

�D(pD)|Vµ|B(pB)�√
MBMD

= h+(w)(v + v�)µ + h−(w)(v − v�)µ . (2.4)

These form factors are related to f+ and f0 through

f+(q
2
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2
√
r
[(1 + r)h+(w)− (1− r)h−(w)] , (2.5)

f0(q
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) =
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w + 1
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h+(w)−

w − 1

1− r
h−(w)

�
, (2.6)

where q2 = M2
B +M2

D − 2wMBMD. We note, also, the kinematic constraint f+(0) = f0(0)
at q2 = 0, which corresponds to w = (M2

B +M2
D)/(2MBMD) ≈ 1.59. We also have

G(w) = h+(w)−
�
1− r

1 + r

�
h−(w) . (2.7)

B. Form factors from lattice matrix elements

We use the local Fermilab-improved vector current for the quark transition x → y

V µ
xy = Ψ̄xγ

µΨy, (2.8)
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1
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cubic fits to BGL parametrisation

[Bailey et al, arXiv:1503.07237]
[11] is just such a parameterization. It builds in constraints from analyticity and unitarity.
It is based on the conformal map

z(w) =

√
1 + w −

√
2√

1 + w +
√
2
, (5.1)

which takes the physical region w ∈ [1, 1.59] to z ∈ [0, 0.0644]. It pushes poles and branch
cuts relatively far away to |z| ≈ 1. Form factors are then parameterized as

fi(z) =
1

Pi(z)φi(z)

∞�

n=0

ai,nz
n , (5.2)

where the Pi(z) are the “Blaschke factors” containing explicit poles (e.g., a Bc or B∗
c meson)

in the channel variable q2, and the φi are the “outer functions”, whose purpose is described
below. The only unknown parameters are the polynomial coefficients ai,n. In this work, we
do not introduce any pole, so Pi(z) = 1.2 The choice of outer functions is arbitrary as long
as they are analytic functions that do not introduce poles or branch cuts; the φi just affect
the numerical values of the series coefficients, ai. For f+ and f0, we use

φ+(z) = Φ+(1 + z)2(1− z)1/2[(1 + r)(1− z) + 2
√
r(1 + z)]−5 , (5.3)

φ0(z) = Φ0(1 + z)(1− z)3/2[(1 + r)(1− z) + 2
√
r(1 + z)]−4 , (5.4)

such that, numerically, Φ0 = 0.5299 and Φ+ = 1.1213 [11]. With this choice, the bound on
the series coefficients from unitarity takes a particularly simple form:

N�

n=0

|ai,n|2 ≤ 1 , (5.5)

where this bound holds for any N . This bound, in combination with the small range of |z|,
ensures that only a small number of coefficients is needed to parameterize the form factors
over the entire kinematic range to high precision.

To implement the z expansion, we start from the synthetic data for f+ and f0 at z values
corresponding to wj = 1, 1.08, and 1.16, choose a truncation N and fit to determine the
coefficients ai,n for n = 0, . . . , N . These coefficients are then used to parameterize the form
factors over the full kinematic range. We find we need only the first few coefficients in the
expansion to obtain a stable fit with a good p value. The kinematic constraint requires
f+ = f0 at q2 = 0 where z ≈ 0.0644. It is interesting to fit the data without the constraint
to see to what extent it is automatically satisfied. The result for N = 3 in the left panel
of Fig. 8 shows that the data satisfy the constraint much better than our statistics would
suggest. Nonetheless, in subsequent fits, we include the constraint to reduce the form-factor
errors at q2 = 0. The constraint is imposed by expressing the parameter a0,0 in Eq. (5.2) in
terms of the other series coefficients. Table VIII shows the series coefficients and goodness-
of-fit obtained for fits of the lattice form-factor data imposing the kinematic constraint with
N = 2–4. For the fits at cubic and quartic order in the z expansion, we have more parameters
than data, but the unitarity bound in Eq. (5.5) justifies imposing a prior with central value
0 and width 1 on the coefficient(s) of the cubic (and quartic) term(s).

2 We have checked that including a pole located at the theoretically-predicted B∗
c mass [43] does not

appreciably change the z-fit result.
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FIG. 9. Comparison of lattice-QCD results for the B → D�ν form factor G(z) at nonzero recoil
from this work (curves with error bands) and Ref. [12] (points with error bars). Errors on the data
points from Ref. [12] include all uncertainties except for the unquantifiable error due to omitting
sea-quark effects.

Wγ and WZ box diagrams [46] and a further Coulomb correction for final-state interactions
in B0 decays. The BaBar collaboration reports that 37% of the decays in their data sample
were B0s, which results in a QED correction factor in the amplitude of 1 + 0.37α/(2π). We
have assigned an uncertainty of ±0.005 to this correction to account for omitted electromag-
netic effects at intermediate distances. When combined with the Sirlin factor ηEW = 1.00662
the net electroweak correction becomes η̄EW = 1.011(5). (We prefer to use G(w) to denote
the purely hadronic form factor, so in our notation η̄EW |Vcb|G(w) corresponds to the quan-
tity often reported as |Vcb|G(w), and the ratio of experimental to theoretical values must be
divided by η̄EW to get |Vcb|.)

Before performing a joint fit to the lattice and experimental data, we compare the values
of the shape parameters to check for consistency. The left panel of Fig. 10 plots the 1-σ
constraints on the curvature a+,2/a+,0 versus slope a+,1/a+,0 obtained from separate N = 3
z-expansion fits of the lattice data and the 2009 BaBar experimental data. The results are
consistent, but the lattice data constrains the shape much better: this is both because the
lattice points are very precise at low recoil, and because they are more correlated between
w values. Given this consistency, we now proceed with the determination of |Vcb| from a
combined fit of the two data sets.

Table X shows the series coefficients and goodness-of-fit obtained for combined fits of the
lattice and experimental data, imposing the kinematic constraint, for N = 2–4. Again, the
fit, and in particular the error on |Vcb|, stabilizes by quadratic order. We choose N = 3 for
our preferred fit, and plot the result in Fig. 11.
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FIG. 11. Result of the preferred joint fit of the BaBar experimental data together with the lattice
form factors. The plotted experimental points have been divided by our best-fit value of η̄EW|Vcb|

and converted to f+.

D. Comment on the CLN parameterization

The standard approach used by experimentalists to obtain |Vcb| is to use the Caprini, Lel-
louch, Neubert (CLN) parameterization [10] to extrapolate the experimental data to w = 1.
Caprini, Lellouch, and Neubert use heavy-quark symmetry to derive more stringent con-
straints on the coefficients of the z-parameterization through O(z3), resulting in a function
with only two free parameters, f+(0) and ρ21:

f+(z)

f+(0)
= 1− 8ρ21z + (51ρ21 − 10)z2 − (252ρ21 − 84)z3 . (5.6)

Use of the CLN parameterization in our analysis does not reduce the quoted errors in |Vcb|

despite the introduction of additional theoretical information.
The numerical values of the coefficients in Eq. (5.6) have theoretical uncertainties which

can be estimated from the information given in tables and plots from Ref. [10]. To the best
of our knowledge, however, CLN fits to experimental data do not incorporate the theoretical
uncertainties discussed in Ref. [10], and may therefore be underestimating the uncertainty
in |Vcb|. We have attempted to quantify the uncertainty from the use of the CLN form by
incorporating the theoretical uncertainties in the CLN parameters via Bayesian priors. We
did not find any difference in the error on |Vcb| obtained from fits with and without including
these theoretical uncertainties at the current level of precision. This is primarily because
the B → D�ν data displays little evidence of curvature in z within the present errors, and
does not constrain the coefficient of the z3 term. Nevertheless, we do not quote the results
of our CLN fits in this work because we are more confident in the errors obtained from the
model-independent z-parameterization, Eq. (5.2), which can be used to obtain |Vcb| even as
the experimental and lattice uncertainties become arbitrarily more precise.
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VI. DISCUSSION AND OUTLOOK

We obtain
|Vcb| = (39.6± 1.7QCD+exp ± 0.2QED)× 10−3 (6.1)

from our analysis of the exclusive decay B → Dlν at nonzero recoil, where the first error
combines systematic and statistical errors from both experiment and theory and the second
comes from the uncertainty in the correction for the final state Coulomb interaction in the
B0 decays. Because we provide the series coefficients of a z parameterization and their
correlations, the result for |Vcb| in Eq. (6.1) can be updated whenever new experimental
information becomes available.

The combined error from lattice and experiment in |Vcb| is about 4%. Because this error
is obtained from a joint z-fit, the theory and experimental errors cannot be strictly disen-
tangled, but they can be estimated as follows. In the right panel of Fig. 10 we plot the
determinations of f+ from separate z fits to the lattice form factors and to the experimental
data. Inspection of the error bands shows that the combined error, which determines the
uncertainty on |Vcb|, is smallest at about z ≈ 0.025 (w ≈ 1.2). At this point, the experi-
mental error is about 3.9% and the lattice error is about 1.4%. (Note that combining them
in quadrature yields a total that is close to the 4% lattice+experiment error on |Vcb| from
the joint fit.) Thus the experimental error currently limits the precision on |Vcb| from this
approach. The dominant uncertainty in the experimental data is the assumed 3.3% system-
atic error, which is used for all w values in the joint fit. Now that lattice-QCD results for
the B → D�ν form factors are available at nonzero recoil, however, it is clearly worthwhile
to study and improve the systematic errors in the experimental data at medium and large
recoil.

It is interesting to compare the above nonzero-recoil result with the result based on the
standard method that uses only the zero-recoil extrapolation of the experimental and theo-
retical form factors. The z expansion fit to lattice-only data gives G(1) = 1.054(4)stat(8)syst.
The BaBar collaboration quotes η̄EW |Vcb|G(1) = 0.0430(19)stat(14)syst [8] from its B-tagged
data, which gives |Vcb| = (40.8 ± 0.3QCD ± 2.2exp ± 0.2QED) × 10−3. The result is con-
sistent with the value from nonzero recoil, but the error is larger, as expected. Our
zero-recoil form factor is consistent with a previous, preliminary Fermilab/MILC result
of G(1) = 1.074(18)stat(16)syst [13], but with significantly smaller uncertainties due to the
use of a much larger data set with several lattice spacings and lighter pions. We also note
that the systematic error estimate for the earlier result did not include an estimate of the
heavy-quark discretization errors, one of the larger contributions to the error in our new
result.

We compare our result for |Vcb| with other published determinations from inclusive and
exclusive decays in Fig. 12. Our result is consistent with the determination from our compan-
ion analysis of B → D∗�ν at zero recoil, |Vcb| = (39.04±0.53QCD±0.49exp±0.19QED)×10−3

[5]. The errors on |Vcb| from the current work are larger, however, because of the larger errors
in the experimental data. Our result is 1.5σ lower than a recent inclusive (non-lattice) de-
termination, |Vcb| = (42.4±0.9thy+exp)×10−3 [6], which is also based on several experiments
and employs data at nonzero recoil.

We also plot the result for |Vcb| in Fig. 12 determined from only our zero-recoil lattice
data, but using the best experimental knowledge of the extrapolated quantity η̄EW |Vcb|G(1).
The HFAG average value η̄EW |Vcb|G(1) is 0.04264(72)stat(135)syst [3], which combines five
experimental measurements from ALEPH [47], Belle [48], BaBar [8, 49], and CLEO [50].
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FIG. 11. Result of the preferred joint fit of the BaBar experimental data together with the lattice
form factors. The plotted experimental points have been divided by our best-fit value of η̄EW|Vcb|

and converted to f+.
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Use of the CLN parameterization in our analysis does not reduce the quoted errors in |Vcb|

despite the introduction of additional theoretical information.
The numerical values of the coefficients in Eq. (5.6) have theoretical uncertainties which

can be estimated from the information given in tables and plots from Ref. [10]. To the best
of our knowledge, however, CLN fits to experimental data do not incorporate the theoretical
uncertainties discussed in Ref. [10], and may therefore be underestimating the uncertainty
in |Vcb|. We have attempted to quantify the uncertainty from the use of the CLN form by
incorporating the theoretical uncertainties in the CLN parameters via Bayesian priors. We
did not find any difference in the error on |Vcb| obtained from fits with and without including
these theoretical uncertainties at the current level of precision. This is primarily because
the B → D�ν data displays little evidence of curvature in z within the present errors, and
does not constrain the coefficient of the z3 term. Nevertheless, we do not quote the results
of our CLN fits in this work because we are more confident in the errors obtained from the
model-independent z-parameterization, Eq. (5.2), which can be used to obtain |Vcb| even as
the experimental and lattice uncertainties become arbitrarily more precise.
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bonus: R(D) =
B(B → Dτν)

B(B → D�ν)
= 0.299(11)
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Nf=2+1 rooted staggered sea quarks

NRQCD bottom, HISQ charm and light valence quarks

two lattice spacings (0.12 fm and 0.09 fm)

one-loop matching of currents

explore non-zero recoil and fit FF

|Vcb| = 40.2(1.7)lat(1.3)exp × 10−3

R(D) = 0.300(8)bonus:
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1
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Nf=2+1 domain-wall fermion sea

anisotropic clover action for heavy quarks

two lattice spacings (0.11 fm and 0.09 fm), 
few light masses

mostly non-perturbative renormalisation

explore wide region in momentum 
transfer; fit to one-pole z-parametrisation 
à la BCL, allowing for simulation 
parameter dependence in fit parameters

7

FIG. 2. Illustration of the quark field contractions on a given background gauge field for the forward (left) and backward (right)
three-point functions. The u, d, and c quark propagators are common to the forward and backward three-point functions and
have a Gaussian-smeared source at (x0,x). We sum over the spatial points x and y with the appropriate phases to project to
definite momenta. The b-quark propagators are computed using the sequential source method, with sequential sources on the
time slices x0 ± t.

“backward” three-point functions (where t ≥ t� ≥ 0),

C(3,fw)
δα (Γ, p�, t, t�) =

�

y,z

e−ip�·(x−y)
�
Xδ(x0,x) J†

Γ(x0 − t+ t�,y) Λ̄bα(x0 − t, z)
�
, (31)

C(3,bw)
αδ (Γ, p�, t, t− t�) =

�

y,z

e−ip�·(y−x)
�
Λbα(x0 + t, z) JΓ(x0 + t�,y) X̄δ(x0,x)

�
, (32)

as well as the two-point functions

C(2,X,fw)
δα (p�, t) =

�

y

e−ip�·(y−x)
�
Xδ(x0 + t,y)Xα(x0,x)

�
, (33)

C(2,X,bw)
δα (p�, t) =

�

y

e−ip�·(x−y)
�
Xδ(x0,x)Xα(x0 − t,y)

�
, (34)

C(2,Λb,fw)
δα (t) =

�

y

�
Λbδ(x0 + t,y) Λbα(x0,x)

�
, (35)

C(2,Λb,bw)
δα (t) =

�

y

�
Λbδ(x0,x) Λbα(x0 − t,y)

�
. (36)

These definitions are similar to those in the static b-quark case [29, 53], but with the relativistic heavy-quark action

used here, the b quark can propagate in all directions, and we included additional sums over the spatial coordinates for

the momentum projections. The quark-field contractions for the three-point functions are illustrated in Fig. 2. Only

the b-quark sequential propagators need to be recomputed for each source-sink separation, t. For the proton final

state, 16 times as many sequential propagators are needed as for the Λc final state because of the different structure
of diquark contractions. The b-quark propagators decay extremely fast with distance, and care has to be taken to

perform sufficiently many conjugate-gradient iterations to get an accurate solution up to the distance needed.

We computed the three-point functions for all final-state momenta p� with |p�|2 ≤ 12 (2π/L)2, and for the ranges of

source-sink separations shown in Table V. In a first run we computed the three-point functions for all possible values

of t/a in the wide ranges shown in the left column of Table V, but only for the lattice currents of the form q̄Γb and

q̄Γ γj
−→∇jb. In a second run, we then computed the three-point functions for all of the remaining O(a)-improvement

currents shown in Eqs. (18-21), but only for the subsets of separations in the right column of Table V to save computer

time and disk space. For one of the data sets (C14), we performed the calculation of all the currents for the whole

range of source-sink separations. As shown in Fig. 4, the effects of the additional O(a) improvements are small. Our

method for effectively including these corrections for all source-sink separations will be explained further below.

To discuss the spectral decomposition of the correlation functions, we introduce the overlap factors

�0|Λbα(0)|Λb(p, s)� = [(Z(1)
Λb

+ Z(2)
Λb

γ0
) u(p, s)]α, (37)

�0|Xα(0)|X(p�, s�)� = [(Z(1)
X + Z(2)

X γ0
) u(p�, s�)]α. (38)

The two separate Z factors for each matrix element are needed because the spatial-only smearing of the quark fields

in the interpolating field breaks hypercubic symmetry [33]. Because we set p = 0, we can write

�0|Λbα(0)|Λp(p, s)� = ZΛbu(p, s)α, (39)
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0.10

FIG. 3. Numerical results for the vector-current ratios (46), (47), (48) and their axial-vector counterparts, at |p�|2 = 3(2π/L)2,
plotted for three different source-sink separations t. The data shown here are from the C24 data set.

When evaluating the ratios, we take the baryon masses in lattice units, amΛb , amΛc , and amN , from exponential fits
to the zero-momentum two-point functions for each data set; see Table VI. We then compute the energies aEΛc(p

�),
and aEN (p�) from these masses using the relativistic continuum dispersion relation, and we also compute a2q2 from
these masses and energies. Because the form factors are dimensionless, the values of the lattice spacing are not needed
at this stage. The ratios are evaluated using statistical bootstrap, and we use corresponding bootstrap samples for
the masses to take into account all correlations.

As mentioned earlier, except in the case of the C14 data set, we have “full-O(a) improvement” (“FI”) data only
for three source-sink separations in each data set, but we have data with “partial O(a)-improvement” (“PI”) for all
source-sink separations in the ranges shown in Table V. To account for this, we computed the ratios

R(FI)
f (|p�|, t)

R(PI)
f (|p�|, t)

, (61)

where f = f+, f⊥, f0, g+, g⊥, g0, for those source-sink separations where both R(FI)
f and R(PI)

f are available. Numerical
results for Eq. (61) from the C14 data set (where we have FI data for all values of t) are shown in Fig. 4. In the case
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FIG. 6. Λb → p vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands indicate
the 1σ statistical uncertainty.
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FIG. 7. Λb → p axial-vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands
indicate the 1σ statistical uncertainty.
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FIG. 8. Λb → Λc vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands indicate
the 1σ statistical uncertainty.
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FIG. 9. Λb → Λc axial-vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands
indicate the 1σ statistical uncertainty.
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FIG. 12. Final results for the Λb → Λc form factors. The inner bands show the statistical uncertainty and the outer bands
show the total uncertainty.
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VI. PREDICTIONS FOR THE Λb → p �−ν̄� AND Λb → Λc �
−ν̄� DECAY RATES

In this section, we present predictions for the Λb → p �−ν̄� and Λb → Λc �−ν̄� differential and integrated decay rates
using our form factor results. Including possible right-handed currents with real-valued �Rq , the effective Hamiltonian
in Eq. (2) leads to the following expression for the differential decay rate in terms of the helicity form factors,

dΓ

dq2
=

G2
F |V L

qb|2
√
s+s−

768π3m3
Λb

�
1− m2

�

q2

�2

×
�
4
�
m2

� + 2q2
� �

s+
�
(1− �Rq )g⊥

�2
+ s−

�
(1 + �Rq )f⊥

�2�

+2
m2

� + 2q2

q2

�
s+

�
(mΛb −mX) (1− �Rq )g+

�2
+ s−

�
(mΛb +mX) (1 + �Rq )f+

�2�

+
6m2

�

q2

�
s+

�
(mΛb −mX) (1 + �Rq )f0

�2
+ s−

�
(mΛb +mX) (1− �Rq )g0

�2�
�
, (84)

where, as before, X = p,Λc denotes the final-state baryon, and

s± = (mΛb ±mX)2 − q2. (85)

Expressions for the individual helicity amplitudes and the angular distributions can be found in Refs. [27, 28, 65]. By
combining experimental data with our form factor results, novel constraints in the (V L

qb, �
R
q ) plane can be obtained.

In the following, we consider the Standard Model with V L
qb = Vqb and �Rq = 0. Our predictions of the Λb → p �−ν̄�

and Λb → Λc �−ν̄� differential decay rates for � = e, µ, τ are shown in Figs. 14 and 15. The central values, statistical
uncertainties, and systematic uncertainties have been calculated using Eq. (83); all baryon and lepton masses were
taken from Ref. [1]. Our results are most precise in the high-q2 region, where the form factor shapes are most tightly
constrained by the lattice QCD data. We obtain the following partially integrated decay rates

1

|Vub|2

� q2max

15 GeV2

dΓ(Λb → p µ−ν̄µ)

dq2
dq2 = (12.32± 0.93± 0.80) ps−1, (86)

1

|Vcb|2

� q2max

7 GeV2

dΓ(Λb → Λc µ−ν̄µ)

dq2
dq2 = (8.39± 0.18± 0.32) ps−1, (87)

and their ratio

|Vcb|2

|Vub|2

� q2max

15 GeV2
dΓ(Λb→p µ−ν̄µ)

dq2 dq2

� q2max

7 GeV2
dΓ(Λb→Λc µ−ν̄µ)

dq2 dq2
= 1.470± 0.115± 0.104, (88)

where the first uncertainty is statistical and the second uncertainty is systematic. Together with experimental data,
Eqs. (86), (87), and (88) will allow determinations of |Vub|, |Vcb|, and |Vub/Vcb| with theory uncertainties of 5.0%,
2.2%, and 5.3%, respectively. The predicted total decay rates for all possible lepton flavors are

Γ(Λb → p e−ν̄e)/|Vub|2 = (24.8± 2.8± 4.2) ps−1 (89)

Γ(Λb → p µ−ν̄µ)/|Vub|2 = (24.8± 2.8± 4.2) ps−1, (90)

Γ(Λb → p τ−ν̄µ)/|Vub|2 = (17.5± 1.5± 1.9) ps−1, (91)

Γ(Λb → Λc e
−ν̄e)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (92)

Γ(Λb → Λc µ
−ν̄µ)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (93)

Γ(Λb → Λc τ
−ν̄µ)/|Vcb|2 = (7.13± 0.17± 0.29) ps−1. (94)

Motivated by the R(D(∗)) puzzle [14], we also provide predictions for the following ratios:

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc e−ν̄µ)
= 0.3378± 0.0079± 0.0085, (95)

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc µ−ν̄µ)
= 0.3388± 0.0078± 0.0085. (96)

QED corrections to the decay rates, which may be relevant at this level of precision, have been neglected here.

28

VI. PREDICTIONS FOR THE Λb → p �−ν̄� AND Λb → Λc �
−ν̄� DECAY RATES

In this section, we present predictions for the Λb → p �−ν̄� and Λb → Λc �−ν̄� differential and integrated decay rates
using our form factor results. Including possible right-handed currents with real-valued �Rq , the effective Hamiltonian
in Eq. (2) leads to the following expression for the differential decay rate in terms of the helicity form factors,

dΓ

dq2
=

G2
F |V L

qb|2
√
s+s−

768π3m3
Λb

�
1− m2

�

q2

�2

×
�
4
�
m2

� + 2q2
� �

s+
�
(1− �Rq )g⊥

�2
+ s−

�
(1 + �Rq )f⊥

�2�

+2
m2

� + 2q2

q2

�
s+

�
(mΛb −mX) (1− �Rq )g+

�2
+ s−

�
(mΛb +mX) (1 + �Rq )f+

�2�

+
6m2

�

q2

�
s+

�
(mΛb −mX) (1 + �Rq )f0

�2
+ s−

�
(mΛb +mX) (1− �Rq )g0

�2�
�
, (84)
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2.2%, and 5.3%, respectively. The predicted total decay rates for all possible lepton flavors are

Γ(Λb → p e−ν̄e)/|Vub|2 = (24.8± 2.8± 4.2) ps−1 (89)

Γ(Λb → p µ−ν̄µ)/|Vub|2 = (24.8± 2.8± 4.2) ps−1, (90)

Γ(Λb → p τ−ν̄µ)/|Vub|2 = (17.5± 1.5± 1.9) ps−1, (91)

Γ(Λb → Λc e
−ν̄e)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (92)

Γ(Λb → Λc µ
−ν̄µ)/|Vcb|2 = (21.1± 0.8± 1.4) ps−1, (93)

Γ(Λb → Λc τ
−ν̄µ)/|Vcb|2 = (7.13± 0.17± 0.29) ps−1. (94)

Motivated by the R(D(∗)) puzzle [14], we also provide predictions for the following ratios:

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc e−ν̄µ)
= 0.3378± 0.0079± 0.0085, (95)

Γ(Λb → Λc τ−ν̄µ)

Γ(Λb → Λc µ−ν̄µ)
= 0.3388± 0.0078± 0.0085. (96)

QED corrections to the decay rates, which may be relevant at this level of precision, have been neglected here.

(e.m. effects neglected)

stat           sys



significant recent advance in SL form factors

few % precision in FFs, error in |Vcb| from meson channels dominated by exp

immediate future

only results (meson channels) based on MILC ensembles: need crosscheck 
with other regularisations (and heavy quark treatments)

add existing ensembles with finer lattice spacings and lighter sea masses

fully understand analysis details (e.g. FF parametrisation, entanglement with 
chiral fits)

what could be useful for the experiment???

summary and outlook
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FIG. 6. Error budgets for f+ and f0 as a function of the recoil w. The colored bands show the

error contribution of each uncertainty source to the quadrature sum. The corresponding error is

provided on the right y-axis. Our lattice simulation results are for w ∈ [0, 1.16], i.e., to the left of

the vertical line.

IV. SYSTEMATIC ERRORS

In this section we discuss the sources of systematic error in the lattice determinations

of h+ and h− and their propagation to the form factors f+ and f0. As can be seen from

Fig. 4, the magnitude of h− is about 5% of h+ for the entire range of simulated w values.

Further, the contribution of h− to the vector form factor f+ is suppressed relative to the

contribution from h+ by the factor (1− r)/(1 + r) = 0.477, while the contribution of h− to

the scalar form factor f0 is exactly zero at w = 1 and grows linearly with recoil as (w − 1).

Thus even large percentage systematic errors in h− lead to only small uncertainties in f+
and f0. Figure 6 shows the momentum-dependence of the error contributions to f+(w) and
f0(w), while Table VI provides numerical values for a representative recoil w = 1.16.

A. Overview of systematic errors in f+ and f0

As can be seen from Fig. 6, the dominant uncertainty in both form factors arises from

the chiral-continuum fit, which includes contributions from statistics, matching factors, and

higher-order terms in the chiral expansion. Although we cannot strictly disentangle the

contributions to the error from these sources, we can estimate their sizes by repeating the

chiral-continuum fit omitting either the errors in the matching factors or the NNLO terms

in the chiral expansion, and take the quadrature difference of the resulting error estimates.

The contribution from “statistics” is defined to be the error in the NLO chiral-continuum

fit to data with no matching-factor uncertainties included. This imprecise scheme does not

guarantee that the individual errors sum to the total fit error, but, roughly speaking, we find

that the statistics, matching, and truncation uncertainties in the chiral-continuum expansion

contribute approximately equally to the error in the full NNLO fit. Despite our incomplete

knowledge of the matching factors, we find their contributions to the uncertainty in f+ and
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TABLE VI. Error budget (in percent) for f+ and f0 at w = 1.16, which is the largest recoil value

used in our momentum extrapolation to the full kinematic range and determination of |Vcb| (see
Sec. V). The first row includes the combined error from statistics, matching, and the error from

truncating the chiral expansion resulting from the chiral-continuum fit: errors in parentheses are

approximate sub-parts estimated as described in the text. The total error is obtained by adding the

individual errors in quadrature. Not explicitly shown because they are negligible are finite-volume

effects, isospin-breaking effects, and light-quark mass tuning.

Source f+(%) f0(%)

Statistics+matching+χPT cont. extrap. 1.2 1.1

(Statistics) (0.7) (0.7)

(Matching) (0.7) (0.7)

(χPT/cont. extrap.) (0.6) (0.5)

Heavy-quark discretization 0.4 0.4

Lattice scale r1 0.2 0.2

Total error 1.2 1.1

f0 to be modest. The errors from the chiral-continuum fit are under good control for the

range of simulated lattice recoil values, but grow rapidly for w � 1.16 where we do not have

data.

We add the remaining systematic uncertainties a posteriori to the chiral-continuum fit

error. We estimate the individual contributions to the form-factor error budget in the follow-

ing subsections, discussing each source in a separate subsection for clarity. In practice, only

the heavy-quark discretization errors (Sec. IVD) and lattice-scale uncertainty (Sec. IVE)

turn out to be significant.

We assume that systematic uncertainties from heavy-quark discretization effects and

the lattice-scale uncertainty are uncorrelated, and therefore add them in quadrature. We

then propagate them to f+ and f0 according to the linear transformation Eqs. (2.5) and

(2.6), which depends on the recoil w, taking them to be 100% correlated between w values

and between h+ and h−. Both the lattice-scale and heavy-quark discretization errors are

substantially smaller than the chiral-continuum fit error, and increase only slowly with w.

B. Matching

The ρ factors in Eq. (2.11) enter in the renormalization of the components of the transition

vector current V µ
cb. As explained in Sec. III E these factors are estimated in one-loop lattice

perturbation theory to the extent that such calculations are available. As discussed near the

end of Sec. III F, we build the uncertainty estimates of Eqs. (B31), (B32) and (B37) into

the chiral-continuum fit via Eq. (3.17).

A noteworthy feature of Table VI is the size of the matching error after the chiral-

continuum fit. Had we omitted the errors in Eqs. (B31), (B32), and (B37) from the fitting

function, we would have to add them a posteriori, as we did for B → D∗
at zero recoil [5].

Following the procedure used in Ref. [5], we would assign errors of 1.4% and 1.1% for f+
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TABLE VI. Error budget (in percent) for f+ and f0 at w = 1.16, which is the largest recoil value

used in our momentum extrapolation to the full kinematic range and determination of |Vcb| (see
Sec. V). The first row includes the combined error from statistics, matching, and the error from

truncating the chiral expansion resulting from the chiral-continuum fit: errors in parentheses are

approximate sub-parts estimated as described in the text. The total error is obtained by adding the

individual errors in quadrature. Not explicitly shown because they are negligible are finite-volume

effects, isospin-breaking effects, and light-quark mass tuning.

Source f+(%) f0(%)

Statistics+matching+χPT cont. extrap. 1.2 1.1

(Statistics) (0.7) (0.7)

(Matching) (0.7) (0.7)

(χPT/cont. extrap.) (0.6) (0.5)

Heavy-quark discretization 0.4 0.4

Lattice scale r1 0.2 0.2

Total error 1.2 1.1

f0 to be modest. The errors from the chiral-continuum fit are under good control for the

range of simulated lattice recoil values, but grow rapidly for w � 1.16 where we do not have

data.

We add the remaining systematic uncertainties a posteriori to the chiral-continuum fit

error. We estimate the individual contributions to the form-factor error budget in the follow-

ing subsections, discussing each source in a separate subsection for clarity. In practice, only

the heavy-quark discretization errors (Sec. IVD) and lattice-scale uncertainty (Sec. IVE)

turn out to be significant.

We assume that systematic uncertainties from heavy-quark discretization effects and

the lattice-scale uncertainty are uncorrelated, and therefore add them in quadrature. We

then propagate them to f+ and f0 according to the linear transformation Eqs. (2.5) and

(2.6), which depends on the recoil w, taking them to be 100% correlated between w values

and between h+ and h−. Both the lattice-scale and heavy-quark discretization errors are

substantially smaller than the chiral-continuum fit error, and increase only slowly with w.

B. Matching

The ρ factors in Eq. (2.11) enter in the renormalization of the components of the transition

vector current V µ
cb. As explained in Sec. III E these factors are estimated in one-loop lattice

perturbation theory to the extent that such calculations are available. As discussed near the

end of Sec. III F, we build the uncertainty estimates of Eqs. (B31), (B32) and (B37) into

the chiral-continuum fit via Eq. (3.17).

A noteworthy feature of Table VI is the size of the matching error after the chiral-

continuum fit. Had we omitted the errors in Eqs. (B31), (B32), and (B37) from the fitting

function, we would have to add them a posteriori, as we did for B → D∗
at zero recoil [5].

Following the procedure used in Ref. [5], we would assign errors of 1.4% and 1.1% for f+
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FIG. 13. Systematic uncertainties in the Λb → Λc form factors in the high-q2 region. As explained in the main text, the
combined uncertainty is not simply the quadratic sum of the individual uncertainties.


